Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2342. doi: 10.1107/S1600536811032260

1,3-Benzothia­zole–oxalic acid (2/1)

Ashraf Ahmad Ali Abdalsalam a, Mohammad TM Al-Dajani a, Nornisah Mohamed a, Madhukar Hemamalini b, Hoong-Kun Fun b,*,
PMCID: PMC3200845  PMID: 22065811

Abstract

The asymmetric unit of the title compound, C7H5NS·0.5C2H2O4, contains one benzothia­zole mol­ecule and half an oxalic acid mol­ecule, the complete mol­ecule being generated by inversion symmetry. The benzothia­zole mol­ecule is essentially planar, with a maximum deviation of 0.007 (1) Å. In the crystal, the benzothia­zole mol­ecules inter­act with the oxalic acid mol­ecules via O—H⋯N and C—H⋯O hydrogen bonds generating R 2 2(8) (× 2) and R 4 4(10) motifs, thereby forming supra­molecular ribbons along [101].

Related literature

For background to the biological activity of benzothia­zoles, see: Bradshaw et al. (1998); Dögruer et al. (1998); Dash et al. (1980); Cox et al. (1982).graphic file with name e-67-o2342-scheme1.jpg

Experimental

Crystal data

  • C7H5NS·0.5C2H2O4

  • M r = 180.20

  • Monoclinic, Inline graphic

  • a = 4.0231 (3) Å

  • b = 26.039 (2) Å

  • c = 8.5605 (6) Å

  • β = 116.064 (3)°

  • V = 805.58 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.62 × 0.40 × 0.04 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.811, T max = 0.985

  • 10970 measured reflections

  • 3204 independent reflections

  • 2417 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.114

  • S = 1.04

  • 3204 reflections

  • 112 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032260/tk2778sup1.cif

e-67-o2342-sup1.cif (14.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032260/tk2778Isup2.hkl

e-67-o2342-Isup2.hkl (154KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032260/tk2778Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N1 0.89 (2) 1.80 (2) 2.6663 (15) 166 (2)
C5—H5A⋯O1 0.93 2.48 3.3263 (17) 151
C7—H7A⋯O2i 0.93 2.48 3.4029 (18) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

NM gratefully acknowledges funding from the Malaysian Ministry of Science, Technology and Innovation through the Malaysian Institute of Pharmaceutical and Nutraceutical R&D Initiative Grant (grant No. 09-05-IFN-MEB 004). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Benzothiazoles are used as anti-neoplastic agents and show anti-nociceptive, anti-inflammatory and anti-tumour activities (Bradshaw et al., 1998; Dögruer et al., 1998). Some Schiff bases derived from thiazole and benzothiazoles (Dash et al., 1980) and several derivatives of the styryl-benzothiazoles have also shown biological activity (Cox et al., 1982). In view of the above biological activities associated with the benzothiazole, herein, we present the title compound (I), extracted from the juice of Guava (Psidium guajava).

The asymmetric unit of the title compound, (I), contains one benzothiazole molecule and a half of an oxalic acid molecule (which lies on an inversion centre) as detailed in Fig. 1. The benzothiazole (N1/S1/C1–C7) molecule is essentially planar, with a maximum deviation of 0.007 (1) Å for atom C6.

In the crystal structure, Fig. 2, the benzothiazole molecules interact with the oxalic acid molecules via O—H···N and C—H···O hydrogen bonds (Table 1) generating R22(8) and R44(10) motifs and forming supramolecular ribbons along the [1 0 1] direction.

Experimental

The juice of Guava (Psidium guajava) was extracted using soxhlet extraction method with methanol as solvent. After 24 hours at room temperature, a precipitate was formed and the filtrate removed. The precipitate was washed by using a mixture (90–100) ml of n-hexane-ethyl acetate. It was recrystallized by dissolving in methanol. Brown crystals were formed which melted at M.pt 323 K.

Refinement

Atom H1O2 was located from a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O) [O—H = 0.89 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Contents of (I) showing the molecule of benzothiazole and the full molecule of oxalic acid after the application of inversion symmetry (A: -x+2, -y+2, -z+1). The atoms are displayed with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Partial crystal packing in (I) with dashed lines representing hydrogen bonding.

Crystal data

C7H5NS·0.5C2H2O4 F(000) = 372
Mr = 180.20 Dx = 1.486 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3803 reflections
a = 4.0231 (3) Å θ = 2.8–32.6°
b = 26.039 (2) Å µ = 0.35 mm1
c = 8.5605 (6) Å T = 296 K
β = 116.064 (3)° Plate, brown
V = 805.58 (10) Å3 0.62 × 0.40 × 0.04 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 3204 independent reflections
Radiation source: fine-focus sealed tube 2417 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 33.9°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→6
Tmin = 0.811, Tmax = 0.985 k = −40→40
10970 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.1124P] where P = (Fo2 + 2Fc2)/3
3204 reflections (Δ/σ)max = 0.001
112 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.14317 (9) 0.875823 (14) 1.21487 (4) 0.04461 (11)
N1 1.0034 (3) 0.91965 (4) 0.92292 (13) 0.0385 (2)
C1 0.8353 (3) 0.84567 (4) 1.02665 (14) 0.0350 (2)
C2 0.6466 (4) 0.79950 (5) 1.00741 (19) 0.0448 (3)
H2A 0.6763 0.7800 1.1037 0.054*
C3 0.4144 (4) 0.78360 (5) 0.8411 (2) 0.0493 (3)
H3A 0.2881 0.7527 0.8252 0.059*
C4 0.3652 (4) 0.81302 (5) 0.69656 (18) 0.0468 (3)
H4A 0.2035 0.8017 0.5861 0.056*
C5 0.5516 (4) 0.85854 (5) 0.71444 (15) 0.0412 (3)
H5A 0.5187 0.8780 0.6176 0.049*
C6 0.7919 (3) 0.87487 (4) 0.88198 (14) 0.0329 (2)
C7 1.1947 (4) 0.92418 (5) 1.09000 (16) 0.0408 (3)
H7A 1.3510 0.9520 1.1395 0.049*
O1 0.7128 (3) 0.94803 (4) 0.47893 (12) 0.0584 (3)
O2 1.1410 (3) 0.98494 (4) 0.71853 (11) 0.0468 (2)
H1O2 1.064 (6) 0.9617 (8) 0.771 (3) 0.070*
C8 0.9467 (3) 0.97976 (4) 0.55062 (14) 0.0363 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.04724 (18) 0.0555 (2) 0.02518 (14) −0.00784 (13) 0.01050 (12) 0.00106 (11)
N1 0.0444 (5) 0.0389 (5) 0.0286 (4) −0.0058 (4) 0.0128 (4) −0.0010 (3)
C1 0.0333 (5) 0.0404 (5) 0.0298 (5) 0.0001 (4) 0.0123 (4) 0.0004 (4)
C2 0.0428 (6) 0.0456 (6) 0.0446 (6) −0.0034 (5) 0.0179 (5) 0.0069 (5)
C3 0.0464 (7) 0.0420 (6) 0.0565 (8) −0.0098 (5) 0.0199 (6) −0.0064 (6)
C4 0.0442 (6) 0.0515 (7) 0.0390 (6) −0.0080 (5) 0.0131 (5) −0.0136 (5)
C5 0.0447 (6) 0.0465 (6) 0.0281 (5) −0.0032 (5) 0.0121 (5) −0.0042 (4)
C6 0.0349 (5) 0.0351 (5) 0.0275 (5) −0.0006 (4) 0.0126 (4) −0.0019 (4)
C7 0.0442 (6) 0.0426 (6) 0.0315 (5) −0.0082 (5) 0.0129 (5) −0.0038 (4)
O1 0.0705 (7) 0.0600 (6) 0.0318 (4) −0.0320 (5) 0.0108 (4) −0.0010 (4)
O2 0.0557 (5) 0.0486 (5) 0.0255 (4) −0.0169 (4) 0.0081 (4) 0.0029 (3)
C8 0.0400 (5) 0.0365 (5) 0.0265 (5) −0.0049 (4) 0.0092 (4) 0.0009 (4)

Geometric parameters (Å, °)

S1—C7 1.7222 (13) C4—C5 1.3748 (19)
S1—C1 1.7300 (12) C4—H4A 0.9300
N1—C7 1.2979 (15) C5—C6 1.3979 (15)
N1—C6 1.3944 (14) C5—H5A 0.9300
C1—C2 1.3926 (17) C7—H7A 0.9300
C1—C6 1.3972 (15) O1—C8 1.1989 (14)
C2—C3 1.379 (2) O2—C8 1.3068 (13)
C2—H2A 0.9300 O2—H1O2 0.89 (2)
C3—C4 1.394 (2) C8—C8i 1.540 (2)
C3—H3A 0.9300
C7—S1—C1 89.19 (6) C4—C5—C6 118.30 (12)
C7—N1—C6 110.72 (10) C4—C5—H5A 120.9
C2—C1—C6 121.04 (11) C6—C5—H5A 120.9
C2—C1—S1 129.19 (10) N1—C6—C1 114.05 (10)
C6—C1—S1 109.76 (8) N1—C6—C5 125.65 (10)
C3—C2—C1 117.92 (12) C1—C6—C5 120.30 (11)
C3—C2—H2A 121.0 N1—C7—S1 116.28 (9)
C1—C2—H2A 121.0 N1—C7—H7A 121.9
C2—C3—C4 121.26 (12) S1—C7—H7A 121.9
C2—C3—H3A 119.4 C8—O2—H1O2 108.3 (15)
C4—C3—H3A 119.4 O1—C8—O2 126.13 (11)
C5—C4—C3 121.16 (12) O1—C8—C8i 122.24 (12)
C5—C4—H4A 119.4 O2—C8—C8i 111.63 (12)
C3—C4—H4A 119.4
C7—S1—C1—C2 179.27 (13) C2—C1—C6—N1 −179.17 (11)
C7—S1—C1—C6 −0.42 (9) S1—C1—C6—N1 0.55 (13)
C6—C1—C2—C3 −0.3 (2) C2—C1—C6—C5 1.12 (18)
S1—C1—C2—C3 −179.91 (11) S1—C1—C6—C5 −179.16 (9)
C1—C2—C3—C4 −0.9 (2) C4—C5—C6—N1 179.48 (12)
C2—C3—C4—C5 1.1 (2) C4—C5—C6—C1 −0.85 (19)
C3—C4—C5—C6 −0.3 (2) C6—N1—C7—S1 0.05 (15)
C7—N1—C6—C1 −0.39 (15) C1—S1—C7—N1 0.22 (11)
C7—N1—C6—C5 179.30 (12)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H1O2···N1 0.89 (2) 1.80 (2) 2.6663 (15) 166 (2)
C5—H5A···O1 0.93 2.48 3.3263 (17) 151
C7—H7A···O2ii 0.93 2.48 3.4029 (18) 170

Symmetry codes: (ii) −x+3, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2778).

References

  1. Bradshaw, T. D., Wrigley, S., Shi, D. F., Schultz, R. J., Paull, K. D. & Stevens, M. F. (1998). Br. J. Cancer, 77, 745–752. [DOI] [PMC free article] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cox, O., Jackson, H., Vargas, V., Baez, A., Colon, J. I., Gonzaiez, B. C. & De Leon, M. (1982). J. Med. Chem. 25, 1378–1381. [DOI] [PubMed]
  4. Dash, B., Patra, M. & Praharaj, S. (1980). Indian J. Chem. Sect. B, 19, 894–897.
  5. Dögruer, D. S., Unlii, S., Sahin, M. F. & Ye Silada, E. (1998). Farmaco, 53, 80–84. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032260/tk2778sup1.cif

e-67-o2342-sup1.cif (14.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032260/tk2778Isup2.hkl

e-67-o2342-Isup2.hkl (154KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032260/tk2778Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES