Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2461. doi: 10.1107/S1600536811034131

tert-Butyl­aminium 2-carb­oxy-4,5-dichloro­benzoate

Graham Smith a,*, Urs D Wermuth a
PMCID: PMC3200858  PMID: 22064684

Abstract

In the structure of the title anhydrous salt, C4H12N+·C8H3Cl2O4 , the 4,5-dichloro­phthalate monoanions have the common ‘planar’ conformation with the carboxyl groups close to coplanar with the benzene ring and with a short intra­molecular carb­oxy­lic acid O—H⋯O hydrogen bond. In the crystal, a two-dimensional sheet structure is formed through aminium N—H⋯Ocarbox­yl hydrogen-bonding associations.

Related literature

For structures of 1:1 salts of 4,5-dichloro­phthalic acid with acyclic aliphatic amines, see: Mattes & Dorau (1986); Bozkurt et al. (2006); Smith & Wermuth (2010a ,b ,c ).graphic file with name e-67-o2461-scheme1.jpg

Experimental

Crystal data

  • C4H12N+·C8H3Cl2O4

  • M r = 308.15

  • Monoclinic, Inline graphic

  • a = 6.1778 (2) Å

  • b = 12.7158 (4) Å

  • c = 17.7125 (7) Å

  • β = 96.784 (4)°

  • V = 1381.68 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 200 K

  • 0.45 × 0.26 × 0.18 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.977, T max = 0.990

  • 8677 measured reflections

  • 2719 independent reflections

  • 2307 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.094

  • S = 0.90

  • 2719 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034131/bt5620sup1.cif

e-67-o2461-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034131/bt5620Isup2.hkl

e-67-o2461-Isup2.hkl (130.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034131/bt5620Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11A⋯O21 0.89 (2) 2.02 (2) 2.883 (2) 164 (2)
N1A—H12A⋯O11i 0.91 (2) 1.88 (2) 2.784 (2) 174 (2)
N1A—H13A⋯O12ii 0.89 (2) 1.99 (2) 2.861 (2) 167 (2)
O21—H21⋯O12 0.94 (4) 1.47 (4) 2.4021 (19) 173 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Australian Research Council and the Faculty of Science and Technology and the University Library, Queensland University of Technology.

supplementary crystallographic information

Comment

4,5-Dichlorophthalic acid (DCPA) commonly forms 1:1 salts with the acyclic aliphatic amine analogues and with these, low-dimensional hydrogen-bonded structures are usually found, featuring the 'planar' hydrogen phthalate anion e.g with isopropylamine (Smith & Wermuth, 2010a), diisopropylamine (Smith & Wermuth, 2010b), diethylamine, triethylamine and n-butylamine (Smith & Wermuth, 2010c), the ammonium and tetra(nbutyl)ammonium salts (Mattes & Dorau, 1986) and the tetramethylammonium salt (Bozkurt et al., 2006). Our 1:1 stoichiometric reaction of DCPA with t-butylamine also gave a 1:1 salt C4H12N+ C8H3Cl2O4-, the title compound and the structure is reported here.

In this structure the common 'planar' DCPA anion is found (Fig. 1) and has the previously described (Smith & Wermuth, 2010c) short intramolecular carboxylic acid OH···Ocarboxy hydrogen bond (Table 1) (torsion angles C1–C2–C21–O22 and C2–C1–C11–O11: 176.59 (18) and 175.26 (17) Å respectively). Other structural features common to this 'planar' monoanion are a lengthening of the C1—C11 and C2—C21 bond lengths [1.522 (2) and 1.528 (3) Å] and distortion of the external bond angles at C1 and C2 [C1—C2—C21, 129.57 (15)° and C2—C1—C11, 128.84 (15)°].

Intermolecular aminium NH···O(carboxyl) hydrogen bonds (Table 1) link the DCPA monoanions across b as well as down the a axis, forming a two-dimensional sheet structure (Fig. 2).

Experimental

The title compound was synthesized by heating together for 10 min under reflux, 1 mmol quantities of 4,5-dichlorophthalic acid and t-butylamine in 50 ml of 50% ethanol–water. Partial evaporation of the solvent gave colourless crystalline plates from which a specimen was cleaved for the X-ray analysis..

Refinement

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included at calculated positions [C—H (aromatic) = 0.93 Å or C—H (methyl) = 0.97 Å] and treated as riding, with Uiso(H) = 1.2UeqC(aromatic) or 1.5UeqC(methyl).

Figures

Fig. 1.

Fig. 1.

Molecular conformation and atom-numbering scheme for the title salt, with the hydrogen bonds shown as a dashed lines. Non-H atoms are shown as 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A perspective view the two-dimensional sheet structure looking down the sheet, showing hydrogen-bonding associations as dashed lines.

Crystal data

C4H12N+·C8H3Cl2O4 F(000) = 640
Mr = 308.15 Dx = 1.481 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4272 reflections
a = 6.1778 (2) Å θ = 3.3–28.8°
b = 12.7158 (4) Å µ = 0.48 mm1
c = 17.7125 (7) Å T = 200 K
β = 96.784 (4)° Plate, colourless
V = 1381.68 (8) Å3 0.45 × 0.26 × 0.18 mm
Z = 4

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 2719 independent reflections
Radiation source: Enhance (Mo) X-ray source 2307 reflections with I > 2σ(I)
graphite Rint = 0.027
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.4°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −15→15
Tmin = 0.977, Tmax = 0.990 l = −21→21
8677 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.4558P] where P = (Fo2 + 2Fc2)/3
2719 reflections (Δ/σ)max = 0.001
188 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.77566 (7) −0.08494 (3) 0.92701 (3) 0.0313 (1)
Cl2 0.29591 (7) −0.09103 (3) 0.84148 (3) 0.0370 (2)
O11 0.8896 (2) 0.29012 (10) 1.01297 (8) 0.0394 (4)
O12 0.6289 (2) 0.40012 (9) 0.97033 (8) 0.0353 (4)
O21 0.2615 (2) 0.39679 (10) 0.90835 (10) 0.0452 (5)
O22 0.0363 (2) 0.28642 (11) 0.84456 (9) 0.0475 (5)
C1 0.5836 (3) 0.21454 (12) 0.93969 (9) 0.0218 (5)
C2 0.3705 (3) 0.21275 (13) 0.90024 (9) 0.0230 (5)
C3 0.2876 (3) 0.11656 (13) 0.87218 (10) 0.0239 (5)
C4 0.4066 (3) 0.02459 (12) 0.87963 (9) 0.0233 (5)
C5 0.6169 (3) 0.02693 (12) 0.91703 (9) 0.0221 (5)
C6 0.7012 (3) 0.12081 (13) 0.94635 (9) 0.0236 (5)
C11 0.7102 (3) 0.30722 (13) 0.97701 (9) 0.0268 (5)
C21 0.2089 (3) 0.30285 (14) 0.88234 (11) 0.0311 (6)
N1A −0.0938 (3) 0.54459 (13) 0.90362 (9) 0.0257 (5)
C1A −0.2152 (3) 0.58740 (13) 0.83097 (10) 0.0255 (5)
C2A −0.0614 (3) 0.66054 (18) 0.79557 (12) 0.0450 (7)
C3A −0.2819 (3) 0.49408 (16) 0.77986 (11) 0.0380 (6)
C4A −0.4120 (3) 0.64663 (15) 0.85216 (12) 0.0373 (6)
H3 0.14630 0.11430 0.84740 0.0290*
H6 0.84200 0.12160 0.97160 0.0280*
H21 0.400 (6) 0.399 (3) 0.936 (2) 0.109 (12)*
H11A 0.016 (3) 0.5023 (18) 0.8953 (12) 0.039 (6)*
H12A −0.036 (4) 0.5995 (18) 0.9325 (13) 0.044 (6)*
H13A −0.185 (4) 0.5080 (18) 0.9289 (13) 0.042 (6)*
H21A 0.06120 0.62120 0.78220 0.0670*
H22A −0.01140 0.71450 0.83140 0.0670*
H23A −0.13660 0.69220 0.75070 0.0670*
H31A −0.37940 0.44980 0.80390 0.0570*
H32A −0.15460 0.45460 0.77120 0.0570*
H33A −0.35380 0.51880 0.73220 0.0570*
H41A −0.50720 0.59880 0.87410 0.0560*
H42A −0.48830 0.67810 0.80740 0.0560*
H43A −0.36510 0.70060 0.88840 0.0560*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0293 (2) 0.0232 (2) 0.0394 (3) 0.0066 (2) −0.0041 (2) −0.0007 (2)
Cl2 0.0298 (3) 0.0252 (2) 0.0534 (3) −0.0039 (2) −0.0061 (2) −0.0113 (2)
O11 0.0394 (8) 0.0314 (7) 0.0433 (8) −0.0070 (6) −0.0116 (6) −0.0082 (6)
O12 0.0367 (7) 0.0208 (6) 0.0486 (8) −0.0044 (5) 0.0059 (6) −0.0061 (5)
O21 0.0321 (8) 0.0228 (7) 0.0798 (11) 0.0057 (6) 0.0025 (8) −0.0041 (7)
O22 0.0377 (8) 0.0409 (8) 0.0591 (10) 0.0146 (6) −0.0148 (7) −0.0028 (7)
C1 0.0250 (8) 0.0205 (8) 0.0198 (8) −0.0024 (6) 0.0028 (7) −0.0010 (6)
C2 0.0228 (8) 0.0233 (8) 0.0231 (8) 0.0017 (6) 0.0031 (7) 0.0010 (6)
C3 0.0180 (8) 0.0274 (8) 0.0257 (8) −0.0004 (7) 0.0004 (7) −0.0007 (7)
C4 0.0231 (8) 0.0216 (8) 0.0249 (8) −0.0033 (6) 0.0012 (7) −0.0026 (7)
C5 0.0223 (8) 0.0213 (8) 0.0225 (8) 0.0018 (6) 0.0018 (6) 0.0016 (6)
C6 0.0204 (8) 0.0265 (8) 0.0228 (8) −0.0016 (6) −0.0020 (7) −0.0007 (7)
C11 0.0311 (9) 0.0247 (9) 0.0251 (9) −0.0068 (7) 0.0049 (8) −0.0032 (7)
C21 0.0316 (10) 0.0258 (9) 0.0361 (10) 0.0067 (7) 0.0053 (8) 0.0027 (8)
N1A 0.0236 (8) 0.0251 (8) 0.0268 (8) 0.0001 (7) −0.0037 (7) −0.0033 (6)
C1A 0.0245 (9) 0.0262 (9) 0.0246 (9) 0.0016 (7) −0.0021 (7) −0.0001 (7)
C2A 0.0437 (12) 0.0542 (13) 0.0374 (11) −0.0117 (10) 0.0066 (9) 0.0081 (10)
C3A 0.0385 (11) 0.0404 (11) 0.0315 (10) 0.0050 (9) −0.0108 (8) −0.0097 (8)
C4A 0.0328 (10) 0.0329 (10) 0.0451 (11) 0.0079 (8) 0.0004 (9) 0.0001 (9)

Geometric parameters (Å, °)

Cl1—C5 1.7251 (17) C4—C5 1.387 (3)
Cl2—C4 1.7253 (16) C5—C6 1.379 (2)
O11—C11 1.231 (2) C3—H3 0.9300
O12—C11 1.284 (2) C6—H6 0.9300
O21—C21 1.307 (2) C1A—C2A 1.517 (3)
O22—C21 1.208 (2) C1A—C3A 1.520 (3)
O21—H21 0.94 (4) C1A—C4A 1.515 (3)
N1A—C1A 1.512 (2) C2A—H21A 0.9600
N1A—H11A 0.89 (2) C2A—H22A 0.9600
N1A—H13A 0.89 (2) C2A—H23A 0.9600
N1A—H12A 0.91 (2) C3A—H31A 0.9600
C1—C11 1.522 (2) C3A—H32A 0.9600
C1—C6 1.394 (2) C3A—H33A 0.9600
C1—C2 1.416 (3) C4A—H41A 0.9600
C2—C3 1.395 (2) C4A—H42A 0.9600
C2—C21 1.528 (3) C4A—H43A 0.9600
C3—C4 1.379 (2)
Cl1···Cl2 3.1661 (7) O11···C21v 3.217 (2)
Cl1···O11i 3.4197 (14) O11···Cl1i 3.4197 (14)
Cl1···C3ii 3.6461 (18) O11···N1Avi 2.784 (2)
Cl2···Cl1 3.1661 (7) O12···C21 3.120 (2)
Cl1···H43Aiii 2.9200 O12···O12vi 3.2387 (17)
Cl1···H6i 2.8300 O12···O21 2.4021 (19)
Cl2···H22Aiv 3.1100 O12···N1Av 2.861 (2)
O11···O22v 3.219 (2) O21···C11 3.109 (2)
C21—O21—H21 113 (2) C4—C3—H3 119.00
C1A—N1A—H11A 112.8 (14) C1—C6—H6 119.00
C1A—N1A—H12A 108.9 (14) C5—C6—H6 119.00
H11A—N1A—H12A 107 (2) C3A—C1A—C4A 111.52 (15)
H11A—N1A—H13A 108 (2) N1A—C1A—C2A 107.49 (15)
C1A—N1A—H13A 109.6 (15) N1A—C1A—C3A 107.35 (14)
H12A—N1A—H13A 110 (2) N1A—C1A—C4A 107.46 (15)
C2—C1—C11 128.84 (15) C2A—C1A—C3A 111.81 (16)
C6—C1—C11 112.93 (15) C2A—C1A—C4A 110.97 (15)
C2—C1—C6 118.24 (15) C1A—C2A—H21A 109.00
C1—C2—C21 129.57 (15) C1A—C2A—H22A 109.00
C1—C2—C3 118.09 (15) C1A—C2A—H23A 109.00
C3—C2—C21 112.35 (16) H21A—C2A—H22A 109.00
C2—C3—C4 122.71 (17) H21A—C2A—H23A 109.00
Cl2—C4—C5 120.72 (12) H22A—C2A—H23A 109.00
Cl2—C4—C3 120.19 (14) C1A—C3A—H31A 110.00
C3—C4—C5 119.08 (15) C1A—C3A—H32A 109.00
Cl1—C5—C4 121.35 (12) C1A—C3A—H33A 109.00
Cl1—C5—C6 119.36 (14) H31A—C3A—H32A 109.00
C4—C5—C6 119.28 (15) H31A—C3A—H33A 109.00
C1—C6—C5 122.58 (17) H32A—C3A—H33A 109.00
O11—C11—C1 118.25 (15) C1A—C4A—H41A 109.00
O11—C11—O12 121.94 (16) C1A—C4A—H42A 109.00
O12—C11—C1 119.82 (15) C1A—C4A—H43A 109.00
O21—C21—C2 118.87 (16) H41A—C4A—H42A 110.00
O21—C21—O22 121.30 (17) H41A—C4A—H43A 109.00
O22—C21—C2 119.83 (16) H42A—C4A—H43A 109.00
C2—C3—H3 119.00
C6—C1—C2—C3 1.9 (2) C1—C2—C21—O21 −3.2 (3)
C6—C1—C2—C21 −177.99 (17) C1—C2—C21—O22 176.59 (18)
C11—C1—C2—C3 −178.68 (16) C3—C2—C21—O21 176.90 (17)
C11—C1—C2—C21 1.4 (3) C3—C2—C21—O22 −3.3 (2)
C2—C1—C6—C5 −0.9 (2) C2—C3—C4—Cl2 −178.43 (14)
C11—C1—C6—C5 179.57 (15) C2—C3—C4—C5 0.5 (3)
C2—C1—C11—O11 175.26 (17) Cl2—C4—C5—Cl1 −0.1 (2)
C2—C1—C11—O12 −4.8 (3) Cl2—C4—C5—C6 179.48 (13)
C6—C1—C11—O11 −5.3 (2) C3—C4—C5—Cl1 −179.02 (13)
C6—C1—C11—O12 174.65 (15) C3—C4—C5—C6 0.5 (2)
C1—C2—C3—C4 −1.8 (3) Cl1—C5—C6—C1 179.23 (13)
C21—C2—C3—C4 178.14 (16) C4—C5—C6—C1 −0.3 (3)

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2; (iii) x+1, y−1, z; (iv) x, y−1, z; (v) x+1, y, z; (vi) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H11A···O21 0.89 (2) 2.02 (2) 2.883 (2) 164 (2)
N1A—H12A···O11vi 0.91 (2) 1.88 (2) 2.784 (2) 174 (2)
N1A—H13A···O12vii 0.89 (2) 1.99 (2) 2.861 (2) 167 (2)
O21—H21···O12 0.94 (4) 1.47 (4) 2.4021 (19) 173 (4)
C3—H3···O22 0.93 2.29 2.671 (2) 104
C6—H6···O11 0.93 2.27 2.657 (2) 104

Symmetry codes: (vi) −x+1, −y+1, −z+2; (vii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5620).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Bozkurt, E., Kartal, I., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4258–o4260.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Mattes, R. & Dorau, A. (1986). Z. Naturforsch. B, 41, 808–814.
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. E66, o133. [DOI] [PMC free article] [PubMed]
  8. Smith, G. & Wermuth, U. D. (2010b). J. Chem. Crystallogr. 40, 207–212.
  9. Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. C66, o374–o380. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034131/bt5620sup1.cif

e-67-o2461-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034131/bt5620Isup2.hkl

e-67-o2461-Isup2.hkl (130.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034131/bt5620Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES