Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2336. doi: 10.1107/S160053681103217X

Ethyl 4-chloro-2′-fluoro-3-hy­droxy-5-methyl­biphenyl-2-carboxyl­ate

Muhammad Adeel a,*, Peter Langer b,c, Alexander Villinger b
PMCID: PMC3200854  PMID: 22058957

Abstract

In the title compound, C16H14ClFO3, the dihedral angle between the mean planes of the two benzene rings is 71.50 (5)°. Due to an intra­molecular O—H⋯O hydrogen bond between the hy­droxy group and the carbonyl O atom of the ethyl ester group, the ethyl ester group lies within the ring plane. The crystal structure is consolidated by inter­molecular C—H⋯O and C—H⋯F inter­actions.

Related literature

For a related structure, see: Adeel et al. (2009). For synthetic procedures and the pharmacological relevance of 3-chloro­salicylates, see: Wolf et al. (2009).graphic file with name e-67-o2336-scheme1.jpg

Experimental

Crystal data

  • C16H14ClFO3

  • M r = 308.73

  • Triclinic, Inline graphic

  • a = 8.212 (4) Å

  • b = 9.780 (3) Å

  • c = 10.156 (3) Å

  • α = 71.18 (3)°

  • β = 76.41 (2)°

  • γ = 71.34 (2)°

  • V = 723.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 K

  • 0.31 × 0.18 × 0.08 mm

Data collection

  • Bruker APEXII KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.918, T max = 0.978

  • 12813 measured reflections

  • 3773 independent reflections

  • 2902 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.139

  • S = 1.07

  • 3773 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103217X/pv2433sup1.cif

e-67-o2336-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103217X/pv2433Isup2.hkl

e-67-o2336-Isup2.hkl (181.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103217X/pv2433Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯O1i 0.98 2.59 3.473 (3) 150
C9—H9A⋯Fii 0.99 2.40 3.320 (3) 155
O1—H1⋯O2 0.82 (3) 1.77 (3) 2.521 (2) 153 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from the Higher Education Commission of Pakistan (HEC) under the resource grant programme is gratefully acknowledged.

supplementary crystallographic information

Comment

Functionalized chloroarenes are of considerable pharmacological relevance. 3-Chlorosalicylates and related compounds are employed as pharmacological agents (Wolf et al., 2009).

In the title compound (Fig. 1), the dihedral angle between the mean planes of the two benzene rings is 71.50 (5)°. The ethyllester group lies within the ring plane due to an intramolecular hydrogen bond between the hydroxyl group and the carbonyl O atom of the ehtyllester group, O1—H1···O2. The crystal structure is consolidated by weak C7—H7C···O1 and C9—H9A···F intermolecular interactions.

Experimental

Experimental: The title compound was prepared according to a previously published procedure (Wolf et al. 2009). To a CH2Cl2 (6 ml) solution of 1-(2-fluoro-phenyl)-3-trimethylsilanyloxy-but-2-en-1-one (720 mg, 2.8 mmol) and 4-chloro-1-ethoxy-1,3-bis-trimethylsilanyloxy-buta-1,3-diene (970 mg, 3.1 mmol) was added TiCl4 (0.34 ml, 3.1 mmol) at 195 K under argon atmosphere. The solution was allowed to warm to ambient temperature within 20 hrs. To the solution was added a saturated solution of NaHCO3 (15 mL). The organic and the aqueous layers were separated and the latter was extracted with diethyl ether (3 × 20 ml). The filtrate was concentrated in vacuo and the residue was purified by chromatography (silica gel, EtOAc / n-heptane = 1:4). The title compound was isolated as a colorless crystalline solid. Yield: 390 mg, 45%. Mp. = 352 K. Crystallization from a saturated dichloromethane/methanol (9:1) solution at ambient temperature gave colorless crystals.

Refinement

The H atom bonded to O1 was located from a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (methyl groups) or 0.95 Å (aryl CH) and with Uiso(H) = 1.5 times Ueq(C) (methyl groups) or with Uiso(H) = 1.2 times Ueq(C) (aryl CH). Torsion angles of all methyl groups were allowed to refine.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound drawn with thermal elliposids at the 50% probability level.

Crystal data

C16H14ClFO3 Z = 2
Mr = 308.73 F(000) = 320
Triclinic, P1 Dx = 1.417 Mg m3
Hall symbol: -P 1 Melting point: 342 K
a = 8.212 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.780 (3) Å Cell parameters from 12813 reflections
c = 10.156 (3) Å θ = 0.9–1.0°
α = 71.18 (3)° µ = 0.28 mm1
β = 76.41 (2)° T = 173 K
γ = 71.34 (2)° Block, colourless
V = 723.5 (5) Å3 0.31 × 0.18 × 0.08 mm

Data collection

Bruker APEXII KappaCCD diffractometer 3773 independent reflections
Radiation source: fine-focus sealed tube 2902 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 29.0°, θmin = 4.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −11→11
Tmin = 0.918, Tmax = 0.978 k = −10→13
12813 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.1732P] where P = (Fo2 + 2Fc2)/3
3773 reflections (Δ/σ)max < 0.001
195 parameters Δρmax = 0.87 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Experimental. Yield: 390 mg, 45%. Mp. = 352(???) K 1H NMR (250 MHz, CDCl3): δ = 0.75 (t,3H, J = 6.5 Hz, CH3) 2.34 (s, 3H, CH3), 3.96 (q, 2H, J = 7.0 Hz,OCH2),6.60 (s, 1H, ArH), 6.91–6.98 (m, 1H, ArH), 7.06–7.11 (m, 2H, ArH), 7.22 (m, 1H, ArH), 11.53 (s, 1 H, OH). 13C NMR (62 MHz, CDCl3): δ = 13.0 (CH3), 20.7 (CH3), 61.5 (OCH2), 111.0 (C), 114.4, 114.8 (CH), 122.3 (C), 123.7, 124.4, 129.0 (CH), 135.4, 142.9, 142.4, 157.7, 161.0 (C), 170.5 (C=O). IR (ATR, cm -1): \~ν = 3040 (w), 2979 (m), 1657 (m), 1604 (m), 1495 (m), 1440 (m), 1374 (s), 1260 (s), 1215 (s), 759 (s). GC—MS (EI, 70 eV): m/z (%): 310 (M+, 37Cl, 8), 308 (M+, 24), 262 (100), 234 (12), 199 (11), 170 (24). HRMS (EI, 70 eV): calcd for C116H14ClFO3 [M, 35Cl]: 308.06100; found 308.060555.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl −0.02886 (6) 0.86275 (5) 0.43812 (5) 0.03926 (16)
F 0.3361 (2) 0.44171 (16) −0.01240 (13) 0.0725 (5)
O1 −0.18805 (15) 0.68979 (15) 0.35763 (15) 0.0384 (3)
H1 −0.225 (3) 0.630 (3) 0.341 (3) 0.058*
O2 −0.19906 (16) 0.46568 (15) 0.29190 (16) 0.0422 (3)
O3 0.04108 (15) 0.32871 (13) 0.19277 (14) 0.0341 (3)
C1 0.0830 (2) 0.71258 (18) 0.36909 (17) 0.0280 (3)
C2 −0.0136 (2) 0.63762 (17) 0.33593 (17) 0.0265 (3)
C3 0.07182 (19) 0.51135 (17) 0.28378 (16) 0.0247 (3)
C4 0.2551 (2) 0.46328 (17) 0.26719 (16) 0.0253 (3)
C5 0.3454 (2) 0.54158 (19) 0.30155 (18) 0.0307 (4)
H5 0.4687 0.5086 0.2899 0.037*
C6 0.2626 (2) 0.66689 (19) 0.35253 (19) 0.0313 (4)
C7 0.3663 (3) 0.7464 (3) 0.3907 (3) 0.0478 (5)
H7A 0.3351 0.7412 0.4911 0.072*
H7B 0.3410 0.8515 0.3355 0.072*
H7C 0.4905 0.6983 0.3704 0.072*
C8 −0.0406 (2) 0.43450 (18) 0.25693 (18) 0.0284 (3)
C9 −0.0649 (3) 0.2461 (2) 0.1702 (2) 0.0431 (5)
H9A −0.1626 0.3160 0.1207 0.052*
H9B −0.1129 0.1862 0.2612 0.052*
C10 0.0523 (3) 0.1462 (3) 0.0828 (3) 0.0612 (7)
H10A 0.1556 0.0866 0.1276 0.092*
H10B 0.0874 0.2072 −0.0110 0.092*
H10C −0.0092 0.0792 0.0744 0.092*
C11 0.3638 (2) 0.32652 (18) 0.22316 (18) 0.0280 (3)
C12 0.4056 (3) 0.3214 (2) 0.0855 (2) 0.0422 (4)
C13 0.5149 (3) 0.1975 (3) 0.0445 (2) 0.0536 (6)
H13 0.5400 0.1975 −0.0517 0.064*
C14 0.5866 (3) 0.0741 (2) 0.1454 (3) 0.0487 (5)
H14 0.6625 −0.0120 0.1188 0.058*
C15 0.5496 (2) 0.0742 (2) 0.2836 (2) 0.0428 (5)
H15 0.5994 −0.0118 0.3529 0.051*
C16 0.4392 (2) 0.19994 (19) 0.3228 (2) 0.0350 (4)
H16 0.4147 0.1996 0.4191 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0353 (2) 0.0323 (2) 0.0569 (3) −0.00351 (17) −0.00615 (19) −0.0267 (2)
F 0.0975 (11) 0.0589 (8) 0.0352 (7) 0.0110 (8) −0.0107 (7) −0.0092 (6)
O1 0.0198 (6) 0.0397 (7) 0.0629 (9) −0.0002 (5) −0.0055 (5) −0.0315 (7)
O2 0.0243 (6) 0.0488 (8) 0.0664 (9) −0.0072 (5) −0.0058 (6) −0.0358 (7)
O3 0.0293 (6) 0.0323 (6) 0.0484 (7) −0.0034 (5) −0.0091 (5) −0.0233 (5)
C1 0.0259 (8) 0.0253 (7) 0.0348 (8) −0.0036 (6) −0.0039 (6) −0.0141 (6)
C2 0.0217 (7) 0.0263 (7) 0.0319 (8) −0.0022 (6) −0.0055 (6) −0.0115 (6)
C3 0.0217 (7) 0.0241 (7) 0.0295 (8) −0.0038 (6) −0.0048 (6) −0.0102 (6)
C4 0.0232 (7) 0.0240 (7) 0.0260 (7) −0.0028 (6) −0.0027 (6) −0.0072 (6)
C5 0.0198 (7) 0.0328 (8) 0.0405 (9) −0.0054 (6) −0.0026 (6) −0.0142 (7)
C6 0.0266 (8) 0.0323 (8) 0.0392 (9) −0.0094 (7) −0.0041 (7) −0.0140 (7)
C7 0.0310 (9) 0.0527 (12) 0.0750 (14) −0.0154 (9) −0.0031 (9) −0.0364 (11)
C8 0.0269 (8) 0.0276 (8) 0.0335 (8) −0.0031 (6) −0.0085 (6) −0.0130 (6)
C9 0.0378 (10) 0.0391 (10) 0.0661 (13) −0.0065 (8) −0.0155 (9) −0.0304 (10)
C10 0.0624 (15) 0.0610 (15) 0.0806 (17) −0.0138 (12) −0.0091 (13) −0.0497 (14)
C11 0.0201 (7) 0.0268 (8) 0.0371 (9) −0.0038 (6) −0.0011 (6) −0.0130 (7)
C12 0.0457 (11) 0.0361 (10) 0.0382 (10) −0.0026 (8) 0.0002 (8) −0.0139 (8)
C13 0.0567 (13) 0.0537 (13) 0.0479 (12) −0.0089 (10) 0.0120 (10) −0.0298 (10)
C14 0.0357 (10) 0.0320 (10) 0.0755 (15) −0.0042 (8) 0.0070 (10) −0.0262 (10)
C15 0.0321 (9) 0.0269 (9) 0.0646 (13) −0.0034 (7) −0.0078 (9) −0.0098 (8)
C16 0.0255 (8) 0.0288 (8) 0.0503 (10) −0.0058 (6) −0.0062 (7) −0.0109 (7)

Geometric parameters (Å, °)

Cl—C1 1.7294 (17) C7—H7B 0.9800
F—C12 1.334 (2) C7—H7C 0.9800
O1—C2 1.348 (2) C9—C10 1.492 (3)
O1—H1 0.82 (3) C9—H9A 0.9900
O2—C8 1.229 (2) C9—H9B 0.9900
O3—C8 1.315 (2) C10—H10A 0.9800
O3—C9 1.458 (2) C10—H10B 0.9800
C1—C6 1.384 (2) C10—H10C 0.9800
C1—C2 1.392 (2) C11—C12 1.372 (3)
C2—C3 1.411 (2) C11—C16 1.392 (3)
C3—C4 1.412 (2) C12—C13 1.379 (3)
C3—C8 1.479 (2) C13—C14 1.372 (3)
C4—C5 1.384 (2) C13—H13 0.9500
C4—C11 1.490 (2) C14—C15 1.365 (3)
C5—C6 1.394 (2) C14—H14 0.9500
C5—H5 0.9500 C15—C16 1.388 (3)
C6—C7 1.501 (2) C15—H15 0.9500
C7—H7A 0.9800 C16—H16 0.9500
C2—O1—H1 105.4 (18) O3—C9—H9A 110.5
C8—O3—C9 116.61 (14) C10—C9—H9A 110.5
C6—C1—C2 121.84 (15) O3—C9—H9B 110.5
C6—C1—Cl 120.26 (13) C10—C9—H9B 110.5
C2—C1—Cl 117.86 (12) H9A—C9—H9B 108.7
O1—C2—C1 117.25 (14) C9—C10—H10A 109.5
O1—C2—C3 122.85 (15) C9—C10—H10B 109.5
C1—C2—C3 119.89 (14) H10A—C10—H10B 109.5
C2—C3—C4 118.74 (14) C9—C10—H10C 109.5
C2—C3—C8 116.40 (14) H10A—C10—H10C 109.5
C4—C3—C8 124.79 (14) H10B—C10—H10C 109.5
C5—C4—C3 119.21 (14) C12—C11—C16 116.99 (16)
C5—C4—C11 115.36 (14) C12—C11—C4 123.15 (16)
C3—C4—C11 125.31 (14) C16—C11—C4 119.67 (15)
C4—C5—C6 122.64 (15) F—C12—C11 118.25 (17)
C4—C5—H5 118.7 F—C12—C13 118.85 (19)
C6—C5—H5 118.7 C11—C12—C13 122.90 (19)
C1—C6—C5 117.68 (15) C14—C13—C12 118.7 (2)
C1—C6—C7 121.70 (16) C14—C13—H13 120.6
C5—C6—C7 120.60 (16) C12—C13—H13 120.6
C6—C7—H7A 109.5 C15—C14—C13 120.53 (18)
C6—C7—H7B 109.5 C15—C14—H14 119.7
H7A—C7—H7B 109.5 C13—C14—H14 119.7
C6—C7—H7C 109.5 C14—C15—C16 119.91 (19)
H7A—C7—H7C 109.5 C14—C15—H15 120.0
H7B—C7—H7C 109.5 C16—C15—H15 120.0
O2—C8—O3 121.77 (15) C15—C16—C11 120.95 (19)
O2—C8—C3 123.07 (15) C15—C16—H16 119.5
O3—C8—C3 115.17 (14) C11—C16—H16 119.5
O3—C9—C10 106.34 (17)
C6—C1—C2—O1 179.12 (16) C9—O3—C8—C3 177.37 (15)
Cl—C1—C2—O1 1.3 (2) C2—C3—C8—O2 −8.1 (2)
C6—C1—C2—C3 0.0 (3) C4—C3—C8—O2 168.84 (16)
Cl—C1—C2—C3 −177.88 (12) C2—C3—C8—O3 172.18 (14)
O1—C2—C3—C4 −178.74 (15) C4—C3—C8—O3 −10.9 (2)
C1—C2—C3—C4 0.4 (2) C8—O3—C9—C10 173.83 (17)
O1—C2—C3—C8 −1.6 (2) C5—C4—C11—C12 −102.9 (2)
C1—C2—C3—C8 177.49 (14) C3—C4—C11—C12 81.1 (2)
C2—C3—C4—C5 −0.4 (2) C5—C4—C11—C16 72.0 (2)
C8—C3—C4—C5 −177.26 (15) C3—C4—C11—C16 −104.1 (2)
C2—C3—C4—C11 175.50 (15) C16—C11—C12—F −179.55 (18)
C8—C3—C4—C11 −1.4 (3) C4—C11—C12—F −4.6 (3)
C3—C4—C5—C6 0.1 (3) C16—C11—C12—C13 1.0 (3)
C11—C4—C5—C6 −176.19 (15) C4—C11—C12—C13 175.94 (19)
C2—C1—C6—C5 −0.3 (3) F—C12—C13—C14 179.8 (2)
Cl—C1—C6—C5 177.53 (13) C11—C12—C13—C14 −0.7 (4)
C2—C1—C6—C7 −178.94 (18) C12—C13—C14—C15 0.3 (3)
Cl—C1—C6—C7 −1.2 (3) C13—C14—C15—C16 −0.2 (3)
C4—C5—C6—C1 0.2 (3) C14—C15—C16—C11 0.5 (3)
C4—C5—C6—C7 178.92 (18) C12—C11—C16—C15 −0.9 (3)
C9—O3—C8—O2 −2.4 (3) C4—C11—C16—C15 −176.02 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7C···O1i 0.98 2.59 3.473 (3) 150
C9—H9A···Fii 0.99 2.40 3.320 (3) 155
O1—H1···O2 0.82 (3) 1.77 (3) 2.521 (2) 153 (3)

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2433).

References

  1. Adeel, M., Ali, I., Langer, P. & Villinger, A. (2009). Acta Cryst. E65, o2176. [DOI] [PMC free article] [PubMed]
  2. Bruker (2003). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wolf, V., Adeel, M., Reim, S., Villinger, A., Fischer, C. & Langer, P. (2009). Eur. J. Org. Chem. 2, 5854–5867.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103217X/pv2433sup1.cif

e-67-o2336-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103217X/pv2433Isup2.hkl

e-67-o2336-Isup2.hkl (181.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103217X/pv2433Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES