Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):m1276–m1277. doi: 10.1107/S1600536811033332

catena-Poly[[triphenyl­tin(IV)]-μ-5-amino-2-nitro­benzoato-κ2 O 1:O 1′]

Yip-Foo Win a, Chen-Shang Choong a, Siang-Guan Teoh b, Ching Kheng Quah c,, Hoong-Kun Fun c,*,§
PMCID: PMC3200871  PMID: 22064934

Abstract

The title compound, [Sn(C6H5)3(C7H5N2O4)]n, forms polymeric chains along [010]. The SnIV ion is five-coordinated in a distorted trigonal–bipyramidal geometry by two monodentate carboxyl­ate groups and three phenyl rings. The axial sites are occupied by the O atoms of two symmetry-related carboxyl­ate groups [O—Sn—O = 170.88 (3)°]. The benzene ring of the 5-amino-2-nitro­benzoate ligand forms dihedral angles of 82.92 (6), 81.10 (6) and 83.54 (6)° with respect to the three phenyl rings. In the crystal, the chains are linked by inter­molecular N—H⋯O and weak C—H⋯O inter­actions into a three-dimensional network. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background to and the coordination environment of triphenyl­tin(IV) carboxyl­ate complexes, see: Yeap & Teoh (2003); Win et al. (2006, 2008, 2011a ,b ,c ). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-m1276-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)3(C7H5N2O4)]

  • M r = 531.12

  • Monoclinic, Inline graphic

  • a = 10.9752 (1) Å

  • b = 11.8342 (1) Å

  • c = 17.4160 (2) Å

  • β = 102.164 (1)°

  • V = 2211.25 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 100 K

  • 0.37 × 0.25 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.671, T max = 0.783

  • 27219 measured reflections

  • 7981 independent reflections

  • 7370 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.046

  • S = 1.07

  • 7981 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033332/lh5316sup1.cif

e-67-m1276-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033332/lh5316Isup2.hkl

e-67-m1276-Isup2.hkl (390.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N1⋯O1i 0.85 (2) 2.498 (19) 3.0619 (14) 124.3 (15)
C5—H5A⋯O4ii 0.95 2.40 3.3288 (16) 167
C3—H3ACg2iii 0.95 2.58 3.4430 (14) 152
C21—H21ACg1iv 0.95 2.70 3.4669 (12) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors would like to thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (project No. IPSR/RMC/UTARRF/C1–C11/C07) and Universiti Sains Malaysia (USM) for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Generally, the tin(IV) atom moiety of triphenyltin(IV) carboxylate complexes could existed as four- or five-coordinated depending on the coordination manner of the carboxylate anions and the coordinating solvent (Yeap and Teoh, 2003; Win et al., 2006; 2008; 2011a,b,c). In this study, the title complex is found to be similar to the reported structure of (2-amino-5-nitrobenzoato)triphenyltin(IV) (Win et al., 2006) except that the amino group is substituted at meta-position and the nitro group is substituted at ortho-position to the benzoate group.

The asymmetric unit of the title compound is shown in Fig. 1. The overall structure consists of polymeric one-dimensional chains along [010] (Fig. 2). The Sn1 atom is five-coordinate, with a distorted trigonal-bipyramidal coordination geometry, formed by two monodentate symmetry related carboxylate groups and three phenyl rings. The axial sites are occupied by the O atoms of the two carboxylate groups [O1-Sn1-O2i = 170.88 (3)°, symmetry code: (i) 2-x,-1/2+y,1/2-z], with the three phenyl rings occupying the equatorial plane. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The benzene ring (C20-C25) of the 5-amino-2-nitrobenzoato ligand makes dihedral angles of 82.92 (6), 81.10 (6) and 83.54 (6)° with respect to the three phenyl rings (C1-C6, C7-C12 and C13-C18).

In the crystal (Fig. 3), the polymeric one-dimensional chains are linked by intermolecular N1–H2N1···O1iii and weak C5–H5A···O4iv interactions into a three-dimensional network. The crystal structure is further consolidated by C21–H21A···Cg1ii and C3–H3A···Cg2v (Table 1) interactions, where Cg1 and Cg2 are the centroids of C1-C6 and C7-C12 phenyl rings, repectively.

Experimental

The title complex was obtained by heating under reflux a 1:1 molar mixture of triphenyltin(IV) hydroxide (0.73 g, 2 mmol) and 5-amino-2-nitrobenzoic acid (0.36 g, 2 mmol) in methanol (50 ml) for 3 h. A clear yellow transparent solution was separated by filtration and kept in a bottle. After a few days, yellow crystals (0.48 g, 89.0 % yield) were collected. Melting point: 442-443 K. Analysis for C25H20N2O4Sn: C, 55.89; H, 3.84; N, 5.14 %. Calculated for C25H20N2O4Sn: C, 56.53; H, 3.80; N, 5.27 %.

Refinement

Atoms H1N1 and H2N1 were located from the difference Fourier map and refined freely [N1–H = 0.852 (18) and 0.853 (19) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.67 Å from atom C25 and the deepest hole is located at 0.71 Å from atom Sn1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The polymeric structure of the title compound, viewed along the c axis, showing one-dimensional chains along [010].

Fig. 3.

Fig. 3.

The crystal packing of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

[Sn(C6H5)3(C7H5N2O4)] F(000) = 1064
Mr = 531.12 Dx = 1.595 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9281 reflections
a = 10.9752 (1) Å θ = 2.4–32.7°
b = 11.8342 (1) Å µ = 1.19 mm1
c = 17.4160 (2) Å T = 100 K
β = 102.164 (1)° Block, yellow
V = 2211.25 (4) Å3 0.37 × 0.25 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 7981 independent reflections
Radiation source: fine-focus sealed tube 7370 reflections with I > 2σ(I)
graphite Rint = 0.017
φ and ω scans θmax = 32.7°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→16
Tmin = 0.671, Tmax = 0.783 k = −17→15
27219 measured reflections l = −24→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0187P)2 + 0.9636P] where P = (Fo2 + 2Fc2)/3
7981 reflections (Δ/σ)max = 0.003
297 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.980205 (6) 0.157183 (6) 0.217102 (4) 0.01124 (2)
O1 0.93081 (8) 0.32432 (7) 0.16122 (5) 0.01487 (14)
O2 0.97650 (7) 0.46996 (7) 0.24440 (4) 0.01352 (14)
O3 0.70740 (8) 0.38800 (8) 0.21137 (5) 0.02102 (17)
O4 0.53208 (8) 0.43580 (10) 0.13585 (6) 0.0329 (2)
N1 0.89051 (11) 0.67399 (10) −0.04786 (6) 0.0218 (2)
N2 0.64692 (9) 0.43960 (9) 0.15452 (6) 0.01829 (18)
C1 0.87574 (10) 0.17504 (9) 0.30535 (6) 0.01377 (18)
C2 0.89877 (11) 0.25962 (10) 0.36218 (7) 0.0193 (2)
H2A 0.9597 0.3158 0.3599 0.023*
C3 0.83296 (13) 0.26235 (12) 0.42251 (7) 0.0243 (2)
H3A 0.8496 0.3199 0.4613 0.029*
C4 0.74309 (12) 0.18074 (12) 0.42582 (7) 0.0247 (2)
H4A 0.6988 0.1823 0.4672 0.030*
C5 0.71792 (11) 0.09704 (12) 0.36888 (7) 0.0224 (2)
H5A 0.6557 0.0419 0.3708 0.027*
C6 0.78424 (10) 0.09427 (10) 0.30890 (7) 0.0176 (2)
H6A 0.7670 0.0368 0.2700 0.021*
C7 0.86334 (10) 0.08532 (9) 0.11625 (6) 0.01378 (18)
C8 0.73920 (10) 0.12127 (11) 0.09743 (7) 0.0191 (2)
H8A 0.7118 0.1796 0.1272 0.023*
C9 0.65528 (12) 0.07180 (14) 0.03508 (7) 0.0276 (3)
H9A 0.5712 0.0969 0.0222 0.033*
C10 0.69493 (13) −0.01430 (14) −0.00817 (8) 0.0293 (3)
H10A 0.6375 −0.0486 −0.0502 0.035*
C11 0.81737 (14) −0.05009 (11) 0.00968 (7) 0.0257 (3)
H11A 0.8442 −0.1089 −0.0200 0.031*
C12 0.90166 (12) 0.00017 (10) 0.07139 (7) 0.0186 (2)
H12A 0.9861 −0.0239 0.0830 0.022*
C13 1.17373 (10) 0.19205 (10) 0.23296 (6) 0.01591 (19)
C14 1.25426 (11) 0.11915 (12) 0.20473 (7) 0.0212 (2)
H14A 1.2224 0.0527 0.1770 0.025*
C15 1.38145 (12) 0.14349 (14) 0.21712 (8) 0.0290 (3)
H15A 1.4356 0.0938 0.1974 0.035*
C16 1.42905 (12) 0.23968 (14) 0.25801 (10) 0.0352 (4)
H16A 1.5155 0.2561 0.2661 0.042*
C17 1.34983 (13) 0.31200 (13) 0.28711 (12) 0.0383 (4)
H17A 1.3825 0.3774 0.3158 0.046*
C18 1.22256 (11) 0.28880 (11) 0.27429 (9) 0.0271 (3)
H18A 1.1687 0.3391 0.2938 0.032*
C19 0.92115 (9) 0.42633 (9) 0.18082 (6) 0.01185 (17)
C20 0.84255 (9) 0.49904 (9) 0.11779 (6) 0.01259 (17)
C21 0.90148 (10) 0.55602 (9) 0.06630 (6) 0.01415 (18)
H21A 0.9895 0.5512 0.0730 0.017*
C22 0.83273 (11) 0.62117 (10) 0.00411 (6) 0.01612 (19)
C23 0.70317 (11) 0.63147 (11) −0.00281 (7) 0.0196 (2)
H23A 0.6562 0.6784 −0.0425 0.024*
C24 0.64407 (10) 0.57407 (11) 0.04748 (7) 0.0194 (2)
H24A 0.5564 0.5806 0.0420 0.023*
C25 0.71282 (10) 0.50604 (10) 0.10674 (6) 0.01502 (19)
H1N1 0.8472 (16) 0.6975 (16) −0.0914 (11) 0.028 (4)*
H2N1 0.9684 (18) 0.6650 (15) −0.0455 (11) 0.032 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.01332 (3) 0.00974 (4) 0.01053 (3) −0.00065 (2) 0.00225 (2) −0.00024 (2)
O1 0.0199 (3) 0.0093 (4) 0.0152 (3) 0.0003 (3) 0.0032 (3) 0.0005 (3)
O2 0.0169 (3) 0.0107 (4) 0.0122 (3) −0.0003 (3) 0.0013 (2) 0.0001 (3)
O3 0.0179 (4) 0.0240 (5) 0.0210 (4) 0.0006 (3) 0.0037 (3) 0.0069 (3)
O4 0.0126 (4) 0.0446 (7) 0.0399 (5) −0.0017 (4) 0.0019 (4) 0.0139 (5)
N1 0.0300 (5) 0.0202 (5) 0.0158 (4) 0.0032 (4) 0.0060 (4) 0.0064 (4)
N2 0.0147 (4) 0.0192 (5) 0.0207 (4) 0.0001 (3) 0.0032 (3) 0.0007 (4)
C1 0.0163 (4) 0.0126 (5) 0.0127 (4) 0.0008 (3) 0.0035 (3) 0.0008 (3)
C2 0.0264 (5) 0.0143 (5) 0.0187 (5) −0.0024 (4) 0.0080 (4) −0.0027 (4)
C3 0.0340 (6) 0.0220 (6) 0.0194 (5) 0.0012 (5) 0.0109 (5) −0.0050 (4)
C4 0.0279 (6) 0.0298 (7) 0.0198 (5) 0.0035 (5) 0.0125 (4) 0.0028 (5)
C5 0.0205 (5) 0.0256 (6) 0.0225 (5) −0.0029 (4) 0.0076 (4) 0.0041 (5)
C6 0.0179 (4) 0.0177 (5) 0.0169 (5) −0.0020 (4) 0.0033 (4) −0.0007 (4)
C7 0.0180 (4) 0.0110 (5) 0.0121 (4) −0.0022 (4) 0.0025 (3) 0.0001 (3)
C8 0.0170 (4) 0.0239 (6) 0.0164 (5) −0.0026 (4) 0.0037 (4) −0.0024 (4)
C9 0.0190 (5) 0.0422 (8) 0.0203 (5) −0.0086 (5) 0.0014 (4) −0.0037 (5)
C10 0.0326 (6) 0.0358 (8) 0.0186 (5) −0.0178 (6) 0.0030 (5) −0.0081 (5)
C11 0.0426 (7) 0.0173 (6) 0.0176 (5) −0.0072 (5) 0.0075 (5) −0.0059 (4)
C12 0.0282 (5) 0.0120 (5) 0.0155 (5) 0.0010 (4) 0.0041 (4) −0.0004 (4)
C13 0.0152 (4) 0.0144 (5) 0.0174 (5) −0.0005 (4) 0.0019 (3) 0.0052 (4)
C14 0.0192 (5) 0.0284 (7) 0.0166 (5) 0.0016 (4) 0.0052 (4) 0.0017 (4)
C15 0.0184 (5) 0.0444 (9) 0.0259 (6) 0.0052 (5) 0.0082 (4) 0.0084 (6)
C16 0.0165 (5) 0.0367 (9) 0.0500 (9) −0.0036 (5) 0.0012 (5) 0.0195 (7)
C17 0.0202 (6) 0.0196 (7) 0.0683 (11) −0.0053 (5) −0.0064 (6) 0.0053 (7)
C18 0.0180 (5) 0.0140 (6) 0.0453 (8) −0.0004 (4) −0.0020 (5) 0.0000 (5)
C19 0.0123 (4) 0.0114 (5) 0.0124 (4) −0.0002 (3) 0.0039 (3) 0.0015 (3)
C20 0.0154 (4) 0.0096 (5) 0.0120 (4) 0.0007 (3) 0.0013 (3) −0.0010 (3)
C21 0.0175 (4) 0.0120 (5) 0.0126 (4) 0.0011 (4) 0.0023 (3) 0.0004 (3)
C22 0.0231 (5) 0.0122 (5) 0.0125 (4) 0.0012 (4) 0.0025 (4) 0.0000 (4)
C23 0.0221 (5) 0.0173 (5) 0.0170 (5) 0.0038 (4) −0.0017 (4) 0.0031 (4)
C24 0.0163 (4) 0.0194 (6) 0.0202 (5) 0.0030 (4) −0.0012 (4) 0.0016 (4)
C25 0.0154 (4) 0.0137 (5) 0.0152 (4) 0.0002 (4) 0.0016 (3) 0.0003 (4)

Geometric parameters (Å, °)

Sn1—C1 2.1129 (11) C9—C10 1.390 (2)
Sn1—C7 2.1222 (10) C9—H9A 0.9500
Sn1—C13 2.1239 (11) C10—C11 1.381 (2)
Sn1—O1 2.2205 (8) C10—H10A 0.9500
Sn1—O2i 2.3345 (8) C11—C12 1.3949 (17)
O1—C19 1.2651 (13) C11—H11A 0.9500
O2—C19 1.2563 (12) C12—H12A 0.9500
O2—Sn1ii 2.3345 (8) C13—C14 1.3965 (17)
O3—N2 1.2315 (13) C13—C18 1.3978 (18)
O4—N2 1.2344 (12) C14—C15 1.3968 (17)
N1—C22 1.3616 (15) C14—H14A 0.9500
N1—H1N1 0.852 (18) C15—C16 1.385 (2)
N1—H2N1 0.853 (19) C15—H15A 0.9500
N2—C25 1.4447 (15) C16—C17 1.390 (2)
C1—C2 1.3928 (16) C16—H16A 0.9500
C1—C6 1.3972 (16) C17—C18 1.3947 (18)
C2—C3 1.3952 (17) C17—H17A 0.9500
C2—H2A 0.9500 C18—H18A 0.9500
C3—C4 1.390 (2) C19—C20 1.5135 (14)
C3—H3A 0.9500 C20—C21 1.3862 (15)
C4—C5 1.3876 (19) C20—C25 1.3984 (14)
C4—H4A 0.9500 C21—C22 1.4116 (15)
C5—C6 1.3937 (16) C21—H21A 0.9500
C5—H5A 0.9500 C22—C23 1.4068 (16)
C6—H6A 0.9500 C23—C24 1.3742 (17)
C7—C12 1.3933 (16) C23—H23A 0.9500
C7—C8 1.3988 (15) C24—C25 1.3982 (15)
C8—C9 1.3960 (16) C24—H24A 0.9500
C8—H8A 0.9500
C1—Sn1—C7 108.43 (4) C9—C10—H10A 119.9
C1—Sn1—C13 124.55 (4) C10—C11—C12 119.92 (12)
C7—Sn1—C13 126.79 (4) C10—C11—H11A 120.0
C1—Sn1—O1 96.31 (4) C12—C11—H11A 120.0
C7—Sn1—O1 86.85 (4) C7—C12—C11 120.73 (11)
C13—Sn1—O1 91.67 (4) C7—C12—H12A 119.6
C1—Sn1—O2i 89.71 (4) C11—C12—H12A 119.6
C7—Sn1—O2i 84.74 (3) C14—C13—C18 119.01 (11)
C13—Sn1—O2i 90.55 (4) C14—C13—Sn1 121.60 (9)
O1—Sn1—O2i 170.88 (3) C18—C13—Sn1 119.37 (9)
C19—O1—Sn1 139.32 (7) C13—C14—C15 120.28 (13)
C19—O2—Sn1ii 132.42 (7) C13—C14—H14A 119.9
C22—N1—H1N1 119.4 (12) C15—C14—H14A 119.9
C22—N1—H2N1 120.9 (13) C16—C15—C14 120.35 (13)
H1N1—N1—H2N1 116.6 (17) C16—C15—H15A 119.8
O3—N2—O4 122.76 (11) C14—C15—H15A 119.8
O3—N2—C25 118.84 (9) C15—C16—C17 119.76 (12)
O4—N2—C25 118.39 (10) C15—C16—H16A 120.1
C2—C1—C6 119.00 (10) C17—C16—H16A 120.1
C2—C1—Sn1 122.94 (8) C16—C17—C18 120.20 (15)
C6—C1—Sn1 117.97 (8) C16—C17—H17A 119.9
C1—C2—C3 120.43 (11) C18—C17—H17A 119.9
C1—C2—H2A 119.8 C17—C18—C13 120.40 (14)
C3—C2—H2A 119.8 C17—C18—H18A 119.8
C4—C3—C2 119.97 (12) C13—C18—H18A 119.8
C4—C3—H3A 120.0 O2—C19—O1 125.29 (10)
C2—C3—H3A 120.0 O2—C19—C20 120.10 (10)
C5—C4—C3 120.16 (11) O1—C19—C20 114.46 (9)
C5—C4—H4A 119.9 C21—C20—C25 118.85 (9)
C3—C4—H4A 119.9 C21—C20—C19 118.26 (9)
C4—C5—C6 119.71 (12) C25—C20—C19 122.80 (9)
C4—C5—H5A 120.1 C20—C21—C22 121.02 (10)
C6—C5—H5A 120.1 C20—C21—H21A 119.5
C5—C6—C1 120.71 (11) C22—C21—H21A 119.5
C5—C6—H6A 119.6 N1—C22—C23 120.48 (11)
C1—C6—H6A 119.6 N1—C22—C21 120.82 (11)
C12—C7—C8 118.86 (10) C23—C22—C21 118.70 (10)
C12—C7—Sn1 123.56 (8) C24—C23—C22 120.46 (10)
C8—C7—Sn1 117.46 (8) C24—C23—H23A 119.8
C9—C8—C7 120.34 (12) C22—C23—H23A 119.8
C9—C8—H8A 119.8 C23—C24—C25 120.09 (10)
C7—C8—H8A 119.8 C23—C24—H24A 120.0
C10—C9—C8 119.88 (12) C25—C24—H24A 120.0
C10—C9—H9A 120.1 C24—C25—C20 120.74 (10)
C8—C9—H9A 120.1 C24—C25—N2 118.73 (10)
C11—C10—C9 120.25 (11) C20—C25—N2 120.48 (9)
C11—C10—H10A 119.9
C1—Sn1—O1—C19 44.23 (11) O2i—Sn1—C13—C14 45.61 (9)
C7—Sn1—O1—C19 152.44 (11) C1—Sn1—C13—C18 −42.79 (11)
C13—Sn1—O1—C19 −80.80 (11) C7—Sn1—C13—C18 143.36 (9)
C7—Sn1—C1—C2 −150.32 (9) O1—Sn1—C13—C18 56.05 (10)
C13—Sn1—C1—C2 34.87 (11) O2i—Sn1—C13—C18 −132.81 (10)
O1—Sn1—C1—C2 −61.55 (10) C18—C13—C14—C15 −0.60 (18)
O2i—Sn1—C1—C2 125.33 (9) Sn1—C13—C14—C15 −179.01 (9)
C7—Sn1—C1—C6 33.28 (10) C13—C14—C15—C16 0.5 (2)
C13—Sn1—C1—C6 −141.54 (8) C14—C15—C16—C17 0.3 (2)
O1—Sn1—C1—C6 122.05 (8) C15—C16—C17—C18 −0.9 (2)
O2i—Sn1—C1—C6 −51.08 (9) C16—C17—C18—C13 0.8 (2)
C6—C1—C2—C3 1.14 (17) C14—C13—C18—C17 0.0 (2)
Sn1—C1—C2—C3 −175.23 (9) Sn1—C13—C18—C17 178.42 (12)
C1—C2—C3—C4 −0.5 (2) Sn1ii—O2—C19—O1 161.05 (8)
C2—C3—C4—C5 −0.5 (2) Sn1ii—O2—C19—C20 −14.22 (14)
C3—C4—C5—C6 0.8 (2) Sn1—O1—C19—O2 23.95 (17)
C4—C5—C6—C1 −0.13 (18) Sn1—O1—C19—C20 −160.54 (8)
C2—C1—C6—C5 −0.84 (17) O2—C19—C20—C21 84.57 (13)
Sn1—C1—C6—C5 175.71 (9) O1—C19—C20—C21 −91.18 (12)
C1—Sn1—C7—C12 −137.16 (9) O2—C19—C20—C25 −99.06 (12)
C13—Sn1—C7—C12 37.51 (11) O1—C19—C20—C25 85.18 (13)
O1—Sn1—C7—C12 127.23 (10) C25—C20—C21—C22 0.66 (16)
O2i—Sn1—C7—C12 −49.23 (9) C19—C20—C21—C22 177.17 (10)
C1—Sn1—C7—C8 38.72 (10) C20—C21—C22—N1 −177.84 (11)
C13—Sn1—C7—C8 −146.61 (8) C20—C21—C22—C23 2.76 (17)
O1—Sn1—C7—C8 −56.89 (9) N1—C22—C23—C24 177.06 (12)
O2i—Sn1—C7—C8 126.65 (9) C21—C22—C23—C24 −3.54 (18)
C12—C7—C8—C9 0.47 (18) C22—C23—C24—C25 0.88 (19)
Sn1—C7—C8—C9 −175.60 (10) C23—C24—C25—C20 2.66 (18)
C7—C8—C9—C10 0.5 (2) C23—C24—C25—N2 −175.00 (11)
C8—C9—C10—C11 −0.8 (2) C21—C20—C25—C24 −3.40 (16)
C9—C10—C11—C12 0.1 (2) C19—C20—C25—C24 −179.75 (10)
C8—C7—C12—C11 −1.23 (17) C21—C20—C25—N2 174.21 (10)
Sn1—C7—C12—C11 174.60 (9) C19—C20—C25—N2 −2.13 (16)
C10—C11—C12—C7 0.96 (19) O3—N2—C25—C24 −173.22 (11)
C1—Sn1—C13—C14 135.63 (9) O4—N2—C25—C24 7.77 (17)
C7—Sn1—C13—C14 −38.23 (11) O3—N2—C25—C20 9.12 (16)
O1—Sn1—C13—C14 −125.54 (9) O4—N2—C25—C20 −169.90 (11)

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 phenyl rings, respectively.
D—H···A D—H H···A D···A D—H···A
N1—H2N1···O1iii 0.85 (2) 2.498 (19) 3.0619 (14) 124.3 (15)
C5—H5A···O4iv 0.95 2.40 3.3288 (16) 167
C3—H3A···Cg2v 0.95 2.58 3.4430 (14) 152
C21—H21A···Cg1ii 0.95 2.70 3.4669 (12) 138

Symmetry codes: (iii) −x+2, −y+1, −z; (iv) −x+1, y−1/2, −z+1/2; (v) x, −y−1/2, z−1/2; (ii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5316).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Win, Y.-F., Choong, C.-S., Ha, S.-T., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, m535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Win, Y.-F., Choong, C.-S., Heng, M.-H., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, m561–m562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Win, Y.-F., Choong, C.-S., Teoh, S. G., Quah, C. K. & Fun, H.-K. (2011c). Acta Cryst. E67, m1270–m1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Win, Y. F., Guan, T. S. & Yamin, B. M. (2006). Acta Cryst. E62, m34–m36.
  10. Win, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, m1530–m1531. [DOI] [PMC free article] [PubMed]
  11. Yeap, L.-L. & Teoh, S.-G. (2003). J. Coord. Chem. 56, 701–708.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033332/lh5316sup1.cif

e-67-m1276-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033332/lh5316Isup2.hkl

e-67-m1276-Isup2.hkl (390.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES