Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2331. doi: 10.1107/S1600536811031801

1-Isobutyl-4-meth­oxy-1H-imidazo[4,5-c]quinoline

Hoong-Kun Fun a,*,, Wan-Sin Loh a,§, Dinesha b, Reshma Kayarmar c, G K Nagaraja b
PMCID: PMC3200859  PMID: 22058955

Abstract

In the title compound, C15H17N3O, the 1H-imidazo[4,5-c]quinoline ring system is approximately planar, with a maximum deviation of 0.036 (1) Å. The C—N—C—C torsion angles formed between this ring system and the isobutyl unit are −99.77 (16) and 79.71 (17)°. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis.

Related literature

For background to quinolines and their microbial activity, see: Crozat & Beutler (2004); Stringfellow & Glasgow (1972); Miller et al. (1999); Hemmi et al. (2002). For related structures, see: Loh et al. (2011a,b ).graphic file with name e-67-o2331-scheme1.jpg

Experimental

Crystal data

  • C15H17N3O

  • M r = 255.32

  • Monoclinic, Inline graphic

  • a = 7.4196 (8) Å

  • b = 18.910 (2) Å

  • c = 10.4112 (14) Å

  • β = 110.568 (2)°

  • V = 1367.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 297 K

  • 0.40 × 0.31 × 0.13 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.969, T max = 0.989

  • 12741 measured reflections

  • 3463 independent reflections

  • 2386 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.127

  • S = 1.04

  • 3463 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031801/wn2444sup1.cif

e-67-o2331-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031801/wn2444Isup2.hkl

e-67-o2331-Isup2.hkl (169.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031801/wn2444Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.93 2.39 3.3052 (16) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL thanks the Malaysian Government and USM for the award of a Research Fellowship.

supplementary crystallographic information

Comment

The quinoline scaffold is prevalent in a variety of pharmacologically active synthetic and natural products. Long before endosomal TLR7 was discovered to serve as the primary sensor for short, single-stranded, GU-rich RNA sequences (ssRNA), mainly of viral origin (Crozat & Beutler, 2004), a number of small molecules were synthesized and evaluated in the 1970's and 1980's for antiviral activities owing to their pronounced type I interferon (IFN-R and -β) inducing properties (Stringfellow & Glasgow, 1972). Although the mechanisms of innate immune stimulation of several of these compounds (such as tilorone14 and bromopirone16) remain yet to be formally elucidated, the members of the 1H-imidazo[4,5-c]quinolines were found to be good type I IFN inducers in human cell-derived assays and FDA approval was obtained in 1997 for imiquimod for the treatment of basal cell carcinoma and actinic keratosis (Miller et al., 1999). It was not until 2002, however, that the mechanistic basis of IFN induction by the imidazoquinolines was found to be a consequence of TLR7 engagement and activation (Hemmi et al., 2002). We have earlier reported the crystal structures of 1-isobutyl-N,N-dimethyl-1H-imidazo[4,5-c]quinolin- 4-amine and 4-hydrazinyl-1-isobutyl-1H-imidazo[4,5-c]quinoline (Loh et al., 2011a,b). Following on from these, we have synthesized 1-isobutyl-4-methoxy-1H-imidazo[4,5-c]quinoline.

In the title compound (Fig. 1), the 1H-imidazo[4,5-c]quinoline ring system (C1–C7/N3/C10/N2/C8/C9/N1) is approximately planar with a maximum deviation of 0.036 (1) Å at atom C8. The torsion angle, C10—N3—C11—C12, formed between this ring system and the isobutyl unit is -99.77 (16)°; the torsion angle C7—N3—C11—C12 is 79.71 (17)°. Bond lengths and angles are within the normal ranges and are comparable to those in the related crystal structures (Loh et al., 2011a,b).

In the crystal packing (Fig. 2), the intermolecular C10—H10A···O1 hydrogen bonds (Table 1) link the molecules into chains along the c axis.

Experimental

To a solution of 4-chloro-1-(2-methylpropyl)-1H-imidazo[4,5-c] quinoline (0.1 mol) in methanol (30 ml) was added a solution of sodium methoxide (0.01 mol) in methanol (10 ml) and the mixture was stirred for 1 h. The reaction mixture was heated under reflux for 12 h, concentrated and poured into crushed ice. The resultant solid was filtered, dried and recrystallized using a mixture of DMF and water (1:1). M. p. = 493–495 K.

Refinement

All H atoms were positioned geometrically and refined using a riding model; C—H = 0.93 to 0.98 Å; Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis, showing the chains along the c axis. Hydrogen bonds are indicated by dashed lines.

Crystal data

C15H17N3O F(000) = 544
Mr = 255.32 Dx = 1.240 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3364 reflections
a = 7.4196 (8) Å θ = 2.9–28.4°
b = 18.910 (2) Å µ = 0.08 mm1
c = 10.4112 (14) Å T = 297 K
β = 110.568 (2)° Plate, colourless
V = 1367.6 (3) Å3 0.40 × 0.31 × 0.13 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 3463 independent reflections
Radiation source: fine-focus sealed tube 2386 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 28.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −7→9
Tmin = 0.969, Tmax = 0.989 k = −25→25
12741 measured reflections l = −13→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.131P] where P = (Fo2 + 2Fc2)/3
3463 reflections (Δ/σ)max < 0.001
175 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.48715 (15) 0.63510 (5) 0.85500 (9) 0.0586 (3)
N1 0.37002 (15) 0.53191 (5) 0.73822 (10) 0.0447 (3)
N2 0.44565 (18) 0.70399 (5) 0.59706 (12) 0.0563 (3)
N3 0.33493 (16) 0.64771 (5) 0.39424 (11) 0.0486 (3)
C1 0.29597 (16) 0.49624 (6) 0.61429 (12) 0.0400 (3)
C2 0.24489 (19) 0.42505 (6) 0.61944 (13) 0.0483 (3)
H2A 0.2608 0.4045 0.7039 0.058*
C3 0.1725 (2) 0.38552 (7) 0.50312 (15) 0.0549 (3)
H3A 0.1400 0.3384 0.5089 0.066*
C4 0.1472 (2) 0.41521 (7) 0.37579 (14) 0.0563 (4)
H4A 0.0976 0.3879 0.2968 0.068*
C5 0.19492 (19) 0.48452 (7) 0.36623 (13) 0.0491 (3)
H5A 0.1776 0.5039 0.2806 0.059*
C6 0.26991 (16) 0.52691 (6) 0.48450 (12) 0.0397 (3)
C7 0.32629 (17) 0.59928 (6) 0.49100 (12) 0.0407 (3)
C8 0.39572 (18) 0.63518 (6) 0.61455 (13) 0.0445 (3)
C9 0.41477 (18) 0.59803 (6) 0.73647 (12) 0.0441 (3)
C10 0.4073 (2) 0.70816 (7) 0.46497 (16) 0.0587 (4)
H10A 0.4276 0.7491 0.4225 0.070*
C11 0.2801 (2) 0.64045 (8) 0.24607 (13) 0.0545 (3)
H11A 0.3224 0.5946 0.2258 0.065*
H11B 0.3465 0.6763 0.2129 0.065*
C12 0.0645 (2) 0.64739 (9) 0.16888 (15) 0.0639 (4)
H12A −0.0010 0.6097 0.2001 0.077*
C13 −0.0102 (3) 0.71824 (10) 0.1988 (2) 0.0988 (7)
H13A −0.1452 0.7221 0.1466 0.148*
H13B 0.0578 0.7559 0.1737 0.148*
H13C 0.0098 0.7214 0.2948 0.148*
C14 0.0257 (3) 0.63667 (16) 0.01661 (19) 0.1156 (9)
H14A −0.1083 0.6447 −0.0342 0.173*
H14B 0.0591 0.5892 0.0012 0.173*
H14C 0.1018 0.6694 −0.0132 0.173*
C15 0.5158 (3) 0.59705 (9) 0.97911 (15) 0.0718 (5)
H15A 0.5586 0.6290 1.0555 0.108*
H15B 0.6111 0.5610 0.9900 0.108*
H15C 0.3968 0.5756 0.9753 0.108*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0849 (7) 0.0443 (5) 0.0409 (5) −0.0024 (4) 0.0151 (5) −0.0067 (4)
N1 0.0532 (6) 0.0404 (5) 0.0403 (5) −0.0004 (4) 0.0162 (4) −0.0010 (4)
N2 0.0727 (8) 0.0350 (6) 0.0589 (7) 0.0006 (5) 0.0202 (6) 0.0013 (5)
N3 0.0575 (6) 0.0416 (6) 0.0460 (6) 0.0052 (5) 0.0174 (5) 0.0094 (4)
C1 0.0401 (6) 0.0382 (6) 0.0419 (6) 0.0013 (4) 0.0147 (5) −0.0012 (5)
C2 0.0547 (7) 0.0422 (7) 0.0496 (7) −0.0038 (5) 0.0205 (6) 0.0020 (5)
C3 0.0614 (8) 0.0403 (7) 0.0622 (9) −0.0084 (6) 0.0209 (6) −0.0056 (6)
C4 0.0642 (9) 0.0483 (7) 0.0514 (8) −0.0045 (6) 0.0140 (6) −0.0134 (6)
C5 0.0561 (7) 0.0476 (7) 0.0405 (6) 0.0040 (6) 0.0130 (5) −0.0014 (5)
C6 0.0392 (6) 0.0380 (6) 0.0407 (6) 0.0046 (5) 0.0126 (5) 0.0005 (5)
C7 0.0434 (6) 0.0377 (6) 0.0405 (6) 0.0068 (5) 0.0140 (5) 0.0054 (5)
C8 0.0517 (7) 0.0339 (6) 0.0465 (7) 0.0051 (5) 0.0154 (5) 0.0002 (5)
C9 0.0504 (7) 0.0402 (6) 0.0402 (6) 0.0041 (5) 0.0139 (5) −0.0038 (5)
C10 0.0725 (9) 0.0381 (7) 0.0644 (9) 0.0021 (6) 0.0229 (7) 0.0091 (6)
C11 0.0586 (8) 0.0614 (8) 0.0447 (7) 0.0030 (6) 0.0196 (6) 0.0128 (6)
C12 0.0580 (8) 0.0774 (10) 0.0539 (8) 0.0034 (7) 0.0167 (7) 0.0247 (7)
C13 0.0755 (12) 0.0790 (12) 0.1277 (18) 0.0253 (9) 0.0180 (11) 0.0352 (12)
C14 0.0779 (13) 0.207 (3) 0.0512 (10) −0.0164 (14) 0.0093 (9) 0.0234 (13)
C15 0.1055 (13) 0.0641 (10) 0.0429 (8) −0.0088 (8) 0.0223 (8) −0.0056 (7)

Geometric parameters (Å, °)

O1—C9 1.3553 (14) C6—C7 1.4257 (16)
O1—C15 1.4281 (17) C7—C8 1.3839 (16)
N1—C9 1.2955 (15) C8—C9 1.4137 (17)
N1—C1 1.3870 (15) C10—H10A 0.9300
N2—C10 1.3051 (19) C11—C12 1.523 (2)
N2—C8 1.3825 (15) C11—H11A 0.9700
N3—C10 1.3635 (17) C11—H11B 0.9700
N3—C7 1.3796 (15) C12—C14 1.522 (2)
N3—C11 1.4571 (17) C12—C13 1.523 (3)
C1—C2 1.4046 (17) C12—H12A 0.9800
C1—C6 1.4199 (16) C13—H13A 0.9600
C2—C3 1.3626 (18) C13—H13B 0.9600
C2—H2A 0.9300 C13—H13C 0.9600
C3—C4 1.3902 (19) C14—H14A 0.9600
C3—H3A 0.9300 C14—H14B 0.9600
C4—C5 1.3705 (18) C14—H14C 0.9600
C4—H4A 0.9300 C15—H15A 0.9600
C5—C6 1.4095 (16) C15—H15B 0.9600
C5—H5A 0.9300 C15—H15C 0.9600
C9—O1—C15 116.66 (10) N2—C10—N3 114.66 (12)
C9—N1—C1 118.43 (10) N2—C10—H10A 122.7
C10—N2—C8 103.07 (11) N3—C10—H10A 122.7
C10—N3—C7 105.82 (11) N3—C11—C12 113.66 (11)
C10—N3—C11 124.15 (11) N3—C11—H11A 108.8
C7—N3—C11 130.03 (11) C12—C11—H11A 108.8
N1—C1—C2 117.04 (11) N3—C11—H11B 108.8
N1—C1—C6 124.31 (11) C12—C11—H11B 108.8
C2—C1—C6 118.65 (11) H11A—C11—H11B 107.7
C3—C2—C1 121.28 (12) C14—C12—C11 108.51 (14)
C3—C2—H2A 119.4 C14—C12—C13 112.37 (17)
C1—C2—H2A 119.4 C11—C12—C13 110.99 (14)
C2—C3—C4 120.33 (12) C14—C12—H12A 108.3
C2—C3—H3A 119.8 C11—C12—H12A 108.3
C4—C3—H3A 119.8 C13—C12—H12A 108.3
C5—C4—C3 120.24 (12) C12—C13—H13A 109.5
C5—C4—H4A 119.9 C12—C13—H13B 109.5
C3—C4—H4A 119.9 H13A—C13—H13B 109.5
C4—C5—C6 120.88 (12) C12—C13—H13C 109.5
C4—C5—H5A 119.6 H13A—C13—H13C 109.5
C6—C5—H5A 119.6 H13B—C13—H13C 109.5
C5—C6—C1 118.63 (11) C12—C14—H14A 109.5
C5—C6—C7 127.34 (11) C12—C14—H14B 109.5
C1—C6—C7 114.03 (10) H14A—C14—H14B 109.5
N3—C7—C8 104.80 (10) C12—C14—H14C 109.5
N3—C7—C6 133.69 (11) H14A—C14—H14C 109.5
C8—C7—C6 121.49 (11) H14B—C14—H14C 109.5
N2—C8—C7 111.65 (11) O1—C15—H15A 109.5
N2—C8—C9 129.72 (11) O1—C15—H15B 109.5
C7—C8—C9 118.55 (11) H15A—C15—H15B 109.5
N1—C9—O1 120.52 (11) O1—C15—H15C 109.5
N1—C9—C8 123.15 (11) H15A—C15—H15C 109.5
O1—C9—C8 116.31 (11) H15B—C15—H15C 109.5
C9—N1—C1—C2 −178.62 (11) C10—N2—C8—C7 −0.46 (15)
C9—N1—C1—C6 1.65 (18) C10—N2—C8—C9 176.13 (14)
N1—C1—C2—C3 −179.42 (12) N3—C7—C8—N2 0.34 (14)
C6—C1—C2—C3 0.32 (18) C6—C7—C8—N2 178.58 (11)
C1—C2—C3—C4 −0.2 (2) N3—C7—C8—C9 −176.68 (11)
C2—C3—C4—C5 0.1 (2) C6—C7—C8—C9 1.57 (18)
C3—C4—C5—C6 −0.1 (2) C1—N1—C9—O1 179.84 (11)
C4—C5—C6—C1 0.29 (19) C1—N1—C9—C8 −1.44 (18)
C4—C5—C6—C7 179.85 (12) C15—O1—C9—N1 1.81 (19)
N1—C1—C6—C5 179.35 (11) C15—O1—C9—C8 −177.00 (13)
C2—C1—C6—C5 −0.37 (17) N2—C8—C9—N1 −176.51 (13)
N1—C1—C6—C7 −0.27 (16) C7—C8—C9—N1 −0.11 (19)
C2—C1—C6—C7 −179.99 (11) N2—C8—C9—O1 2.3 (2)
C10—N3—C7—C8 −0.08 (14) C7—C8—C9—O1 178.66 (11)
C11—N3—C7—C8 −179.63 (12) C8—N2—C10—N3 0.41 (16)
C10—N3—C7—C6 −178.01 (13) C7—N3—C10—N2 −0.22 (17)
C11—N3—C7—C6 2.4 (2) C11—N3—C10—N2 179.36 (12)
C5—C6—C7—N3 −3.3 (2) C10—N3—C11—C12 −99.77 (16)
C1—C6—C7—N3 176.32 (12) C7—N3—C11—C12 79.71 (17)
C5—C6—C7—C8 179.09 (12) N3—C11—C12—C14 −178.33 (15)
C1—C6—C7—C8 −1.33 (16) N3—C11—C12—C13 57.73 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10A···O1i 0.93 2.39 3.3052 (16) 169.

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2444).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Crozat, K. & Beutler, B. (2004). Proc. Natl Acad. Sci. USA, 101, 6835–6836. [DOI] [PMC free article] [PubMed]
  3. Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K. & Akira, S. (2002). Nat. Immunol. 3, 196–200. [DOI] [PubMed]
  4. Loh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011a). Acta Cryst. E67, o405. [DOI] [PMC free article] [PubMed]
  5. Loh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011b). Acta Cryst. E67, o406. [DOI] [PMC free article] [PubMed]
  6. Miller, R. L., Gerster, J. F., Owens, M. L., Slade, H. B. & Tomai, M. A. (1999). Int. J. Immunopharmacol. 21, 1–14. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Stringfellow, D. A. & Glasgow, L. A. (1972). Antimicrob. Agents Chemother. 2, 73–78. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031801/wn2444sup1.cif

e-67-o2331-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031801/wn2444Isup2.hkl

e-67-o2331-Isup2.hkl (169.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031801/wn2444Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES