Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):m1225–m1226. doi: 10.1107/S1600536811031114

(Penta­fluoro­propionato-κO)tetra­kis­(trimethyl­phosphine oxide-κO)copper(II) penta­fluoro­propionate

Iwona B Szymańska a, Liliana Dobrzańska b,c,*
PMCID: PMC3200869  PMID: 22064902

Abstract

The title compound, [Cu(C3F5O2)(C3H9OP)4](C3F5O2), comprises a cationic CuII complex and a disordered penta­fluoro­propionate counter-ion. The metal atom has a distorted square-pyramidal coordination environment formed by four O atoms originating from trimethyl­phosphine oxide mol­ecules and the remaining one belonging to the monodentate penta­fluoro­propionate anion, which is situated in the basal plane of the pyramid. The mol­ecules are held together in the crystal by a net of weak C—H⋯O and C—H⋯F hydrogen bonds. The counter anion is disordered over two sets of sites in a 0.629 (5):0.371 (5) ratio.

Related literature

For our previous studies on metal complexes suitable for chemical vapour deposition (CVD), see: Szymańska et al. (2007, 2009); Piszczek et al. (2008). For crystal structures of metal complexes with trimethyl­phosphine oxide ligands involving metal ions from the first transition series, see: Hill et al. (2003) for Sc(III); Johnson & Bergman (2001) for Ti(III); Veige et al. (2003) for V(III); Cotton et al. (1991) for Fe(II); Edelmann & Behrens (1986) for Co(II); Klein et al. (1999) for Ni(II); Hlavinka & Hagadorn (2005) for Zn(II). For crystallographic data on CuII complexes with a penta­fluoro­propionate ligand, see: Jiang et al. (1998); Zhang et al. (1999).graphic file with name e-67-m1225-scheme1.jpg

Experimental

Crystal data

  • [Cu(C3F5O2)(C3H9OP)4](C3F5O2)

  • M r = 757.89

  • Triclinic, Inline graphic

  • a = 9.5955 (8) Å

  • b = 12.2627 (11) Å

  • c = 14.1848 (12) Å

  • α = 82.720 (2)°

  • β = 80.501 (1)°

  • γ = 82.899 (2)°

  • V = 1623.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 100 K

  • 0.48 × 0.17 × 0.03 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.655, T max = 0.972

  • 10254 measured reflections

  • 7148 independent reflections

  • 6207 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.124

  • S = 1.07

  • 7148 reflections

  • 416 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031114/hp2011sup1.cif

e-67-m1225-sup1.cif (28.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031114/hp2011Isup2.hkl

e-67-m1225-Isup2.hkl (349.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—O1 1.9535 (18)
Cu1—O4 1.9582 (18)
Cu1—O3 1.965 (2)
Cu1—O5 1.9863 (19)
Cu1—O2 2.1876 (19)
O1—Cu1—O4 172.44 (8)
O1—Cu1—O3 90.48 (8)
O4—Cu1—O3 88.42 (8)
O1—Cu1—O5 91.12 (8)
O4—Cu1—O5 87.71 (8)
O3—Cu1—O5 162.51 (8)
O1—Cu1—O2 94.54 (7)
O4—Cu1—O2 92.99 (7)
O3—Cu1—O2 102.55 (8)
O5—Cu1—O2 94.69 (8)

Table 2. Geometry of selected hydrogen bonds (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O5 0.98 2.57 3.265 (3) 128
C5—H5A⋯O4 0.98 2.42 3.204 (4) 136
C10—H10B⋯O3 0.98 2.58 3.266 (4) 127
C1—H1A⋯F2i 0.98 2.52 3.392 (3) 149
C1—H1B⋯O6ii 0.98 2.47 3.265 (3) 138
C4—H4A⋯F4iii 0.98 2.51 3.482 (3) 170
C4—H4C⋯F3i 0.98 2.53 3.478 (5) 163
C9—H9A⋯F7A 0.98 2.44 3.322 (6) 150
C11—H11B⋯O8Aiv 0.98 2.42 3.289 (7) 147
C12—H12B⋯O8Aiv 0.98 2.52 3.388 (8) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

IBSz thanks the Ministry of Science and High Education for grant N N204 546539. LD thanks the Research Foundation Flanders (FWO) for financial support.

supplementary crystallographic information

Comment

During our ongoing studies on metal complexes with tertiary phosphines (Szymańska et al., 2007) and perfluorinated carboxylates (Piszczek et al., 2008; Szymańska et al., 2009) suitable for chemical vapour deposition (CVD), the title compound was accidentally isolated. It is the first report on the crystal structure of a Cu complex with trimethylphosphine oxides. There is however some literature on coordination compounds of trimethylphosphine oxide ligands with other metals from the first transition series such as: Sc(III) (Hill et al., 2003), Ti(III) (Johnson & Bergman, 2001), V(III) (Veige et al., 2003), Fe(II) (Cotton et al., 1991), Co(II) (Edelmann & Behrens, 1986), Ni(II) (Klein et al., 1999), Zn(II) (Hlavinka & Hagadorn, 2005).

Furthermore, there are also only two reports on crystal structures of CuII complexes containing coordinating pentafluoropropionate ions (Jiang et al., 1998; Zhang et al., 1999).

The title compound has one monocationic CuII complex and one pentafluoropropionate counter-ion present in the asymmetric unit (Fig.1). The geometry around the CuII ion is a distorted square-pyramid formed by four O atoms originating from trimethylphosphine oxide molecules and one from the monodentate pentafluoropropionate ion, which is located in the base plane of the pyramid. The corresponding bond lengths and angles are presented in Table 1. The geometrical features of the ligands are in good agreement with reported values. The counter-ion is disordered over two positions with refined site occupancies of 0.629 (5):0.371 (5). There are weak intramolecular C—H···O interactions between the methyl groups of three distinct trimethylphosphine oxides (P1, P2 and P4) involving the atoms C3, C5 and C10, that act as donors, and O5 (from the counter-ion), as well as O4 and O3 (from the oxide ligands), that act as acceptors, respectively (Table 2). The C9 methyl group from P3 however, interacts with the counter-ion by weak C9—H9A···F7A hydrogen bonding with a C···F distance of 3.322 (6) Å, and a C—H—F angle of 150°. The packing is further stabilized by numerous weak intermolecular C—H···O and C—H···F interactions.

Experimental

(C2F5COO)2Cu (1.04 mmol) was placed in a Schlenk tube, dissolved in 25 ml of freshly distilled acetonitrile, and copper powder (5 mmol) was added. The obtained suspension was stirred until the solution was pale yellow. Then PMe3 (2.1 ml of a 1 M THF solution) was added and the reaction mixture was stirred for 18 h at ambient temperature, and filtered. The solvent was evaporated under reduced pressure, yielding [Cu2(PMe3)2(µ–C2F5CO2)2] as a pale yellow, viscous oil. Crystals of the title CuII complex suitable for X-ray studies were obtained after a few months, presumably upon slow oxidation by diffused air.

Refinement

All H atoms were positioned geometrically, with C—H = 0.98 and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C). The counter-ion was found to be disordered and modeled in two positions. Refinement included bond lengths restraints applied to the O8B—O7B, C17B—O7B and C17B—O8B as well as to ADPs of 'A' part.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; the other orientation of the disordered counter-ion has been omitted for clarity.

Crystal data

[Cu(C3F5O2)(C3H9OP)4](C3F5O2) Z = 2
Mr = 757.89 F(000) = 774
Triclinic, P1 Dx = 1.550 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.5955 (8) Å Cell parameters from 5155 reflections
b = 12.2627 (11) Å θ = 2.2–28.1°
c = 14.1848 (12) Å µ = 0.96 mm1
α = 82.720 (2)° T = 100 K
β = 80.501 (1)° Plate, colorless
γ = 82.899 (2)° 0.48 × 0.17 × 0.03 mm
V = 1623.9 (2) Å3

Data collection

Bruker APEX CCD area-detector diffractometer 7148 independent reflections
Radiation source: fine-focus sealed tube 6207 reflections with I > 2σ(I)
graphite Rint = 0.016
ω scans θmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −10→12
Tmin = 0.655, Tmax = 0.972 k = −12→15
10254 measured reflections l = −12→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0677P)2 + 1.8569P] where P = (Fo2 + 2Fc2)/3
7148 reflections (Δ/σ)max = 0.004
416 parameters Δρmax = 1.33 e Å3
33 restraints Δρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.08108 (3) 0.78725 (2) 0.19051 (2) 0.01610 (10)
P1 0.24449 (7) 0.85300 (5) −0.01852 (5) 0.01593 (14)
F1 −0.1350 (2) 0.6864 (2) −0.05341 (14) 0.0504 (6)
O1 0.18617 (19) 0.87540 (15) 0.08413 (13) 0.0192 (4)
C1 0.3916 (3) 0.9301 (2) −0.0631 (2) 0.0219 (5)
H1B 0.3621 1.0088 −0.0583 0.033*
H1C 0.4253 0.9186 −0.1305 0.033*
H1A 0.4683 0.9053 −0.0251 0.033*
P2 0.25316 (7) 0.53881 (6) 0.24912 (5) 0.02095 (16)
F2 −0.3344 (2) 0.76050 (17) 0.0154 (2) 0.0551 (7)
O2 0.2545 (2) 0.65462 (16) 0.20071 (14) 0.0241 (4)
C2 0.1173 (3) 0.8928 (2) −0.09896 (19) 0.0216 (5)
H2A 0.0808 0.9706 −0.0950 0.032*
H2C 0.0386 0.8467 −0.0810 0.032*
H2B 0.1628 0.8829 −0.1649 0.032*
P3 0.23148 (7) 0.95789 (6) 0.28343 (5) 0.02113 (16)
F3 −0.3038 (4) 0.5932 (3) 0.17037 (17) 0.0865 (11)
O3 0.1153 (2) 0.88590 (17) 0.28130 (14) 0.0239 (4)
C3 0.3067 (3) 0.7111 (2) −0.0298 (2) 0.0241 (6)
H3B 0.2287 0.6654 −0.0061 0.036*
H3C 0.3841 0.6884 0.0081 0.036*
H3A 0.3416 0.7017 −0.0975 0.036*
P4 −0.15738 (7) 0.75219 (6) 0.37572 (5) 0.02040 (16)
F4 −0.3406 (2) 0.54896 (16) 0.03595 (14) 0.0372 (4)
O4 −0.0456 (2) 0.71361 (15) 0.29524 (14) 0.0219 (4)
C4 0.4003 (3) 0.4476 (3) 0.2000 (2) 0.0311 (7)
H4C 0.4893 0.4776 0.2029 0.047*
H4A 0.3931 0.4405 0.1330 0.047*
H4B 0.3988 0.3747 0.2374 0.047*
F5 −0.1333 (3) 0.51630 (18) 0.0786 (2) 0.0734 (9)
O5 −0.00828 (19) 0.71780 (16) 0.09965 (14) 0.0210 (4)
C5 0.0986 (3) 0.4756 (3) 0.2401 (3) 0.0339 (7)
H5A 0.0134 0.5217 0.2659 0.051*
H5C 0.1016 0.4023 0.2769 0.051*
H5B 0.0959 0.4681 0.1724 0.051*
O6 −0.1970 (2) 0.84408 (17) 0.12865 (17) 0.0327 (5)
C6 0.2642 (4) 0.5320 (3) 0.3743 (2) 0.0373 (8)
H6A 0.1857 0.5805 0.4053 0.056*
H6B 0.3548 0.5561 0.3822 0.056*
H6C 0.2581 0.4558 0.4040 0.056*
C7 0.4043 (3) 0.8860 (3) 0.2605 (2) 0.0337 (7)
H7B 0.4105 0.8184 0.3052 0.050*
H7C 0.4752 0.9333 0.2695 0.050*
H7A 0.4224 0.8668 0.1943 0.050*
C8 0.2270 (3) 1.0803 (2) 0.2011 (2) 0.0285 (6)
H8B 0.1326 1.1216 0.2115 0.043*
H8A 0.2473 1.0603 0.1351 0.043*
H8C 0.2987 1.1262 0.2113 0.043*
C9 0.2105 (4) 1.0049 (3) 0.3994 (2) 0.0371 (8)
H9B 0.1156 1.0445 0.4138 0.056*
H9C 0.2826 1.0547 0.4003 0.056*
H9A 0.2218 0.9413 0.4479 0.056*
C10 −0.2257 (3) 0.8943 (3) 0.3576 (2) 0.0297 (6)
H10B −0.1475 0.9407 0.3488 0.045*
H10C −0.2944 0.9133 0.4138 0.045*
H10A −0.2728 0.9067 0.3003 0.045*
C11 −0.0891 (3) 0.7320 (3) 0.4869 (2) 0.0317 (7)
H11A −0.0069 0.7738 0.4812 0.048*
H11C −0.0601 0.6532 0.5025 0.048*
H11B −0.1629 0.7579 0.5379 0.048*
C12 −0.3045 (3) 0.6728 (3) 0.3907 (2) 0.0308 (7)
H12C −0.2711 0.5940 0.4011 0.046*
H12A −0.3503 0.6869 0.3329 0.046*
H12B −0.3730 0.6938 0.4464 0.046*
C13 −0.1330 (3) 0.7628 (2) 0.0938 (2) 0.0221 (5)
C14 −0.2120 (3) 0.7015 (2) 0.0332 (2) 0.0238 (6)
C15 −0.2495 (4) 0.5889 (3) 0.0808 (2) 0.0369 (8)
O7A 0.4474 (9) 0.8498 (7) 0.7251 (5) 0.0477 (17) 0.629 (5)
O8A 0.5882 (6) 0.7691 (6) 0.6074 (5) 0.0323 (13) 0.629 (5)
C16A 0.4755 (7) 0.8008 (5) 0.6533 (5) 0.021 (2) 0.629 (5)
C17A 0.3420 (5) 0.7754 (4) 0.6121 (4) 0.0329 (9) 0.629 (5)
F6A 0.2231 (3) 0.8483 (2) 0.6315 (2) 0.0347 (8) 0.629 (5)
F7A 0.3679 (4) 0.7818 (4) 0.5132 (2) 0.0379 (9) 0.629 (5)
C18A 0.2969 (6) 0.6623 (4) 0.6453 (4) 0.0372 (10) 0.629 (5)
F8A 0.2645 (6) 0.6562 (5) 0.7412 (3) 0.0703 (16) 0.629 (5)
F9A 0.1885 (4) 0.6422 (4) 0.6027 (4) 0.0480 (12) 0.629 (5)
F10A 0.3998 (4) 0.5841 (3) 0.6197 (4) 0.0678 (16) 0.629 (5)
O7B 0.4232 (16) 0.8398 (13) 0.7137 (9) 0.052 (4)* 0.371 (5)
O8B 0.5843 (13) 0.8011 (11) 0.5898 (11) 0.071 (6) 0.371 (5)
C16B 0.4611 (9) 0.7981 (10) 0.6411 (8) 0.035 (6)* 0.371 (5)
C17B 0.3690 (6) 0.7217 (6) 0.6021 (4) 0.041 (2)* 0.371 (5)
F7B 0.3527 (9) 0.7481 (6) 0.5070 (4) 0.053 (3)* 0.371 (5)
F6B 0.4318 (6) 0.6141 (5) 0.6041 (5) 0.0376 (18)* 0.371 (5)
C18B 0.2217 (7) 0.7160 (6) 0.6562 (4) 0.046 (2)* 0.371 (5)
F8B 0.1567 (7) 0.8193 (4) 0.6525 (4) 0.0486 (17)* 0.371 (5)
F9B 0.1530 (7) 0.6463 (5) 0.6187 (4) 0.0319 (19)* 0.371 (5)
F10B 0.2208 (7) 0.6733 (6) 0.7469 (4) 0.0378 (18)* 0.371 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01510 (16) 0.01617 (17) 0.01697 (17) −0.00428 (12) −0.00109 (11) −0.00082 (12)
P1 0.0158 (3) 0.0150 (3) 0.0169 (3) −0.0026 (2) −0.0013 (2) −0.0017 (2)
F1 0.0599 (14) 0.0691 (15) 0.0299 (10) −0.0364 (12) −0.0006 (9) −0.0139 (10)
O1 0.0221 (9) 0.0172 (9) 0.0179 (9) −0.0055 (7) 0.0004 (7) −0.0017 (7)
C1 0.0181 (12) 0.0232 (13) 0.0236 (13) −0.0048 (10) −0.0008 (10) −0.0002 (11)
P2 0.0181 (3) 0.0204 (3) 0.0220 (3) 0.0000 (3) −0.0013 (2) 0.0024 (3)
F2 0.0481 (12) 0.0329 (11) 0.0966 (19) 0.0074 (9) −0.0504 (13) −0.0130 (11)
O2 0.0189 (9) 0.0232 (10) 0.0273 (10) −0.0015 (8) −0.0017 (8) 0.0053 (8)
C2 0.0213 (12) 0.0226 (13) 0.0213 (13) −0.0041 (11) −0.0044 (10) −0.0008 (10)
P3 0.0221 (3) 0.0230 (4) 0.0199 (3) −0.0078 (3) −0.0044 (3) −0.0015 (3)
F3 0.148 (3) 0.096 (2) 0.0307 (12) −0.097 (2) 0.0034 (15) −0.0048 (13)
O3 0.0256 (10) 0.0268 (10) 0.0204 (9) −0.0106 (8) 0.0011 (8) −0.0057 (8)
C3 0.0280 (14) 0.0170 (13) 0.0253 (14) 0.0011 (11) 0.0004 (11) −0.0047 (10)
P4 0.0184 (3) 0.0224 (3) 0.0199 (3) −0.0047 (3) 0.0007 (2) −0.0025 (3)
F4 0.0430 (11) 0.0317 (10) 0.0440 (11) −0.0200 (9) −0.0147 (9) −0.0053 (8)
O4 0.0207 (9) 0.0191 (9) 0.0235 (10) −0.0036 (7) 0.0035 (7) −0.0007 (7)
C4 0.0251 (14) 0.0303 (16) 0.0333 (16) 0.0069 (12) −0.0011 (12) 0.0002 (13)
F5 0.0782 (18) 0.0247 (11) 0.134 (3) −0.0036 (11) −0.0712 (19) −0.0002 (13)
O5 0.0186 (9) 0.0223 (10) 0.0232 (9) −0.0063 (8) −0.0033 (7) −0.0020 (7)
C5 0.0250 (14) 0.0236 (15) 0.054 (2) −0.0052 (12) −0.0060 (14) −0.0057 (14)
O6 0.0338 (11) 0.0214 (10) 0.0461 (13) 0.0031 (9) −0.0157 (10) −0.0088 (9)
C6 0.0400 (18) 0.045 (2) 0.0225 (15) 0.0030 (15) −0.0028 (13) 0.0042 (13)
C7 0.0243 (14) 0.0352 (17) 0.0403 (18) −0.0036 (13) −0.0085 (13) 0.0055 (14)
C8 0.0299 (15) 0.0247 (15) 0.0313 (15) −0.0071 (12) −0.0065 (12) 0.0019 (12)
C9 0.050 (2) 0.0398 (18) 0.0264 (16) −0.0216 (16) −0.0047 (14) −0.0079 (13)
C10 0.0279 (14) 0.0259 (15) 0.0324 (16) 0.0015 (12) 0.0018 (12) −0.0050 (12)
C11 0.0315 (15) 0.0391 (18) 0.0253 (15) −0.0034 (13) −0.0051 (12) −0.0055 (13)
C12 0.0236 (14) 0.0383 (17) 0.0307 (16) −0.0140 (13) 0.0073 (11) −0.0090 (13)
C13 0.0235 (13) 0.0191 (13) 0.0255 (14) −0.0069 (11) −0.0078 (10) 0.0009 (10)
C14 0.0246 (13) 0.0229 (14) 0.0261 (14) −0.0043 (11) −0.0096 (11) −0.0013 (11)
C15 0.054 (2) 0.0300 (17) 0.0333 (17) −0.0229 (16) −0.0176 (15) 0.0027 (13)
O7A 0.059 (4) 0.062 (4) 0.029 (3) −0.007 (3) −0.003 (2) −0.032 (2)
O8A 0.030 (2) 0.030 (4) 0.036 (3) −0.0178 (18) 0.0070 (18) −0.001 (2)
C16A 0.023 (3) 0.028 (4) 0.015 (3) −0.0121 (19) −0.003 (2) −0.0083 (18)
C17A 0.038 (2) 0.027 (2) 0.0363 (18) 0.0004 (15) −0.007 (2) −0.0156 (17)
F6A 0.0312 (16) 0.0262 (15) 0.0452 (17) 0.0042 (12) −0.0056 (13) −0.0053 (13)
F7A 0.045 (2) 0.049 (2) 0.0245 (14) −0.0102 (17) −0.0080 (12) −0.0096 (13)
C18A 0.036 (3) 0.0291 (18) 0.050 (2) −0.0039 (18) −0.016 (2) −0.0034 (19)
F8A 0.058 (3) 0.108 (4) 0.0394 (17) −0.005 (3) −0.0178 (19) 0.025 (2)
F9A 0.0239 (19) 0.071 (3) 0.055 (2) −0.023 (2) −0.0081 (18) −0.007 (2)
F10A 0.046 (2) 0.0196 (18) 0.151 (5) 0.0063 (18) −0.048 (3) −0.025 (2)
O8B 0.092 (9) 0.038 (8) 0.069 (9) −0.038 (6) 0.058 (7) −0.016 (6)

Geometric parameters (Å, °)

Cu1—O1 1.9535 (18) O6—C13 1.220 (4)
Cu1—O4 1.9582 (18) C6—H6A 0.9800
Cu1—O3 1.965 (2) C6—H6B 0.9800
Cu1—O5 1.9863 (19) C6—H6C 0.9800
Cu1—O2 2.1876 (19) C7—H7B 0.9800
P1—O1 1.5176 (19) C7—H7C 0.9800
P1—C1 1.780 (3) C7—H7A 0.9800
P1—C3 1.786 (3) C8—H8B 0.9800
P1—C2 1.789 (3) C8—H8A 0.9800
F1—C14 1.346 (4) C8—H8C 0.9800
C1—H1B 0.9800 C9—H9B 0.9800
C1—H1C 0.9800 C9—H9C 0.9800
C1—H1A 0.9800 C9—H9A 0.9800
P2—O2 1.498 (2) C10—H10B 0.9800
P2—C5 1.786 (3) C10—H10C 0.9800
P2—C6 1.787 (3) C10—H10A 0.9800
P2—C4 1.792 (3) C11—H11A 0.9800
F2—C14 1.345 (3) C11—H11C 0.9800
C2—H2A 0.9800 C11—H11B 0.9800
C2—H2C 0.9800 C12—H12C 0.9800
C2—H2B 0.9800 C12—H12A 0.9800
P3—O3 1.511 (2) C12—H12B 0.9800
P3—C7 1.779 (3) C13—C14 1.549 (4)
P3—C8 1.782 (3) C14—C15 1.516 (4)
P3—C9 1.784 (3) O7A—C16A 1.222 (8)
F3—C15 1.296 (4) O8A—C16A 1.213 (9)
C3—H3B 0.9800 C16A—C17A 1.572 (8)
C3—H3C 0.9800 C17A—F6A 1.373 (6)
C3—H3A 0.9800 C17A—F7A 1.378 (6)
P4—O4 1.5116 (19) C17A—C18A 1.499 (6)
P4—C12 1.782 (3) C18A—F10A 1.328 (6)
P4—C11 1.783 (3) C18A—F9A 1.348 (5)
P4—C10 1.787 (3) C18A—F8A 1.339 (7)
F4—C15 1.334 (4) O7B—C16B 1.191 (14)
C4—H4C 0.9800 O8B—C16B 1.285 (14)
C4—H4A 0.9800 C16B—C17B 1.569 (8)
C4—H4B 0.9800 C17B—F6B 1.379 (6)
F5—C15 1.337 (5) C17B—F7B 1.378 (6)
O5—C13 1.265 (3) C17B—C18B 1.498 (6)
C5—H5A 0.9800 C18B—F10B 1.325 (7)
C5—H5C 0.9800 C18B—F9B 1.349 (5)
C5—H5B 0.9800 C18B—F8B 1.339 (7)
O1—Cu1—O4 172.44 (8) P3—C7—H7A 109.5
O1—Cu1—O3 90.48 (8) H7B—C7—H7A 109.5
O4—Cu1—O3 88.42 (8) H7C—C7—H7A 109.5
O1—Cu1—O5 91.12 (8) P3—C8—H8B 109.5
O4—Cu1—O5 87.71 (8) P3—C8—H8A 109.5
O3—Cu1—O5 162.51 (8) H8B—C8—H8A 109.5
O1—Cu1—O2 94.54 (7) P3—C8—H8C 109.5
O4—Cu1—O2 92.99 (7) H8B—C8—H8C 109.5
O3—Cu1—O2 102.55 (8) H8A—C8—H8C 109.5
O5—Cu1—O2 94.69 (8) P3—C9—H9B 109.5
O1—P1—C1 109.87 (12) P3—C9—H9C 109.5
O1—P1—C3 113.30 (12) H9B—C9—H9C 109.5
C1—P1—C3 106.69 (13) P3—C9—H9A 109.5
O1—P1—C2 112.92 (12) H9B—C9—H9A 109.5
C1—P1—C2 106.63 (13) H9C—C9—H9A 109.5
C3—P1—C2 107.03 (14) P4—C10—H10B 109.5
P1—O1—Cu1 131.81 (11) P4—C10—H10C 109.5
P1—C1—H1B 109.5 H10B—C10—H10C 109.5
P1—C1—H1C 109.5 P4—C10—H10A 109.5
H1B—C1—H1C 109.5 H10B—C10—H10A 109.5
P1—C1—H1A 109.5 H10C—C10—H10A 109.5
H1B—C1—H1A 109.5 P4—C11—H11A 109.5
H1C—C1—H1A 109.5 P4—C11—H11C 109.5
O2—P2—C5 113.83 (14) H11A—C11—H11C 109.5
O2—P2—C6 111.92 (15) P4—C11—H11B 109.5
C5—P2—C6 106.86 (17) H11A—C11—H11B 109.5
O2—P2—C4 112.71 (13) H11C—C11—H11B 109.5
C5—P2—C4 105.21 (16) P4—C12—H12C 109.5
C6—P2—C4 105.69 (16) P4—C12—H12A 109.5
P2—O2—Cu1 130.30 (11) H12C—C12—H12A 109.5
P1—C2—H2A 109.5 P4—C12—H12B 109.5
P1—C2—H2C 109.5 H12C—C12—H12B 109.5
H2A—C2—H2C 109.5 H12A—C12—H12B 109.5
P1—C2—H2B 109.5 O6—C13—O5 129.8 (3)
H2A—C2—H2B 109.5 O6—C13—C14 117.6 (2)
H2C—C2—H2B 109.5 O5—C13—C14 112.6 (2)
O3—P3—C7 112.50 (14) F2—C14—F1 105.9 (3)
O3—P3—C8 114.19 (13) F2—C14—C15 106.8 (3)
C7—P3—C8 107.45 (15) F1—C14—C15 107.2 (3)
O3—P3—C9 109.04 (14) F2—C14—C13 111.1 (2)
C7—P3—C9 108.03 (18) F1—C14—C13 111.7 (2)
C8—P3—C9 105.23 (16) C15—C14—C13 113.7 (2)
P3—O3—Cu1 133.98 (12) F3—C15—F4 109.1 (3)
P1—C3—H3B 109.5 F3—C15—F5 107.2 (3)
P1—C3—H3C 109.5 F4—C15—F5 107.2 (3)
H3B—C3—H3C 109.5 F3—C15—C14 111.1 (3)
P1—C3—H3A 109.5 F4—C15—C14 111.5 (3)
H3B—C3—H3A 109.5 F5—C15—C14 110.6 (3)
H3C—C3—H3A 109.5 O8A—C16A—O7A 131.6 (7)
O4—P4—C12 109.79 (13) O8A—C16A—C17A 114.0 (6)
O4—P4—C11 110.73 (13) O7A—C16A—C17A 114.5 (6)
C12—P4—C11 107.01 (16) F6A—C17A—F7A 104.2 (4)
O4—P4—C10 114.59 (13) F6A—C17A—C18A 106.1 (4)
C12—P4—C10 107.08 (16) F7A—C17A—C18A 105.5 (4)
C11—P4—C10 107.30 (16) F6A—C17A—C16A 114.6 (4)
P4—O4—Cu1 134.85 (12) F7A—C17A—C16A 111.0 (4)
P2—C4—H4C 109.5 C18A—C17A—C16A 114.4 (4)
P2—C4—H4A 109.5 F10A—C18A—F9A 103.9 (4)
H4C—C4—H4A 109.5 F10A—C18A—F8A 110.5 (5)
P2—C4—H4B 109.5 F9A—C18A—F8A 112.9 (5)
H4C—C4—H4B 109.5 F10A—C18A—C17A 111.3 (5)
H4A—C4—H4B 109.5 F9A—C18A—C17A 111.9 (4)
C13—O5—Cu1 111.38 (18) F8A—C18A—C17A 106.5 (5)
P2—C5—H5A 109.5 O7B—C16B—O8B 125.4 (8)
P2—C5—H5C 109.5 O7B—C16B—C17B 123.0 (9)
H5A—C5—H5C 109.5 O8B—C16B—C17B 111.4 (9)
P2—C5—H5B 109.5 F6B—C17B—F7B 102.7 (4)
H5A—C5—H5B 109.5 F6B—C17B—C18B 106.1 (5)
H5C—C5—H5B 109.5 F7B—C17B—C18B 105.6 (5)
P2—C6—H6A 109.5 F6B—C17B—C16B 111.5 (5)
P2—C6—H6B 109.5 F7B—C17B—C16B 115.0 (5)
H6A—C6—H6B 109.5 C18B—C17B—C16B 114.9 (4)
P2—C6—H6C 109.5 F10B—C18B—F9B 103.9 (5)
H6A—C6—H6C 109.5 F10B—C18B—F8B 110.0 (5)
H6B—C6—H6C 109.5 F9B—C18B—F8B 112.8 (5)
P3—C7—H7B 109.5 F10B—C18B—C17B 112.6 (5)
P3—C7—H7C 109.5 F9B—C18B—C17B 110.3 (4)
H7B—C7—H7C 109.5 F8B—C18B—C17B 107.3 (5)
C1—P1—O1—Cu1 −154.13 (15) F1—C14—C15—F3 169.7 (3)
C3—P1—O1—Cu1 −34.9 (2) C13—C14—C15—F3 45.8 (4)
C2—P1—O1—Cu1 86.98 (17) F2—C14—C15—F4 44.8 (4)
O3—Cu1—O1—P1 166.61 (16) F1—C14—C15—F4 −68.4 (4)
O5—Cu1—O1—P1 −30.81 (16) C13—C14—C15—F4 167.7 (3)
O2—Cu1—O1—P1 63.98 (16) F2—C14—C15—F5 164.0 (3)
C5—P2—O2—Cu1 37.4 (2) F1—C14—C15—F5 50.8 (3)
C6—P2—O2—Cu1 −83.9 (2) C13—C14—C15—F5 −73.1 (3)
C4—P2—O2—Cu1 157.08 (16) O8A—C16A—C17A—F6A −151.9 (6)
O1—Cu1—O2—P2 −163.26 (16) O7A—C16A—C17A—F6A 27.5 (8)
O4—Cu1—O2—P2 16.18 (17) O8A—C16A—C17A—F7A −34.2 (7)
O3—Cu1—O2—P2 105.23 (16) O7A—C16A—C17A—F7A 145.2 (7)
O5—Cu1—O2—P2 −71.76 (17) O8A—C16A—C17A—C18A 85.1 (7)
C7—P3—O3—Cu1 −49.3 (2) O7A—C16A—C17A—C18A −95.4 (7)
C8—P3—O3—Cu1 73.5 (2) F6A—C17A—C18A—F10A 172.6 (4)
C9—P3—O3—Cu1 −169.11 (19) F7A—C17A—C18A—F10A 62.4 (5)
O1—Cu1—O3—P3 −28.23 (18) C16A—C17A—C18A—F10A −60.0 (6)
O4—Cu1—O3—P3 159.25 (18) F6A—C17A—C18A—F9A 56.9 (6)
O5—Cu1—O3—P3 −123.5 (2) F7A—C17A—C18A—F9A −53.3 (6)
O2—Cu1—O3—P3 66.53 (18) C16A—C17A—C18A—F9A −175.7 (5)
C12—P4—O4—Cu1 140.10 (18) F6A—C17A—C18A—F8A −66.8 (5)
C11—P4—O4—Cu1 −102.0 (2) F7A—C17A—C18A—F8A −177.1 (4)
C10—P4—O4—Cu1 19.6 (2) C16A—C17A—C18A—F8A 60.5 (6)
O3—Cu1—O4—P4 41.48 (18) O7B—C16B—C17B—F6B −113.4 (14)
O5—Cu1—O4—P4 −121.46 (18) O8B—C16B—C17B—F6B 61.0 (11)
O2—Cu1—O4—P4 143.97 (17) O7B—C16B—C17B—F7B 130.3 (14)
O1—Cu1—O5—C13 −99.79 (18) O8B—C16B—C17B—F7B −55.4 (12)
O4—Cu1—O5—C13 72.74 (18) O7B—C16B—C17B—C18B 7.4 (16)
O3—Cu1—O5—C13 −4.6 (4) O8B—C16B—C17B—C18B −178.3 (10)
O2—Cu1—O5—C13 165.56 (18) F6B—C17B—C18B—F10B 60.9 (6)
Cu1—O5—C13—O6 6.3 (4) F7B—C17B—C18B—F10B 169.4 (6)
Cu1—O5—C13—C14 −173.07 (17) C16B—C17B—C18B—F10B −62.8 (8)
O6—C13—C14—F2 10.4 (4) F6B—C17B—C18B—F9B −54.7 (6)
O5—C13—C14—F2 −170.1 (2) F7B—C17B—C18B—F9B 53.8 (7)
O6—C13—C14—F1 128.4 (3) C16B—C17B—C18B—F9B −178.4 (6)
O5—C13—C14—F1 −52.1 (3) F6B—C17B—C18B—F8B −177.9 (5)
O6—C13—C14—C15 −110.1 (3) F7B—C17B—C18B—F8B −69.4 (6)
O5—C13—C14—C15 69.4 (3) C16B—C17B—C18B—F8B 58.4 (7)
F2—C14—C15—F3 −77.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3B···O5 0.98 2.57 3.265 (3) 128
C5—H5A···O4 0.98 2.42 3.204 (4) 136
C10—H10B···O3i 0.98 2.58 3.266 (4) 127
C1—H1A···F2ii 0.98 2.52 3.392 (3) 149
C1—H1B···O6iii 0.98 2.47 3.265 (3) 138
C4—H4A···F4iv 0.98 2.51 3.482 (3) 170
C4—H4C···F3ii 0.98 2.53 3.478 (5) 163
C9—H9A···F7A 0.98 2.44 3.322 (6) 150
C11—H11B···O8Av 0.98 2.42 3.289 (7) 147
C12—H12B···O8Av 0.98 2.52 3.388 (8) 147

Symmetry codes: (i) ; (ii) x+1, y, z; (iii) −x, −y+2, −z; (iv) −x, −y+1, −z; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2011).

References

  1. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cotton, F. A., Luck, R. L. & Son, K.-A. (1991). Inorg. Chim. Acta, 184, 177–183.
  4. Edelmann, F. & Behrens, U. (1986). Acta Cryst. C42, 1715–1717.
  5. Hill, N. J., Leung, L.-S., Levason, W. & Webster, M. (2003). Inorg. Chim. Acta, 343, 169–174.
  6. Hlavinka, M. L. & Hagadorn, J. R. (2005). Organometallics, 24, 4116–4118.
  7. Jiang, Z.-H., Sun, B.-W., Liao, D.-Z., Wang, G.-L., Dahan, F. & Tuchagues, J.-P. (1998). Inorg. Chim. Acta, 279, 69–75.
  8. Johnson, J. S. & Bergman, R. G. (2001). J. Am. Chem. Soc. 123, 2923–2924. [DOI] [PMC free article] [PubMed]
  9. Klein, H.-F., Dal, A., Hartmann, S., Flörke, U. & Haupt, H.-J. (1999). Inorg. Chim. Acta, 287, 199–203.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Piszczek, P., Szymańska, I., Bala, W., Bartkiewicz, K., Talik, E. & Heiman, J. (2008). Thin Solid Films, 516, 3924–3930.
  12. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Szymańska, I., Piszczek, P., Szczęsny, R. & Szłyk, E. (2007). Polyhedron, 26, 2440–2448.
  15. Szymańska, I., Piszczek, P. & Szłyk, E. (2009). Polyhedron, 28, 721–728.
  16. Veige, A. S., Slaughter, L. M., Lobkovsky, E. B., Wolczanski, P. T., Matsunaga, N., Decker, S. A. & Cundari, T. R. (2003). Inorg. Chem. 42, 6204–6224. [DOI] [PubMed]
  17. Zhang, L., Li, S.-Q., Sun, B.-W., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1999). Polyhedron, 18, 781–785.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031114/hp2011sup1.cif

e-67-m1225-sup1.cif (28.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031114/hp2011Isup2.hkl

e-67-m1225-Isup2.hkl (349.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES