Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 6;67(Pt 9):o2251. doi: 10.1107/S1600536811030571

9-(Pent-4-en­yl)anthracene

Natarajan Arumugam a,, Abdulrahman I Almansour a, Usama Karama a, Mohd Mustaqim Rosli b, Ibrahim Abdul Razak b,*,§
PMCID: PMC3200868  PMID: 22064836

Abstract

In the title compound, C19H18, the anthracene system is almost planar, with a maximum deviation of −0.039 (1) Å. The structure is stabilized by C—H⋯π inter­actions. The pentene moiety is not planar and is twisted away from the attached anthracene system with a maximum torsion angle of 91.2 (1)°.

Related literature

For background to anthracene, see: de Silva et al. (1997); Klarner et al. (1998); Han et al. (2009).graphic file with name e-67-o2251-scheme1.jpg

Experimental

Crystal data

  • C19H18

  • M r = 246.33

  • Monoclinic, Inline graphic

  • a = 11.1555 (2) Å

  • b = 7.2678 (1) Å

  • c = 19.7129 (3) Å

  • β = 119.096 (1)°

  • V = 1396.55 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.73 × 0.38 × 0.26 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.953, T max = 0.983

  • 20185 measured reflections

  • 5271 independent reflections

  • 3948 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.151

  • S = 1.05

  • 5271 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030571/ng5202sup1.cif

e-67-o2251-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030571/ng5202Isup2.hkl

e-67-o2251-Isup2.hkl (258.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030571/ng5202Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. C—H⋯π interactions (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C8/C13/C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg2i 0.95 2.63 3.5729 (9) 175
C7—H7ACg1i 0.95 2.74 3.6851 (9) 177
C17—H17ACg2ii 0.99 2.58 3.4643 (9) 149
C18—H18ACg1ii 0.95 2.90 3.6553 (11) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

NA, AIM and UK gratefully acknowledge the Deanship of Scientific Research, College of Science, King Saud University (KSU) for funding the synthesis work under Research Grant RGP-VPP-026.

supplementary crystallographic information

Comment

Anthracene is an attractive material in its photochemical and electrochemical properties as well as used as a potential medium for photoconductive (de Silva et al., 1997) and electroluminescence (Klarner et al., 1998) devices. Furthermore, anthracene derivatives exhibited anticancer activity has also been reported recently (Han et al., 2009). As part of an ongoing study on such compounds, in this paper, we present the crystal structure of the title compound, which was synthesized as an intermediate.

All parameters in (I) within normal ranges. The anthracene is planar with maximum deviation of -0.039 (1)Å from atom C11. In the crystal, C—H···π (Table 1) interactions contribute in stabilizing the crystal structure involving Cg1 = C1—C6 and Cg2 = C1/C6–8/C13—C14.

Experimental

A solution of anthrone (1 g, 5.1 mmol) in anhydrous THF (20 ml) was slowly added to pent-4-enylmagnesium bromide (0.47 g, 6.5 mmol). The mixture was stirred for 8 h at room temperature. The reaction mixture was subsequently acidified with 10% HCl, the organic layer was separated, and the aqueous layer was extracted with ether (2 X 10 ml). The combined organic layer was washed with water, dried over MgSO4 and the solvent was evaporated under reduced pressure and the crude product was added 5 ml benzene, 1.2 g P2O5 and stirred for 6 h at room temperature. The P2O5 was filtered off and the benzene was removed under vacuum. The crude product was purified by column chromatography (hexane-dichloromethene 1:1). The product was recrystallized from EtOAc to yield title compound as colourless crystals.

Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.99 Å, and with Uiso = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

Crystal data

C19H18 F(000) = 528
Mr = 246.33 Dx = 1.172 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5794 reflections
a = 11.1555 (2) Å θ = 2.4–33.0°
b = 7.2678 (1) Å µ = 0.07 mm1
c = 19.7129 (3) Å T = 100 K
β = 119.096 (1)° Block, colourless
V = 1396.55 (4) Å3 0.73 × 0.38 × 0.26 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5271 independent reflections
Radiation source: fine-focus sealed tube 3948 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 33.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −17→16
Tmin = 0.953, Tmax = 0.983 k = −9→11
20185 measured reflections l = −30→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.1778P] where P = (Fo2 + 2Fc2)/3
5271 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.12149 (8) 0.51562 (11) 0.87949 (5) 0.01455 (16)
C2 0.03754 (9) 0.45215 (12) 0.91135 (5) 0.01904 (17)
H2A 0.0693 0.3540 0.9478 0.023*
C3 −0.08723 (9) 0.53006 (14) 0.89033 (5) 0.02260 (19)
H3A −0.1405 0.4860 0.9126 0.027*
C4 −0.13826 (9) 0.67610 (14) 0.83556 (6) 0.02333 (19)
H4A −0.2250 0.7294 0.8216 0.028*
C5 −0.06301 (9) 0.73990 (12) 0.80296 (5) 0.01996 (18)
H5A −0.0981 0.8372 0.7662 0.024*
C6 0.06813 (8) 0.66222 (11) 0.82341 (5) 0.01545 (16)
C7 0.14534 (8) 0.72875 (11) 0.79022 (5) 0.01635 (16)
H7A 0.1101 0.8263 0.7536 0.020*
C8 0.27345 (8) 0.65400 (11) 0.81012 (5) 0.01535 (16)
C9 0.35206 (9) 0.72202 (13) 0.77582 (5) 0.02136 (18)
H9A 0.3178 0.8221 0.7404 0.026*
C10 0.47518 (9) 0.64570 (14) 0.79301 (6) 0.0248 (2)
H10A 0.5258 0.6919 0.7695 0.030*
C11 0.52754 (9) 0.49685 (14) 0.84623 (6) 0.02274 (19)
H11A 0.6129 0.4430 0.8575 0.027*
C12 0.45707 (8) 0.43008 (12) 0.88137 (5) 0.01865 (17)
H12A 0.4948 0.3312 0.9172 0.022*
C13 0.32723 (8) 0.50604 (11) 0.86544 (5) 0.01458 (15)
C14 0.25201 (8) 0.43960 (11) 0.90096 (5) 0.01431 (15)
C15 0.30778 (9) 0.28354 (11) 0.95877 (5) 0.01744 (17)
H15A 0.2711 0.2941 0.9953 0.021*
H15B 0.4089 0.2943 0.9891 0.021*
C16 0.27031 (9) 0.09379 (11) 0.91969 (5) 0.01856 (17)
H16A 0.3180 0.0757 0.8890 0.022*
H16B 0.1703 0.0887 0.8836 0.022*
C17 0.31046 (9) −0.06170 (12) 0.97964 (5) 0.01997 (18)
H17A 0.3154 −0.1789 0.9555 0.024*
H17B 0.4028 −0.0361 1.0238 0.024*
C18 0.21099 (11) −0.08229 (13) 1.00944 (6) 0.0254 (2)
H18A 0.1204 −0.1198 0.9734 0.031*
C19 0.23850 (14) −0.05277 (16) 1.08162 (7) 0.0363 (3)
H19A 0.3279 −0.0151 1.1195 0.044*
H19C 0.1689 −0.0692 1.0957 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0157 (3) 0.0131 (3) 0.0142 (3) −0.0012 (2) 0.0068 (3) −0.0018 (3)
C2 0.0204 (4) 0.0205 (4) 0.0175 (4) −0.0032 (3) 0.0101 (3) −0.0017 (3)
C3 0.0200 (4) 0.0287 (4) 0.0226 (4) −0.0048 (3) 0.0131 (3) −0.0049 (4)
C4 0.0156 (4) 0.0283 (4) 0.0260 (4) 0.0005 (3) 0.0100 (3) −0.0056 (4)
C5 0.0165 (3) 0.0199 (4) 0.0207 (4) 0.0034 (3) 0.0069 (3) −0.0005 (3)
C6 0.0146 (3) 0.0147 (3) 0.0157 (3) 0.0005 (3) 0.0063 (3) −0.0014 (3)
C7 0.0170 (3) 0.0144 (3) 0.0164 (4) 0.0015 (3) 0.0071 (3) 0.0018 (3)
C8 0.0159 (3) 0.0150 (3) 0.0151 (3) −0.0003 (3) 0.0075 (3) 0.0001 (3)
C9 0.0208 (4) 0.0235 (4) 0.0215 (4) −0.0012 (3) 0.0116 (3) 0.0027 (3)
C10 0.0209 (4) 0.0321 (5) 0.0253 (4) −0.0029 (3) 0.0144 (4) 0.0003 (4)
C11 0.0165 (4) 0.0276 (4) 0.0245 (4) 0.0010 (3) 0.0103 (3) −0.0046 (4)
C12 0.0162 (3) 0.0173 (4) 0.0203 (4) 0.0020 (3) 0.0071 (3) −0.0017 (3)
C13 0.0141 (3) 0.0132 (3) 0.0152 (3) 0.0003 (2) 0.0061 (3) −0.0022 (3)
C14 0.0159 (3) 0.0115 (3) 0.0139 (3) 0.0000 (2) 0.0060 (3) −0.0008 (3)
C15 0.0201 (4) 0.0139 (3) 0.0155 (3) 0.0004 (3) 0.0065 (3) 0.0009 (3)
C16 0.0220 (4) 0.0140 (3) 0.0171 (4) 0.0002 (3) 0.0074 (3) 0.0004 (3)
C17 0.0230 (4) 0.0135 (3) 0.0200 (4) 0.0013 (3) 0.0078 (3) 0.0019 (3)
C18 0.0320 (5) 0.0180 (4) 0.0272 (5) −0.0009 (3) 0.0151 (4) 0.0021 (3)
C19 0.0531 (7) 0.0295 (5) 0.0336 (6) 0.0003 (5) 0.0267 (5) 0.0015 (5)

Geometric parameters (Å, °)

C1—C14 1.4159 (11) C11—C12 1.3650 (13)
C1—C2 1.4340 (11) C11—H11A 0.9500
C1—C6 1.4393 (11) C12—C13 1.4349 (11)
C2—C3 1.3670 (12) C12—H12A 0.9500
C2—H2A 0.9500 C13—C14 1.4139 (11)
C3—C4 1.4208 (14) C14—C15 1.5108 (11)
C3—H3A 0.9500 C15—C16 1.5352 (11)
C4—C5 1.3628 (13) C15—H15A 0.9900
C4—H4A 0.9500 C15—H15B 0.9900
C5—C6 1.4311 (11) C16—C17 1.5361 (12)
C5—H5A 0.9500 C16—H16A 0.9900
C6—C7 1.3971 (12) C16—H16B 0.9900
C7—C8 1.3950 (11) C17—C18 1.4941 (14)
C7—H7A 0.9500 C17—H17A 0.9900
C8—C9 1.4309 (12) C17—H17B 0.9900
C8—C13 1.4385 (11) C18—C19 1.3193 (15)
C9—C10 1.3625 (13) C18—H18A 0.9500
C9—H9A 0.9500 C19—H19A 0.9500
C10—C11 1.4199 (14) C19—H19C 0.9500
C10—H10A 0.9500
C14—C1—C2 122.63 (7) C11—C12—C13 121.42 (8)
C14—C1—C6 119.97 (7) C11—C12—H12A 119.3
C2—C1—C6 117.40 (7) C13—C12—H12A 119.3
C3—C2—C1 121.30 (8) C14—C13—C12 122.63 (7)
C3—C2—H2A 119.3 C14—C13—C8 120.10 (7)
C1—C2—H2A 119.3 C12—C13—C8 117.26 (7)
C2—C3—C4 120.83 (8) C13—C14—C1 119.36 (7)
C2—C3—H3A 119.6 C13—C14—C15 120.27 (7)
C4—C3—H3A 119.6 C1—C14—C15 120.32 (7)
C5—C4—C3 120.09 (8) C14—C15—C16 112.59 (7)
C5—C4—H4A 120.0 C14—C15—H15A 109.1
C3—C4—H4A 120.0 C16—C15—H15A 109.1
C4—C5—C6 120.84 (8) C14—C15—H15B 109.1
C4—C5—H5A 119.6 C16—C15—H15B 109.1
C6—C5—H5A 119.6 H15A—C15—H15B 107.8
C7—C6—C5 120.67 (8) C15—C16—C17 111.62 (7)
C7—C6—C1 119.80 (7) C15—C16—H16A 109.3
C5—C6—C1 119.52 (8) C17—C16—H16A 109.3
C8—C7—C6 120.93 (7) C15—C16—H16B 109.3
C8—C7—H7A 119.5 C17—C16—H16B 109.3
C6—C7—H7A 119.5 H16A—C16—H16B 108.0
C7—C8—C9 120.79 (8) C18—C17—C16 112.44 (7)
C7—C8—C13 119.79 (7) C18—C17—H17A 109.1
C9—C8—C13 119.41 (7) C16—C17—H17A 109.1
C10—C9—C8 121.14 (8) C18—C17—H17B 109.1
C10—C9—H9A 119.4 C16—C17—H17B 109.1
C8—C9—H9A 119.4 H17A—C17—H17B 107.8
C9—C10—C11 119.78 (8) C19—C18—C17 125.45 (10)
C9—C10—H10A 120.1 C19—C18—H18A 117.3
C11—C10—H10A 120.1 C17—C18—H18A 117.3
C12—C11—C10 120.96 (8) C18—C19—H19A 120.0
C12—C11—H11A 119.5 C18—C19—H19C 120.0
C10—C11—H11A 119.5 H19A—C19—H19C 120.0
C14—C1—C2—C3 179.04 (8) C11—C12—C13—C14 179.98 (8)
C6—C1—C2—C3 −1.14 (12) C11—C12—C13—C8 0.79 (12)
C1—C2—C3—C4 0.48 (14) C7—C8—C13—C14 −1.54 (12)
C2—C3—C4—C5 0.28 (14) C9—C8—C13—C14 178.80 (8)
C3—C4—C5—C6 −0.31 (14) C7—C8—C13—C12 177.67 (7)
C4—C5—C6—C7 −179.61 (8) C9—C8—C13—C12 −1.98 (11)
C4—C5—C6—C1 −0.39 (13) C12—C13—C14—C1 −176.95 (7)
C14—C1—C6—C7 0.14 (12) C8—C13—C14—C1 2.22 (12)
C2—C1—C6—C7 −179.68 (7) C12—C13—C14—C15 0.50 (12)
C14—C1—C6—C5 −179.09 (7) C8—C13—C14—C15 179.67 (7)
C2—C1—C6—C5 1.09 (12) C2—C1—C14—C13 178.29 (7)
C5—C6—C7—C8 179.78 (8) C6—C1—C14—C13 −1.52 (12)
C1—C6—C7—C8 0.56 (12) C2—C1—C14—C15 0.84 (12)
C6—C7—C8—C9 179.78 (8) C6—C1—C14—C15 −178.97 (7)
C6—C7—C8—C13 0.13 (12) C13—C14—C15—C16 −86.19 (9)
C7—C8—C9—C10 −177.80 (8) C1—C14—C15—C16 91.23 (9)
C13—C8—C9—C10 1.85 (13) C14—C15—C16—C17 −172.08 (7)
C8—C9—C10—C11 −0.43 (14) C15—C16—C17—C18 78.26 (9)
C9—C10—C11—C12 −0.83 (15) C16—C17—C18—C19 −114.87 (11)
C10—C11—C12—C13 0.63 (14)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C8/C13/C14 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C5—H5A···Cg2i 0.95 2.63 3.5729 (9) 175
C7—H7A···Cg1i 0.95 2.74 3.6851 (9) 177
C17—H17A···Cg2ii 0.99 2.58 3.4643 (9) 149
C18—H18A···Cg1ii 0.95 2.90 3.6553 (11) 138

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5202).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Han, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671–1680. [DOI] [PMC free article] [PubMed]
  3. Klarner, G., Davey, M. H., Chen, W.-D., Scott, J. C. & Miller, R. D. (1998). Adv. Mater. 10, 993–997.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Silva, A. P. de, Gunaratne, H. Q. N. & Mc Coy, C. P. (1997). J. Am. Chem. Soc. 119, 7891–7892.
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030571/ng5202sup1.cif

e-67-o2251-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030571/ng5202Isup2.hkl

e-67-o2251-Isup2.hkl (258.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030571/ng5202Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES