Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):m1294–m1295. doi: 10.1107/S1600536811033496

catena-Poly[[[triaqua­europium(III)]-μ-(1H-benzimidazole-5,6-dicarboxyl­ato-κ2 O 5:O 6)-μ-(1H,3H-benzimidazol-3-ium-5,6-dicarboxyl­ato-κ3 O 5:O 6,O 6′)] dihydrate]

Xiao-Ye Chen a, Shu-Min Huo a, Jing-Jun Lin a, Xia Cai a, Rong-Hua Zeng a,b,*
PMCID: PMC3200846  PMID: 22058883

Abstract

In the title one-dimensional coordination polymer, {[Eu(C9H4N2O4)(C9H5N2O4)(H2O)3]·2H2O}n, one of the 1H-benzimidazole-5,6-dicarboxyl­ate (Hbdc) ligands is protonated at the imidazole group (H2bdc). The EuIII ion is eight-coordinated by two O atoms from two Hbdc ligands, three O atoms from two H2bdc ligands and three water mol­ecules, showing a distorted square-anti­prismatic geometry. The EuIII ions are bridged by the carboxyl­ate groups of the Hbdc and H2bdc ligands, forming a chain along [110], with an Eu⋯Eu separation of 5.4594 (3) Å. These chains are further connected by inter­molecular O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds, as well as π–π inter­actions between the imidazole and benzene rings [centroid–centroid distances = 3.558 (3), 3.906 (2), 3.397 (3), 3.796 (2) and 3.898 (2) Å], into a three-dimensional supra­molecular network.

Related literature

For background to 1H-benzimidazole-5,6-dicarboxyl­ate complexes, see: Fu et al. (2009); Huang et al. (2009); Pan et al. (2010); Wei et al. (2009); Yao et al. (2008).graphic file with name e-67-m1294-scheme1.jpg

Experimental

Crystal data

  • [Eu(C9H4N2O4)(C9H5N2O4)(H2O)3]·2H2O

  • M r = 651.33

  • Triclinic, Inline graphic

  • a = 8.4530 (4) Å

  • b = 10.9757 (6) Å

  • c = 12.7124 (7) Å

  • α = 112.112 (1)°

  • β = 91.614 (1)°

  • γ = 104.453 (1)°

  • V = 1048.25 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.08 mm−1

  • T = 298 K

  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.526, T max = 0.578

  • 5435 measured reflections

  • 3711 independent reflections

  • 3454 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.057

  • S = 1.04

  • 3711 reflections

  • 328 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, glogal. DOI: 10.1107/S1600536811033496/hy2459sup1.cif

e-67-m1294-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033496/hy2459Isup2.hkl

e-67-m1294-Isup2.hkl (181.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.85 1.95 2.727 (4) 152
O1W—H1WB⋯O4i 0.85 1.93 2.709 (4) 152
O2W—H2WA⋯O8 0.85 1.89 2.687 (4) 155
O2W—H2WB⋯O4W 0.85 2.23 2.608 (5) 107
O3W—H3WA⋯O7ii 0.85 2.01 2.815 (4) 159
O3W—H3WB⋯O5Wii 0.85 1.96 2.685 (4) 142
O4W—H4WA⋯O2iii 0.85 2.19 2.968 (4) 153
O4W—H4WB⋯O1Wiv 0.85 2.49 3.022 (4) 122
O4W—H4WB⋯O4iii 0.85 2.37 3.151 (4) 153
O5W—H5WA⋯O5 0.85 1.97 2.815 (4) 172
O5W—H5WB⋯O4v 0.85 1.99 2.757 (4) 150
N1—H1⋯O1vi 0.86 2.06 2.900 (4) 165
N3—H3A⋯N2vii 0.86 1.88 2.725 (5) 168
N4—H4⋯O6viii 0.86 1.98 2.750 (4) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

The authors acknowledge the Undergraduates Innovating Experimentation Project of Guangdong Province, the Undergraduates Innovating Experimentation Project of South China Normal University and the Students Extracurricular Scientific Research Project of South China Normal University for supporting this work.

supplementary crystallographic information

Comment

There is currently much interest in employing N-heterocyclic carboxylic acids as multidentate ligands to design metal coordination polymers with intriguing structures and potential applications. Particular attention has been paid to 1H-benzimidazole-5,6-dicarboxylic acid (H3bdc) ligand. It has rich coordination sites (two N atoms and four O atoms) and can be partially or fully deprotonated to produce [H2bdc]-, [Hbdc]2- and [bdc]3- anions at different pH values. Thus, H3bdc can potentially afford different coordination modes in multicoordinated ways with transition metal ions (Fu et al., 2009; Wei et al., 2009) or rare earth metal ions (Huang et al., 2009; Pan et al., 2010; Yao et al., 2008) to form metal coordination polymers with various structures and interesting properties. In this paper, we report the crystal structure of the title compound, which was synthesized under hydrothermal conditions.

As shown in Fig. 1, the title compound has two forms of the ligands, [Hbdc]2- and [H2bdc]- anions, and the latter is protonated at the imidazole group. The EuIII ion is eight-coordinated by five O atoms from two Hbdc and two H2bdc ligands and by three water molecules. The coordination geometry around the EuIII ion can be described as distorted square-antiprismatic, with Eu—O bond lengths ranging from 2.343 (2) to 2.656 (3) Å and O—Eu—O bond angles varying from 68.99 (9) to 156.77 (9)°. In the crystal, the EuIII ions are alternately bridged by the carboxylate groups of the Hbdc and H2bdc ligands, forming chains along [1 1 0] (Fig. 2). These chains are further connected by intermolecular O—H···O, N—H···O and N—H···N hydrogen bonds (Table 1), as well as π–π interactions between the imidazole and benzene rings [centroid–centroid distances = 3.558 (3), 3.906 (2), 3.397 (3), 3.796 (2) and 3.898 (2) Å], into a three-dimensional supramolecular network (Fig. 3).

Experimental

A mixture of Eu2O3 (0.352 g, 1 mmol), H3bdc (0.206 g, 1 mmol), water (10 ml) in the presence of HClO4 (0.039 g, 0.385 mmol) was stirred vigorously for 30 min and then sealed in a 20 ml Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 443 K for 3 days, and then cooled to room temperature at 5K h-1. Colorless block crystals of the title compound were obtained.

Refinement

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.85 and H···H = 1.35 Å and with Uiso(H) = 1.5Ueq(O). H atoms of the ligands were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) 1-x, 1-y, -z; (ii) -x, -y, -z.]

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing the chain structure extending along [1 1 0].

Fig. 3.

Fig. 3.

The crystal packing of the title compound, showing the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.

Crystal data

[Eu(C9H4N2O4)(C9H5N2O4)(H2O)3]·2H2O Z = 2
Mr = 651.33 F(000) = 644
Triclinic, P1 Dx = 2.064 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4530 (4) Å Cell parameters from 3764 reflections
b = 10.9757 (6) Å θ = 2.8–25.2°
c = 12.7124 (7) Å µ = 3.08 mm1
α = 112.112 (1)° T = 298 K
β = 91.614 (1)° Block, colorless
γ = 104.453 (1)° 0.24 × 0.22 × 0.20 mm
V = 1048.25 (10) Å3

Data collection

Bruker APEXII CCD diffractometer 3711 independent reflections
Radiation source: fine-focus sealed tube 3454 reflections with I > 2σ(I)
graphite Rint = 0.016
φ and ω scans θmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.526, Tmax = 0.578 k = −13→7
5435 measured reflections l = −13→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0269P)2 + 1.5288P] where P = (Fo2 + 2Fc2)/3
3711 reflections (Δ/σ)max = 0.001
328 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.67 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0343 (4) 0.0408 (4) −0.2244 (3) 0.0189 (8)
C2 −0.1313 (4) −0.0377 (4) −0.2964 (3) 0.0187 (8)
C3 −0.1457 (5) −0.0513 (4) −0.4085 (3) 0.0244 (9)
H3 −0.051 (5) −0.019 (4) −0.434 (3) 0.029*
C4 −0.3019 (5) −0.1056 (4) −0.4725 (3) 0.0232 (8)
C5 −0.5240 (5) −0.1795 (4) −0.5977 (3) 0.0299 (9)
H5 −0.5915 −0.2033 −0.6655 0.036*
C6 −0.4412 (4) −0.1460 (4) −0.4248 (3) 0.0213 (8)
C7 −0.4269 (4) −0.1359 (4) −0.3119 (3) 0.0210 (8)
H7 −0.5196 −0.1642 −0.2801 0.025*
C8 −0.2722 (4) −0.0831 (4) −0.2488 (3) 0.0171 (7)
C9 −0.2606 (4) −0.0819 (4) −0.1297 (3) 0.0185 (8)
C10 0.5024 (4) 0.4467 (4) 0.2501 (3) 0.0198 (8)
C11 0.6702 (4) 0.5243 (4) 0.3216 (3) 0.0174 (7)
C12 0.6891 (4) 0.5302 (4) 0.4319 (3) 0.0219 (8)
H12 0.6019 0.4883 0.4609 0.026*
C13 0.8420 (4) 0.6003 (4) 0.4979 (3) 0.0198 (8)
C14 1.0585 (5) 0.7001 (4) 0.6311 (3) 0.0271 (9)
H14 1.1247 0.7334 0.7012 0.033*
C15 0.9760 (4) 0.6562 (4) 0.4530 (3) 0.0190 (8)
C16 0.9601 (4) 0.6502 (4) 0.3422 (3) 0.0198 (8)
H16 1.0501 0.6869 0.3122 0.024*
C17 0.8053 (4) 0.5876 (4) 0.2777 (3) 0.0174 (7)
C18 0.7878 (4) 0.6050 (4) 0.1667 (3) 0.0174 (7)
Eu1 0.24165 (2) 0.308010 (18) 0.021383 (14) 0.01508 (7)
N1 −0.3591 (4) −0.1283 (4) −0.5833 (3) 0.0302 (8)
H1 −0.3003 −0.1126 −0.6334 0.036*
N2 −0.5797 (4) −0.1922 (4) −0.5056 (3) 0.0271 (8)
N3 1.1094 (4) 0.7157 (3) 0.5386 (3) 0.0239 (7)
H3A 1.2081 0.7556 0.5326 0.029*
N4 0.8992 (4) 0.6303 (3) 0.6108 (3) 0.0248 (7)
H4 0.8422 0.6080 0.6591 0.030*
O1 0.1619 (3) 0.0246 (3) −0.2694 (2) 0.0282 (6)
O2 0.0329 (3) 0.1254 (3) −0.1235 (2) 0.0218 (6)
O3 −0.1766 (3) −0.1539 (3) −0.1112 (2) 0.0232 (6)
O4 −0.3436 (3) −0.0182 (3) −0.0613 (2) 0.0286 (6)
O5 0.5008 (3) 0.3761 (3) 0.1434 (2) 0.0233 (6)
O6 0.3781 (3) 0.4550 (3) 0.2988 (3) 0.0357 (7)
O7 0.8941 (3) 0.5849 (3) 0.1007 (2) 0.0251 (6)
O8 0.6729 (3) 0.6529 (3) 0.1488 (2) 0.0217 (6)
O1W 0.3986 (3) 0.1495 (3) −0.0826 (2) 0.0225 (6)
H1WA 0.3469 0.0936 −0.1481 0.027*
H1WB 0.4122 0.1032 −0.0442 0.027*
O2W 0.3436 (3) 0.5492 (3) 0.1002 (3) 0.0327 (7)
H2WA 0.4404 0.5907 0.1361 0.039*
H2WB 0.3295 0.5815 0.0506 0.039*
O3W 0.0181 (3) 0.3743 (3) 0.1123 (2) 0.0277 (6)
H3WA −0.0036 0.4498 0.1257 0.033*
H3WB −0.0456 0.3322 0.1459 0.033*
O4W 0.2568 (4) 0.7730 (3) 0.1413 (3) 0.0389 (7)
H4WA 0.1577 0.7772 0.1398 0.047*
H4WB 0.3140 0.8382 0.1259 0.047*
O5W 0.7262 (3) 0.2225 (3) 0.1315 (2) 0.0302 (6)
H5WA 0.6621 0.2706 0.1300 0.036*
H5WB 0.7262 0.1686 0.0628 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0164 (18) 0.0202 (19) 0.0207 (19) −0.0007 (15) −0.0012 (14) 0.0129 (16)
C2 0.0184 (18) 0.0187 (19) 0.0173 (18) 0.0028 (15) 0.0028 (14) 0.0067 (15)
C3 0.0187 (19) 0.033 (2) 0.0191 (19) 0.0015 (17) 0.0035 (15) 0.0109 (17)
C4 0.0226 (19) 0.032 (2) 0.0153 (18) 0.0067 (17) 0.0029 (15) 0.0101 (16)
C5 0.025 (2) 0.041 (3) 0.019 (2) 0.0059 (18) −0.0054 (16) 0.0098 (18)
C6 0.0217 (19) 0.022 (2) 0.0167 (18) 0.0034 (16) −0.0014 (14) 0.0063 (15)
C7 0.0173 (18) 0.025 (2) 0.0215 (19) 0.0038 (16) 0.0048 (15) 0.0121 (16)
C8 0.0197 (18) 0.0151 (18) 0.0170 (18) 0.0041 (14) 0.0004 (14) 0.0077 (15)
C9 0.0188 (18) 0.0167 (18) 0.0170 (18) −0.0018 (15) −0.0015 (14) 0.0080 (15)
C10 0.0157 (18) 0.0199 (19) 0.023 (2) 0.0002 (15) −0.0022 (15) 0.0109 (16)
C11 0.0139 (17) 0.0192 (19) 0.0152 (17) 0.0018 (14) −0.0015 (13) 0.0046 (15)
C12 0.0168 (18) 0.026 (2) 0.023 (2) 0.0023 (16) 0.0042 (15) 0.0119 (17)
C13 0.0201 (18) 0.025 (2) 0.0155 (18) 0.0077 (16) 0.0029 (14) 0.0082 (16)
C14 0.029 (2) 0.028 (2) 0.018 (2) 0.0055 (18) −0.0055 (16) 0.0060 (17)
C15 0.0159 (17) 0.0169 (19) 0.0201 (19) 0.0034 (15) −0.0010 (14) 0.0038 (15)
C16 0.0170 (18) 0.0217 (19) 0.0204 (19) 0.0017 (15) 0.0030 (14) 0.0102 (16)
C17 0.0189 (18) 0.0171 (18) 0.0168 (18) 0.0042 (15) 0.0017 (14) 0.0080 (15)
C18 0.0144 (17) 0.0149 (18) 0.0190 (18) −0.0025 (14) −0.0023 (14) 0.0071 (15)
Eu1 0.01417 (10) 0.01681 (11) 0.01459 (10) 0.00295 (7) 0.00063 (6) 0.00757 (7)
N1 0.0256 (18) 0.049 (2) 0.0148 (16) 0.0055 (16) 0.0020 (13) 0.0141 (16)
N2 0.0207 (16) 0.035 (2) 0.0213 (17) 0.0029 (15) −0.0044 (13) 0.0102 (15)
N3 0.0139 (15) 0.0304 (19) 0.0211 (17) 0.0001 (13) −0.0064 (12) 0.0079 (14)
N4 0.0252 (17) 0.0329 (19) 0.0171 (16) 0.0051 (15) 0.0009 (13) 0.0129 (15)
O1 0.0166 (13) 0.0372 (17) 0.0244 (14) 0.0037 (12) 0.0034 (11) 0.0075 (13)
O2 0.0195 (13) 0.0199 (14) 0.0184 (13) −0.0001 (11) −0.0002 (10) 0.0032 (11)
O3 0.0231 (14) 0.0250 (14) 0.0281 (14) 0.0046 (11) 0.0029 (11) 0.0191 (12)
O4 0.0384 (16) 0.0338 (16) 0.0204 (14) 0.0179 (13) 0.0094 (12) 0.0128 (12)
O5 0.0226 (13) 0.0224 (14) 0.0220 (14) 0.0039 (11) −0.0043 (11) 0.0077 (12)
O6 0.0157 (14) 0.052 (2) 0.0389 (17) 0.0044 (13) 0.0067 (12) 0.0197 (15)
O7 0.0228 (14) 0.0356 (16) 0.0224 (14) 0.0111 (12) 0.0055 (11) 0.0155 (12)
O8 0.0192 (13) 0.0260 (14) 0.0260 (14) 0.0080 (11) 0.0040 (10) 0.0160 (12)
O1W 0.0239 (14) 0.0249 (14) 0.0194 (13) 0.0065 (11) 0.0000 (10) 0.0099 (11)
O2W 0.0279 (15) 0.0213 (15) 0.0426 (18) 0.0016 (12) −0.0120 (13) 0.0103 (13)
O3W 0.0262 (14) 0.0305 (16) 0.0355 (16) 0.0138 (12) 0.0128 (12) 0.0187 (13)
O4W 0.0299 (16) 0.0295 (17) 0.061 (2) 0.0109 (13) 0.0063 (14) 0.0200 (15)
O5W 0.0301 (15) 0.0324 (16) 0.0254 (15) 0.0093 (13) 0.0014 (12) 0.0084 (13)

Geometric parameters (Å, °)

C1—O1 1.256 (4) C14—H14 0.9300
C1—O2 1.272 (4) C15—N3 1.382 (4)
C1—C2 1.507 (5) C15—C16 1.386 (5)
C2—C3 1.374 (5) C16—C17 1.387 (5)
C2—C8 1.416 (5) C16—H16 0.9300
C3—C4 1.394 (5) C17—C18 1.502 (5)
C3—H3 0.91 (4) C18—O7 1.249 (4)
C4—N1 1.385 (5) C18—O8 1.267 (4)
C4—C6 1.391 (5) Eu1—O3i 2.344 (2)
C5—N2 1.318 (5) Eu1—O2W 2.360 (3)
C5—N1 1.345 (5) Eu1—O3W 2.369 (3)
C5—H5 0.9300 Eu1—O2 2.407 (2)
C6—N2 1.388 (5) Eu1—O5 2.425 (2)
C6—C7 1.396 (5) Eu1—O8ii 2.453 (2)
C7—C8 1.379 (5) Eu1—O1W 2.460 (2)
C7—H7 0.9300 Eu1—O7ii 2.656 (3)
C8—C9 1.509 (5) N1—H1 0.8600
C9—O4 1.248 (4) N3—H3A 0.8600
C9—O3 1.263 (4) N4—H4 0.8600
C10—O6 1.239 (4) O1W—H1WA 0.8500
C10—O5 1.282 (4) O1W—H1WB 0.8500
C10—C11 1.518 (5) O2W—H2WA 0.8500
C11—C12 1.382 (5) O2W—H2WB 0.8498
C11—C17 1.424 (5) O3W—H3WA 0.8500
C12—C13 1.387 (5) O3W—H3WB 0.8500
C12—H12 0.9300 O4W—H4WA 0.8500
C13—N4 1.388 (5) O4W—H4WB 0.8500
C13—C15 1.393 (5) O5W—H5WA 0.8499
C14—N3 1.319 (5) O5W—H5WB 0.8500
C14—N4 1.335 (5)
O1—C1—O2 125.0 (3) O2W—Eu1—O5 70.78 (9)
O1—C1—C2 118.5 (3) O3W—Eu1—O5 116.75 (9)
O2—C1—C2 116.3 (3) O2—Eu1—O5 147.35 (9)
C3—C2—C8 120.3 (3) O3i—Eu1—O8ii 147.47 (9)
C3—C2—C1 117.4 (3) O2W—Eu1—O8ii 79.57 (10)
C8—C2—C1 122.0 (3) O3W—Eu1—O8ii 123.60 (9)
C2—C3—C4 118.8 (3) O2—Eu1—O8ii 80.30 (8)
C2—C3—H3 116 (3) O5—Eu1—O8ii 103.24 (8)
C4—C3—H3 125 (3) O3i—Eu1—O1W 81.33 (9)
N1—C4—C6 105.6 (3) O2W—Eu1—O1W 124.88 (9)
N1—C4—C3 133.3 (3) O3W—Eu1—O1W 156.77 (9)
C6—C4—C3 121.0 (3) O2—Eu1—O1W 77.56 (8)
N2—C5—N1 112.8 (3) O5—Eu1—O1W 73.73 (8)
N2—C5—H5 123.6 O8ii—Eu1—O1W 69.16 (8)
N1—C5—H5 123.6 O3i—Eu1—O7ii 142.44 (8)
N2—C6—C4 109.1 (3) O2W—Eu1—O7ii 68.99 (9)
N2—C6—C7 130.4 (3) O3W—Eu1—O7ii 72.82 (8)
C4—C6—C7 120.5 (3) O2—Eu1—O7ii 71.98 (9)
C8—C7—C6 118.5 (3) O5—Eu1—O7ii 135.26 (8)
C8—C7—H7 120.8 O8ii—Eu1—O7ii 50.84 (8)
C6—C7—H7 120.8 O1W—Eu1—O7ii 115.56 (8)
C7—C8—C2 120.9 (3) O3i—Eu1—C18ii 154.10 (9)
C7—C8—C9 116.8 (3) O2W—Eu1—C18ii 73.39 (10)
C2—C8—C9 122.2 (3) O3W—Eu1—C18ii 98.19 (10)
O4—C9—O3 125.9 (3) O2—Eu1—C18ii 73.86 (9)
O4—C9—C8 117.4 (3) O5—Eu1—C18ii 121.97 (9)
O3—C9—C8 116.5 (3) O8ii—Eu1—C18ii 25.48 (9)
O6—C10—O5 125.0 (3) O1W—Eu1—C18ii 92.14 (9)
O6—C10—C11 118.1 (3) O7ii—Eu1—C18ii 25.38 (9)
O5—C10—C11 116.9 (3) O3i—Eu1—H2WB 146.1
C12—C11—C17 120.4 (3) O2W—Eu1—H2WB 16.6
C12—C11—C10 117.4 (3) O3W—Eu1—H2WB 80.6
C17—C11—C10 122.2 (3) O2—Eu1—H2WB 125.6
C11—C12—C13 118.0 (3) O5—Eu1—H2WB 83.6
C11—C12—H12 121.0 O8ii—Eu1—H2WB 65.6
C13—C12—H12 121.0 O1W—Eu1—H2WB 122.2
C12—C13—N4 132.5 (3) O7ii—Eu1—H2WB 53.7
C12—C13—C15 121.4 (3) C18ii—Eu1—H2WB 56.9
N4—C13—C15 106.1 (3) C5—N1—C4 107.0 (3)
N3—C14—N4 111.0 (3) C5—N1—H1 126.5
N3—C14—H14 124.5 C4—N1—H1 126.5
N4—C14—H14 124.5 C5—N2—C6 105.5 (3)
N3—C15—C16 131.3 (3) C14—N3—C15 107.8 (3)
N3—C15—C13 107.3 (3) C14—N3—H3A 126.1
C16—C15—C13 121.4 (3) C15—N3—H3A 126.1
C15—C16—C17 117.6 (3) C14—N4—C13 107.8 (3)
C15—C16—H16 121.2 C14—N4—H4 126.1
C17—C16—H16 121.2 C13—N4—H4 126.1
C16—C17—C11 121.0 (3) C1—O2—Eu1 133.9 (2)
C16—C17—C18 115.4 (3) C9—O3—Eu1i 129.4 (2)
C11—C17—C18 123.3 (3) C10—O5—Eu1 116.1 (2)
O7—C18—O8 122.0 (3) C18—O7—Eu1ii 88.9 (2)
O7—C18—C17 119.8 (3) C18—O8—Eu1ii 98.1 (2)
O8—C18—C17 117.8 (3) Eu1—O1W—H1WA 111.5
O7—C18—Eu1ii 65.67 (19) Eu1—O1W—H1WB 108.5
O8—C18—Eu1ii 56.45 (17) H1WA—O1W—H1WB 107.7
C17—C18—Eu1ii 169.2 (2) Eu1—O2W—H2WA 122.2
O3i—Eu1—O2W 130.52 (10) Eu1—O2W—H2WB 111.0
O3i—Eu1—O3W 80.33 (9) H2WA—O2W—H2WB 107.7
O2W—Eu1—O3W 78.17 (10) Eu1—O3W—H3WA 125.9
O3i—Eu1—O2 80.26 (9) Eu1—O3W—H3WB 125.9
O2W—Eu1—O2 140.57 (9) H3WA—O3W—H3WB 107.7
O3W—Eu1—O2 85.39 (9) H4WA—O4W—H4WB 107.7
O3i—Eu1—O5 80.37 (9) H5WA—O5W—H5WB 107.7
O1—C1—C2—C3 −39.6 (5) C16—C17—C18—O7 47.4 (5)
O2—C1—C2—C3 136.4 (4) C11—C17—C18—O7 −139.2 (4)
O1—C1—C2—C8 147.3 (4) C16—C17—C18—O8 −125.8 (4)
O2—C1—C2—C8 −36.7 (5) C11—C17—C18—O8 47.7 (5)
C8—C2—C3—C4 2.4 (6) C16—C17—C18—Eu1ii −70.7 (14)
C1—C2—C3—C4 −170.8 (4) C11—C17—C18—Eu1ii 102.8 (12)
C2—C3—C4—N1 177.5 (4) N2—C5—N1—C4 0.0 (5)
C2—C3—C4—C6 −0.2 (6) C6—C4—N1—C5 0.0 (5)
N1—C4—C6—N2 0.0 (4) C3—C4—N1—C5 −178.0 (5)
C3—C4—C6—N2 178.3 (4) N1—C5—N2—C6 0.0 (5)
N1—C4—C6—C7 −179.8 (4) C4—C6—N2—C5 0.0 (5)
C3—C4—C6—C7 −1.5 (6) C7—C6—N2—C5 179.7 (4)
N2—C6—C7—C8 −178.7 (4) N4—C14—N3—C15 1.6 (5)
C4—C6—C7—C8 1.0 (6) C16—C15—N3—C14 176.2 (4)
C6—C7—C8—C2 1.1 (5) C13—C15—N3—C14 −1.6 (4)
C6—C7—C8—C9 −176.4 (3) N3—C14—N4—C13 −1.0 (5)
C3—C2—C8—C7 −2.9 (6) C12—C13—N4—C14 179.4 (4)
C1—C2—C8—C7 170.0 (3) C15—C13—N4—C14 0.0 (4)
C3—C2—C8—C9 174.5 (4) O1—C1—O2—Eu1 8.7 (6)
C1—C2—C8—C9 −12.6 (5) C2—C1—O2—Eu1 −166.9 (2)
C7—C8—C9—O4 −58.4 (5) O3i—Eu1—O2—C1 −112.6 (3)
C2—C8—C9—O4 124.1 (4) O2W—Eu1—O2—C1 101.4 (3)
C7—C8—C9—O3 116.7 (4) O3W—Eu1—O2—C1 166.5 (3)
C2—C8—C9—O3 −60.7 (5) O5—Eu1—O2—C1 −58.2 (4)
O6—C10—C11—C12 37.3 (5) O8ii—Eu1—O2—C1 41.2 (3)
O5—C10—C11—C12 −142.0 (4) O1W—Eu1—O2—C1 −29.4 (3)
O6—C10—C11—C17 −143.7 (4) O7ii—Eu1—O2—C1 93.1 (3)
O5—C10—C11—C17 37.0 (5) C18ii—Eu1—O2—C1 66.6 (3)
C17—C11—C12—C13 0.7 (6) O4—C9—O3—Eu1i 41.5 (5)
C10—C11—C12—C13 179.8 (3) C8—C9—O3—Eu1i −133.1 (3)
C11—C12—C13—N4 176.6 (4) O6—C10—O5—Eu1 17.8 (5)
C11—C12—C13—C15 −4.0 (6) C11—C10—O5—Eu1 −163.0 (2)
C12—C13—C15—N3 −178.6 (3) O3i—Eu1—O5—C10 −75.4 (2)
N4—C13—C15—N3 1.0 (4) O2W—Eu1—O5—C10 63.8 (2)
C12—C13—C15—C16 3.4 (6) O3W—Eu1—O5—C10 −1.4 (3)
N4—C13—C15—C16 −177.1 (3) O2—Eu1—O5—C10 −129.7 (2)
N3—C15—C16—C17 −176.9 (4) O8ii—Eu1—O5—C10 137.6 (2)
C13—C15—C16—C17 0.6 (5) O1W—Eu1—O5—C10 −159.1 (3)
C15—C16—C17—C11 −3.8 (5) O7ii—Eu1—O5—C10 90.8 (3)
C15—C16—C17—C18 169.9 (3) C18ii—Eu1—O5—C10 118.8 (2)
C12—C11—C17—C16 3.2 (6) O8—C18—O7—Eu1ii 3.3 (3)
C10—C11—C17—C16 −175.8 (3) C17—C18—O7—Eu1ii −169.6 (3)
C12—C11—C17—C18 −169.9 (3) O7—C18—O8—Eu1ii −3.6 (4)
C10—C11—C17—C18 11.1 (5) C17—C18—O8—Eu1ii 169.4 (3)

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O1 0.85 1.95 2.727 (4) 152
O1W—H1WB···O4i 0.85 1.93 2.709 (4) 152
O2W—H2WA···O8 0.85 1.89 2.687 (4) 155
O2W—H2WB···O4W 0.85 2.23 2.608 (5) 107
O3W—H3WA···O7iii 0.85 2.01 2.815 (4) 159
O3W—H3WB···O5Wiii 0.85 1.96 2.685 (4) 142
O4W—H4WA···O2iv 0.85 2.19 2.968 (4) 153
O4W—H4WB···O1Wii 0.85 2.49 3.022 (4) 122
O4W—H4WB···O4iv 0.85 2.37 3.151 (4) 153
O5W—H5WA···O5 0.85 1.97 2.815 (4) 172
O5W—H5WB···O4v 0.85 1.99 2.757 (4) 150
N1—H1···O1vi 0.86 2.06 2.900 (4) 165
N3—H3A···N2vii 0.86 1.88 2.725 (5) 168
N4—H4···O6viii 0.86 1.98 2.750 (4) 148

Symmetry codes: (i) −x, −y, −z; (iii) x−1, y, z; (iv) −x, −y+1, −z; (ii) −x+1, −y+1, −z; (v) x+1, y, z; (vi) −x, −y, −z−1; (vii) x+2, y+1, z+1; (viii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2459).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Fu, J.-D., Tang, Z.-W., Yuan, M.-Y. & Wen, Y.-H. (2009). Acta Cryst. E65, m1657. [DOI] [PMC free article] [PubMed]
  5. Huang, J.-X., Wu, Y.-Y., Huang, C.-D., Lian, Q.-Y. & Zeng, R.-H. (2009). Acta Cryst. E65, m1566–m1567. [DOI] [PMC free article] [PubMed]
  6. Pan, Z.-Y., Chen, J.-H., Lin, J.-F., Xu, X. & Luo, Y.-F. (2010). Acta Cryst. E66, m1302. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Wei, Y.-Q., Yu, Y.-F., Sa, R.-J., Li, Q.-H. & Wu, K.-C. (2009). CrystEngComm, 11, 1054–1060.
  10. Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299–2306.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, glogal. DOI: 10.1107/S1600536811033496/hy2459sup1.cif

e-67-m1294-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033496/hy2459Isup2.hkl

e-67-m1294-Isup2.hkl (181.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES