Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2302. doi: 10.1107/S1600536811031576

Diethyl 2,5-bis­[(1E)-(1H-pyrrol-2-yl­methyl­idene)amino]­thio­phene-3,4-dicarboxyl­ate

Stéphane Dufresne a, W G Skene a,*
PMCID: PMC3200839  PMID: 22058937

Abstract

In the crystal structure of the title compound, C20H20N4O4S, the azomethine group adopt E conformations. The pyrrole units are twisted by 10.31 (4) and 18.90 (5)° with respect to the central thio­phene ring. The three-dimensional network is close packed and involves N—H⋯O, N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonding.

Related literature

For general background, see: Dufresne et al. (2007, 2011). For thio­phene azomethines, see: Dufresne et al. (2006, 2010a ,b ). For alkene comparison, see: Ruban et al. (1975); Zobel et al. (1978).graphic file with name e-67-o2302-scheme1.jpg

Experimental

Crystal data

  • C20H20N4O4S

  • M r = 412.46

  • Orthorhombic, Inline graphic

  • a = 16.898 (3) Å

  • b = 12.643 (3) Å

  • c = 9.4220 (19) Å

  • V = 2012.9 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.73 mm−1

  • T = 150 K

  • 0.10 × 0.03 × 0.03 mm

Data collection

  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.841, T max = 0.947

  • 17313 measured reflections

  • 3040 independent reflections

  • 3004 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.064

  • S = 1.04

  • 3040 reflections

  • 264 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983), 1275 Friedel pairs

  • Flack parameter: 0.085 (12)

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: UdMX (Marris, 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031576/zq2118sup1.cif

e-67-o2302-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031576/zq2118Isup2.hkl

e-67-o2302-Isup2.hkl (149.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031576/zq2118Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H100⋯O3i 0.88 2.37 3.040 (2) 133
N4—H400⋯O1ii 0.88 2.47 3.174 (2) 138
N4—H400⋯N2ii 0.88 2.59 3.2136 (19) 128
C3—H3⋯N4iii 0.95 2.56 3.441 (2) 155
C13—H13⋯O3iv 0.95 2.51 3.126 (2) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council Canada, the Centre for Self-Assembled Chemical Structures, and the Canada Foundation for Innovation. SD thanks both NSERC and the Université de Montréal for graduate scholarships.

supplementary crystallographic information

Comment

During our on-going research relating to conjugated azomethines (Dufresne et al., 2007; Dufresne & Skene, 2010a,b; Dufresne & Skene, 2011) we prepared the title compound (I), C20H20N4O4S. To the best of our knowledge, there are very few reported crystal structures of azomethines consisting of pyrrole and thiophene units together. The molecular structure was confirmed by a X-ray diffraction study (Fig. 1). Neither solvent molecules nor counter-ions were found in the closed-packing of the crystal structure.

A major point of interest is the azomethine bond which adopts the E configuration. The bond lengths for C4—C5, N2—C5 and N2—C6 are 1.429 (3), 1.294 (3) and 1.379 (2) Å, respectively. The related bonds C10—C11, N3—C10 and N3—C9 are 1.434 (3), 1.288 (3) and 1.379 (3) Å, respectively. All bond distances are consistent with those of a similar conjugated compound consisting uniquely of thiophenes with two azomethine bonds (Dufresne et al., 2006). The analogues bond lengths for the all-thiophene counterpart are: 1.441 (4), 1.272 (3) and 1.388 (3) Å. It was found that the three heterocycles of (I) are not perfectly coplanar. This was confirmed by measuring the dihedral angles between the planes described by both terminal pyrroles and the plane described by the central thiophene. The dihedral angle between the N1-pyrrole and thiophene planes is 10.31 (4)°, while that for the thiophene and N4-pyrrole planes is 18.90 (5)°. The measured angles are similar to the all-thiophene analogue whose terminal thiophenes are twisted by 9.04 (4)° and 25.07 (6)° with the central thiophene. The pyrrole N-H is involved in several N—H···O and N—H···N donor-acceptor interactions while C—H···N and C—H···O are also observed (Table 1). All these interactions are responsible for the overall extended three-dimensional crystal network (Fig. 2), while no π-stacking was found.

Experimental

In anhydrous toluene (25 mL) was added 1H-pyrrole-2-carbaldehyde to which was subsequently added DABCO, TiCl4 in toluene at 0 °C and then diethyl 2,5-diaminothiophene-3,4-dicarboxylate was added. The mixture was then refluxed for 30 minutes and the solvent, after which the solvent was removed. Purification by flash chromatography yielded the title product as a red solid. Single crystals were obtained by slow evaporation of an acetone solution of the title compound.

Refinement

H atoms were placed in calculated positions and included in the refinement in the riding-model approximation, with C—H = 0.95 Å for aromatic H atoms, C—H = 0.99 Å for methylene H atoms, C—H = 0.98 Å for methyl H atoms, and Uiso(H) = 1.2 Ueq(C). The protons on the N atoms of the pyrrole groups were placed in calculated positions with N—H = 0.85 Å and included in the refinement in the riding-model approximation, with Uiso(H) = 1.5 Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with thermal ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

Supramolecular structure showing the intermolecular hydrogen bonding (dashed lines). Symmetry codes: (i) x+1/2, -y+3/2, z; (ii) x-1/2, -y+3/2, z; (iii) -x, -y+2, z-1/2; (iv) -x-1/2, y+1/2, z-1/2.

Crystal data

C20H20N4O4S Dx = 1.361 Mg m3
Mr = 412.46 Melting point: 483(2) K
Orthorhombic, Pna21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2n Cell parameters from 4515 reflections
a = 16.898 (3) Å θ = 4.4–70.6°
b = 12.643 (3) Å µ = 1.73 mm1
c = 9.4220 (19) Å T = 150 K
V = 2012.9 (7) Å3 Block, orange
Z = 4 0.10 × 0.03 × 0.03 mm
F(000) = 864

Data collection

Bruker SMART 6000 diffractometer 3040 independent reflections
Radiation source: Rotating Anode 3004 reflections with I > 2σ(I)
Montel 200 optics Rint = 0.028
Detector resolution: 5.5 pixels mm-1 θmax = 66.6°, θmin = 4.4°
ω scans h = −19→19
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→14
Tmin = 0.841, Tmax = 0.947 l = −9→10
17313 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024 H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.2939P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3040 reflections Δρmax = 0.19 e Å3
264 parameters Δρmin = −0.15 e Å3
1 restraint Absolute structure: Flack (1983), 1275 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.085 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.025121 (19) 0.93934 (3) 0.61244 (5) 0.01883 (11)
O1 0.19929 (6) 0.77328 (9) 0.93257 (16) 0.0238 (3)
O2 0.08597 (7) 0.76090 (9) 1.05985 (15) 0.0233 (3)
O3 −0.07216 (7) 0.66172 (8) 0.89456 (15) 0.0223 (3)
O4 −0.08363 (6) 0.80055 (8) 1.04346 (14) 0.0199 (3)
N1 0.34790 (7) 0.92360 (10) 0.62911 (19) 0.0211 (3)
H100 0.3404 0.8921 0.7113 0.025*
N2 0.18309 (7) 0.90938 (10) 0.69168 (16) 0.0176 (3)
N3 −0.12532 (7) 0.86607 (10) 0.69517 (18) 0.0186 (3)
N4 −0.29025 (7) 0.83824 (9) 0.63130 (17) 0.0176 (3)
H400 −0.2741 0.7876 0.6885 0.021*
C1 0.41958 (10) 0.94223 (13) 0.5679 (2) 0.0274 (5)
H1 0.4695 0.9235 0.6069 0.033*
C2 0.40779 (9) 0.99277 (13) 0.4398 (2) 0.0255 (4)
H2 0.4476 1.0149 0.3751 0.031*
C3 0.32546 (9) 1.00526 (12) 0.4233 (2) 0.0237 (4)
H3 0.2996 1.0376 0.3449 0.028*
C4 0.28871 (9) 0.96205 (12) 0.54149 (19) 0.0180 (4)
C5 0.20611 (9) 0.95575 (11) 0.5762 (2) 0.0188 (4)
H5 0.1680 0.9858 0.5139 0.023*
C6 0.10367 (9) 0.89476 (11) 0.72176 (19) 0.0171 (3)
C7 0.07559 (9) 0.83597 (11) 0.8356 (2) 0.0173 (3)
C8 −0.00907 (9) 0.82379 (11) 0.83286 (19) 0.0163 (3)
C9 −0.04488 (9) 0.87299 (11) 0.7205 (2) 0.0177 (3)
C10 −0.15923 (9) 0.92361 (11) 0.5995 (2) 0.0177 (3)
H10 −0.1285 0.9729 0.5471 0.021*
C11 −0.24267 (9) 0.91463 (12) 0.57050 (19) 0.0166 (3)
C12 −0.29035 (9) 0.97881 (12) 0.4860 (2) 0.0197 (3)
H12 −0.2734 1.0374 0.4307 0.024*
C13 −0.36866 (10) 0.94050 (11) 0.4980 (2) 0.0206 (4)
H13 −0.4142 0.9688 0.4526 0.025*
C14 −0.36664 (8) 0.85413 (11) 0.5881 (2) 0.0200 (4)
H14 −0.4110 0.8127 0.6154 0.024*
C15 0.12846 (9) 0.78771 (11) 0.9451 (2) 0.0177 (4)
C16 0.12941 (10) 0.71688 (13) 1.1806 (2) 0.0245 (4)
H16A 0.1752 0.6754 1.1459 0.029*
H16B 0.0945 0.6688 1.2350 0.029*
C17 0.15813 (11) 0.80532 (14) 1.2762 (2) 0.0294 (4)
H17A 0.1958 0.8497 1.2243 0.044*
H17B 0.1842 0.7751 1.3599 0.044*
H17C 0.1130 0.8484 1.3064 0.044*
C18 −0.05767 (8) 0.75280 (11) 0.9270 (2) 0.0168 (3)
C19 −0.12474 (10) 0.73187 (13) 1.1459 (2) 0.0250 (4)
H19A −0.0956 0.6645 1.1578 0.030*
H19B −0.1789 0.7156 1.1120 0.030*
C20 −0.12819 (12) 0.79079 (15) 1.2846 (2) 0.0325 (4)
H20A −0.0744 0.8084 1.3153 0.049*
H20B −0.1536 0.7463 1.3565 0.049*
H20C −0.1588 0.8560 1.2722 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01600 (17) 0.02159 (18) 0.0189 (3) −0.00165 (12) −0.00024 (17) 0.00547 (15)
O1 0.0191 (6) 0.0282 (6) 0.0243 (8) 0.0010 (4) −0.0022 (5) 0.0040 (5)
O2 0.0212 (5) 0.0307 (6) 0.0179 (8) 0.0002 (5) −0.0019 (5) 0.0047 (5)
O3 0.0294 (6) 0.0174 (5) 0.0201 (8) −0.0038 (4) 0.0021 (5) −0.0007 (4)
O4 0.0224 (5) 0.0197 (5) 0.0175 (8) −0.0038 (4) 0.0047 (4) −0.0006 (4)
N1 0.0192 (6) 0.0238 (6) 0.0204 (10) 0.0005 (5) 0.0019 (6) 0.0054 (6)
N2 0.0163 (6) 0.0179 (6) 0.0186 (10) −0.0028 (5) −0.0004 (5) 0.0008 (6)
N3 0.0166 (6) 0.0193 (6) 0.0199 (9) −0.0007 (5) 0.0006 (5) −0.0005 (5)
N4 0.0194 (6) 0.0160 (6) 0.0174 (9) 0.0025 (4) −0.0001 (5) 0.0019 (5)
C1 0.0161 (8) 0.0342 (9) 0.0318 (14) 0.0000 (6) 0.0017 (7) −0.0003 (8)
C2 0.0209 (8) 0.0331 (9) 0.0226 (12) −0.0056 (6) 0.0054 (7) 0.0051 (7)
C3 0.0252 (8) 0.0249 (8) 0.0210 (12) −0.0031 (6) −0.0020 (7) 0.0045 (7)
C4 0.0172 (8) 0.0167 (7) 0.0201 (11) −0.0009 (6) −0.0019 (6) 0.0008 (6)
C5 0.0207 (8) 0.0151 (6) 0.0206 (12) 0.0003 (6) −0.0008 (6) 0.0004 (6)
C6 0.0164 (8) 0.0145 (7) 0.0202 (10) −0.0005 (5) −0.0006 (6) −0.0022 (6)
C7 0.0183 (8) 0.0142 (7) 0.0193 (10) −0.0017 (5) 0.0001 (6) −0.0038 (6)
C8 0.0174 (7) 0.0132 (7) 0.0183 (11) −0.0003 (5) 0.0007 (6) −0.0025 (6)
C9 0.0184 (7) 0.0162 (7) 0.0186 (10) −0.0018 (5) 0.0025 (6) 0.0006 (6)
C10 0.0187 (7) 0.0167 (6) 0.0178 (11) 0.0009 (5) 0.0020 (7) 0.0012 (7)
C11 0.0195 (7) 0.0168 (7) 0.0136 (10) 0.0016 (6) 0.0027 (6) −0.0008 (5)
C12 0.0220 (8) 0.0181 (7) 0.0190 (11) 0.0017 (6) 0.0007 (6) 0.0041 (6)
C13 0.0202 (8) 0.0196 (7) 0.0220 (11) 0.0030 (6) −0.0027 (7) 0.0000 (7)
C14 0.0183 (7) 0.0185 (7) 0.0233 (12) −0.0010 (5) 0.0001 (7) −0.0011 (7)
C15 0.0191 (8) 0.0148 (7) 0.0190 (11) −0.0022 (6) 0.0008 (7) −0.0027 (6)
C16 0.0282 (9) 0.0274 (8) 0.0178 (11) −0.0007 (6) −0.0042 (7) 0.0061 (7)
C17 0.0335 (10) 0.0330 (9) 0.0215 (12) −0.0004 (7) −0.0028 (8) 0.0002 (8)
C18 0.0143 (7) 0.0174 (7) 0.0187 (11) 0.0008 (5) −0.0017 (6) 0.0015 (7)
C19 0.0262 (8) 0.0271 (8) 0.0218 (13) −0.0062 (6) 0.0072 (7) 0.0015 (7)
C20 0.0424 (10) 0.0323 (9) 0.0228 (13) −0.0036 (7) 0.0076 (9) −0.0003 (8)

Geometric parameters (Å, °)

S1—C9 1.7717 (17) C6—C7 1.389 (2)
S1—C6 1.7721 (17) C7—C8 1.439 (2)
O1—C15 1.2165 (19) C7—C15 1.495 (2)
O2—C15 1.342 (2) C8—C9 1.369 (2)
O2—C16 1.464 (2) C8—C18 1.506 (2)
O3—C18 1.2164 (19) C10—C11 1.441 (2)
O4—C18 1.327 (2) C10—H10 0.9500
O4—C19 1.472 (2) C11—C12 1.393 (2)
N1—C1 1.362 (2) C12—C13 1.414 (2)
N1—C4 1.385 (2) C12—H12 0.9500
N1—H100 0.8800 C13—C14 1.384 (2)
N2—C5 1.296 (2) C13—H13 0.9500
N2—C6 1.384 (2) C14—H14 0.9500
N3—C10 1.292 (2) C16—C17 1.516 (3)
N3—C9 1.383 (2) C16—H16A 0.9900
N4—C14 1.369 (2) C16—H16B 0.9900
N4—C11 1.381 (2) C17—H17A 0.9800
N4—H400 0.8800 C17—H17B 0.9800
C1—C2 1.380 (3) C17—H17C 0.9800
C1—H1 0.9500 C19—C20 1.505 (3)
C2—C3 1.409 (2) C19—H19A 0.9900
C2—H2 0.9500 C19—H19B 0.9900
C3—C4 1.387 (3) C20—H20A 0.9800
C3—H3 0.9500 C20—H20B 0.9800
C4—C5 1.436 (2) C20—H20C 0.9800
C5—H5 0.9500
C9—S1—C6 90.89 (8) N4—C11—C10 123.11 (14)
C15—O2—C16 117.02 (13) C12—C11—C10 128.93 (14)
C18—O4—C19 115.44 (12) C11—C12—C13 107.25 (14)
C1—N1—C4 109.20 (16) C11—C12—H12 126.4
C1—N1—H100 125.4 C13—C12—H12 126.4
C4—N1—H100 125.4 C14—C13—C12 107.22 (14)
C5—N2—C6 121.56 (15) C14—C13—H13 126.4
C10—N3—C9 121.37 (14) C12—C13—H13 126.4
C14—N4—C11 108.84 (13) N4—C14—C13 108.77 (13)
C14—N4—H400 125.6 N4—C14—H14 125.6
C11—N4—H400 125.6 C13—C14—H14 125.6
N1—C1—C2 108.79 (16) O1—C15—O2 124.51 (16)
N1—C1—H1 125.6 O1—C15—C7 125.64 (16)
C2—C1—H1 125.6 O2—C15—C7 109.85 (13)
C1—C2—C3 106.93 (15) O2—C16—C17 110.00 (14)
C1—C2—H2 126.5 O2—C16—H16A 109.7
C3—C2—H2 126.5 C17—C16—H16A 109.7
C4—C3—C2 108.02 (16) O2—C16—H16B 109.7
C4—C3—H3 126.0 C17—C16—H16B 109.7
C2—C3—H3 126.0 H16A—C16—H16B 108.2
N1—C4—C3 107.07 (14) C16—C17—H17A 109.5
N1—C4—C5 123.16 (16) C16—C17—H17B 109.5
C3—C4—C5 129.77 (16) H17A—C17—H17B 109.5
N2—C5—C4 120.53 (15) C16—C17—H17C 109.5
N2—C5—H5 119.7 H17A—C17—H17C 109.5
C4—C5—H5 119.7 H17B—C17—H17C 109.5
N2—C6—C7 124.12 (15) O3—C18—O4 124.90 (15)
N2—C6—S1 124.39 (13) O3—C18—C8 121.72 (16)
C7—C6—S1 111.31 (11) O4—C18—C8 113.35 (12)
C6—C7—C8 112.52 (15) O4—C19—C20 107.18 (14)
C6—C7—C15 123.18 (14) O4—C19—H19A 110.3
C8—C7—C15 124.26 (14) C20—C19—H19A 110.3
C9—C8—C7 113.87 (15) O4—C19—H19B 110.3
C9—C8—C18 119.05 (14) C20—C19—H19B 110.3
C7—C8—C18 126.54 (14) H19A—C19—H19B 108.5
C8—C9—N3 122.62 (15) C19—C20—H20A 109.5
C8—C9—S1 111.38 (12) C19—C20—H20B 109.5
N3—C9—S1 125.95 (13) H20A—C20—H20B 109.5
N3—C10—C11 121.45 (15) C19—C20—H20C 109.5
N3—C10—H10 119.3 H20A—C20—H20C 109.5
C11—C10—H10 119.3 H20B—C20—H20C 109.5
N4—C11—C12 107.92 (13)
C4—N1—C1—C2 −0.1 (2) C10—N3—C9—S1 −11.7 (2)
N1—C1—C2—C3 0.1 (2) C6—S1—C9—C8 1.58 (13)
C1—C2—C3—C4 0.0 (2) C6—S1—C9—N3 −175.84 (14)
C1—N1—C4—C3 0.08 (19) C9—N3—C10—C11 178.43 (15)
C1—N1—C4—C5 −179.37 (15) C14—N4—C11—C12 −0.75 (19)
C2—C3—C4—N1 −0.02 (19) C14—N4—C11—C10 176.99 (15)
C2—C3—C4—C5 179.37 (16) N3—C10—C11—N4 −6.6 (3)
C6—N2—C5—C4 −174.69 (14) N3—C10—C11—C12 170.66 (17)
N1—C4—C5—N2 −2.4 (2) N4—C11—C12—C13 0.7 (2)
C3—C4—C5—N2 178.28 (16) C10—C11—C12—C13 −176.88 (17)
C5—N2—C6—C7 172.80 (15) C11—C12—C13—C14 −0.4 (2)
C5—N2—C6—S1 −1.8 (2) C11—N4—C14—C13 0.5 (2)
C9—S1—C6—N2 173.29 (13) C12—C13—C14—N4 −0.1 (2)
C9—S1—C6—C7 −1.94 (12) C16—O2—C15—O1 3.6 (2)
N2—C6—C7—C8 −173.42 (14) C16—O2—C15—C7 −177.18 (12)
S1—C6—C7—C8 1.82 (16) C6—C7—C15—O1 −17.3 (2)
N2—C6—C7—C15 4.4 (2) C8—C7—C15—O1 160.28 (15)
S1—C6—C7—C15 179.65 (12) C6—C7—C15—O2 163.54 (14)
C6—C7—C8—C9 −0.63 (19) C8—C7—C15—O2 −18.9 (2)
C15—C7—C8—C9 −178.43 (14) C15—O2—C16—C17 87.68 (18)
C6—C7—C8—C18 170.77 (15) C19—O4—C18—O3 7.5 (2)
C15—C7—C8—C18 −7.0 (2) C19—O4—C18—C8 −174.19 (13)
C7—C8—C9—N3 176.67 (14) C9—C8—C18—O3 81.61 (19)
C18—C8—C9—N3 4.6 (2) C7—C8—C18—O3 −89.4 (2)
C7—C8—C9—S1 −0.86 (17) C9—C8—C18—O4 −96.74 (18)
C18—C8—C9—S1 −172.96 (11) C7—C8—C18—O4 92.26 (18)
C10—N3—C9—C8 171.18 (16) C18—O4—C19—C20 163.89 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H100···O3i 0.88 2.37 3.040 (2) 133
N4—H400···O1ii 0.88 2.47 3.174 (2) 138
N4—H400···N2ii 0.88 2.59 3.2136 (19) 128
C3—H3···N4iii 0.95 2.56 3.441 (2) 155
C13—H13···O3iv 0.95 2.51 3.126 (2) 123

Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x−1/2, −y+3/2, z; (iii) −x, −y+2, z−1/2; (iv) −x−1/2, y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2118).

References

  1. Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dufresne, S., Bourgeaux, M. & Skene, W. G. (2006). Acta Cryst. E62, o5602–o5604.
  4. Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1–13.
  5. Dufresne, S. & Skene, W. G. (2010a). Acta Cryst. E66, o3027. [DOI] [PMC free article] [PubMed]
  6. Dufresne, S. & Skene, W. G. (2010b). Acta Cryst. E66, o3221. [DOI] [PMC free article] [PubMed]
  7. Dufresne, S. & Skene, W. G. (2011). J. Phys. Org. Chem DOI 10.1002/poc.1894.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  10. Marris, T. (2004). UdMX Université de Montréal, Québec, Canada.
  11. Ruban, G. & Zobel, D. (1975). Acta Cryst. B31, 2632–2634.
  12. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Zobel, D. & Ruban, G. (1978). Acta Cryst. B34, 1652–1657.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031576/zq2118sup1.cif

e-67-o2302-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031576/zq2118Isup2.hkl

e-67-o2302-Isup2.hkl (149.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031576/zq2118Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES