Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2308–o2309. doi: 10.1107/S1600536811031667

2-Phenyl­ethyl 1-thio-β-d-galactopyran­oside hemihydrate

Iván Brito a,*, László Szilágyi b, Ambati Ashok Kumar b, Joselyn Albanez a, Michael Bolte c
PMCID: PMC3200876  PMID: 22058941

Abstract

The title compound, C14H20O5S·0.5H2O, crystallizes with two organic mol­ecules and a solvent water mol­ecule in the asymmetric unit. In both mol­ecules, the hexa­pyranosyl rings adopt a slightly distorted chair conformation (5 C 2) with four substituents in equatorial positions and one substituent in an axial position. The main difference between the organic mol­ecules is the dihedral angle between the phenyl ring and the best plane defined by the O—C1—C2—C3 atoms (r.m.s deviations = 0.003 and 0.043 Å) of the hexa­pyranosyl rings [47.4 (4) and 86.5 (4)°]. In the asymmetric unit, mol­ecules are linked by two strong O—H⋯O hydrogen bonds. In the crystal, the components are linked by a total of 10 distinct O—H⋯O hydrogen bonds, resulting in the formation of a two-dimensional network parallel to the ab plane.

Related literature

For synthetic methods see: Helferich & Türk (1956). For pharmacological properties of the title compound, see: De Bruyne et al. (1977); Choi et al. (2003). Gutiérrez et al. (2011). For puckering parameters see: Cremer & Pople (1975).graphic file with name e-67-o2308-scheme1.jpg

Experimental

Crystal data

  • C14H20O5S·0.5H2O

  • M r = 309.37

  • Orthorhombic, Inline graphic

  • a = 4.8358 (4) Å

  • b = 14.8218 (16) Å

  • c = 41.390 (3) Å

  • V = 2966.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.20 × 0.09 × 0.08 mm

Data collection

  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 200; Blessing, 1995) T min = 0.954, T max = 0.981

  • 14206 measured reflections

  • 5217 independent reflections

  • 2395 reflections with I > 2σ(I)

  • R int = 0.169

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.117

  • S = 0.68

  • 5217 reflections

  • 377 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983), 2269 Friedel pairs

  • Flack parameter: −0.25 (16)

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009)’.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031667/om2454sup1.cif

e-67-o2308-sup1.cif (27.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031667/om2454Isup2.hkl

e-67-o2308-Isup2.hkl (255.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O31—H31⋯O1W 0.84 1.92 2.759 (7) 179
O41—H41⋯O41A 0.84 1.95 2.779 (7) 169
O51—H51⋯O1Wi 0.84 1.98 2.773 (6) 156
O61—H61⋯O31Aii 0.84 1.86 2.697 (7) 172
O31A—H31A⋯O61iii 0.84 1.92 2.650 (7) 145
O41A—H41A⋯O41iv 0.84 2.05 2.788 (7) 147
O51A—H51A⋯O61Av 0.84 2.10 2.785 (7) 138
O61A—H61A⋯O31ii 0.84 2.02 2.744 (6) 145
O1W—H1WA⋯O31v 0.84 2.23 2.989 (8) 150
O1W—H1WB⋯O41Av 0.84 2.43 3.270 (6) 180

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We thank OTKA, the Hungarian Scientific Research Fund (grant Nos. IN-79731 and NK-68578) for financial support. IB thanks the Spanish Research Council (CSIC) for the provision of a free-of-charge license to the Cambridge Structural Database.

supplementary crystallographic information

Comment

2-Phenylethyl-1-thio-β-D-galactopyranoside is one of the most potent inhibitors of β-galactosidase (EC 3.2.1.23) (De Bruyne,et al., 1977) and a radiologically labeled derivative has also been used for imaging of LacZ gene expression. (Choi et al., 2003). It was recently found to be moderately active in tests against Trypanosoma cruzi, the causal agent of Chagas disease (Gutiérrez et al., 2011). In the title compound, it crystallizes with two organic molecules and a solvent water molecule in the asymmetric unit, Fig. 1. In both molecules the hexapyranosyl rings adopts a slightly distorted chair conformation (5C2) (QT= 0.574 (6) Å, θ= 3.4 (6)°, φ2 = 8(9)°; QT= 0.587 (6) Å, θ= 9.2 (7)°, φ2 = 299 (4)° for both molecules respectively), (Cremer & Pople, 1975) with four substituents in equatorial positions and one substituent in an axial position. The main difference between the organic molecules is the dihedral angle between the phenyl ring and the best plane defined by the atoms O1/C2/C3/C4 and O1A/C2A/C3A/C4A (r.m.s deviation 0.003 Å; 0.043Å respectively), of the hexapyranosyl rings [47.4 (4) and 86.5 (4)°]. The max. deviation for the best planes of the hexapyranosyl rings are: 0.290 (7)Å and 0.050 (6) Å) for molecules A and B respectively. The mean bond distances are: C—O 1.425 (7) Å, Csp3—Csp3 1.524 (9)Å and aromatic C—C 1.386 (11) Å. In the asymmetric unit the three molecules are linked by two strong O— H···O hydrogen bonds and the crystal packing is stabilized by eight O— H···O hydrogen bonding leading to the formation of a two-dimensional network parallel to the ab plane, Fig. 2, Table 1.

Experimental

1-thio-2,3,4,6-tetra-O-acetyl-β-D-galactopyranose(0.364 g,1 mmol) was dissolved in acetonitrile (2 ml) and 1-bromo-2-phenylethane (0.185 g, 1 mmol) and triethyl amine (242µl, 2 mmol) added. The reaction mixture was stirred at RT until disappearence of the starting materials (TLC, 60 min). The solvent was removed under reduced pressure, and the residue purified by column chromatography (EtOAc: hexane - 8: 2) to give 2-phenylethyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranoside (1). Syrup, 402 mg (86%). [α]D -22.9(CHCl3,c 0.15), Lit. (Helferich & Türk, 1956). [α]D -19.2 (CHCl3). HR—MS:m/z calcd. for C22H28O9S[M+Na]+: 491.135. Found: 491.138. 1H-NMR (CDCl3, 500 MHz): δ 7.20–7.35 (m,5H, Phenyl-H); 5.44 (br.s, 1H, H-4); 5.26 (t, 1H, H-2, J2,3 9.9 Hz); 5.03 (br.d, 1H, H-3); 4.44 (d, 1H, H-1, J1,2 10.1 Hz); 4.10–4.20 (m,2H, H-6a,b); 3.90 (m, 1H, H-5); 2.92 (m, 1H, S-CH2a); 2.94 (m, 2H, Ph-CH2); 3.00 (m, 1H, S-CH2 b);2.16, 2.06, 2.04,1.99 (s, 4x3H, 4x COCH3);13C-NMR (CDCl3, 125 MHz): δ 130.5 (Phenyl-C); 85.6 (C-1); 76.5(C-5); 73.3 (C-3); 69.0 (C-4); 68.7 (C-2); 62.2 (C-6); 38.2 (Ph-CH2); 33.1 (S-CH2); 22.3 (4xCOCH3). The product (0.300 g, 0.64 mmol) was deacetylated by treatment with catalytic amount of NaOMe in methanol. The reaction mixture was stirred at room temperature until completion (TLC 20 min). After neutralization with a cation exchanger (Amberlyst 15) the solvent was removed under reduced pressure and the title molecule, 2-phenylethyl- 1-thio-β-D-galactopyranoside, was isolated as a white solid (MeOH: EtOAc - 2:8), 185 mg (96.3%). [α]D -22.4 (MeOH, c 0.11). Lit. (Helferich &Türk,1956) [α]D -32.2 (MeOH). HR—MS: m/z calcd. for C14H20O5S [M+Na]+:323.094. Found: 323.094.

1H-NMR(CD3OD, 500 MHz): δ 7.15–7.30 (m, 5H, Phenyl-H); 4.34 (d, 1H, H-1, J1,2 9.6 Hz); 3.90 (dd, 1H,H-4, J4,5 ~ 1 Hz); 3.77(dd, 1H, H-6a, J6a,6 b 11.5 Hz, J5,6a 6.6 Hz); 3.71(dd, 1H, H-6 b, J5,6 b 5.3 Hz); 3.57 (t, 1H, H-2, J2,3 9.6 Hz); 3.53(m, 1H, H-5); 3.46 (1H, dd, H-3, J3,4 3.4 Hz);2.92 (m, 1H, S-CH2a);2.95 (m, 2H, Ph-CH2); 3.02(m, 1H, S-CH2 b); 13C-NMR (CDCl3, 125 MHz): δ 131.3, 131.0, 128.9 (Phenyl-C); 88.4 (C-1); 81.5 (C-5); 77.1 (C-3);72.3 (C-2); 71.3 (C-4); 63.5 (C-6); 38.6 (Ph-CH2); 33.2 (S-CH2). Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of an aqueous solution.

Refinement

All H atoms could be located by difference Fourier synthesis but were ultimately placed in calculated positions using a riding model with C—H = 0.95 - 1.00 Å and O—H = 0.84 Å with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(O)].

Figures

Fig. 1.

Fig. 1.

Perspective view of the asymmetric unit of the title compound, with the atom numbering. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

A Packing diagram, viewed down the c axis.

Crystal data

C14H20O5S·0.5H2O F(000) = 1320
Mr = 309.37 Dx = 1.385 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3425 reflections
a = 4.8358 (4) Å θ = 2.8–25.6°
b = 14.8218 (16) Å µ = 0.24 mm1
c = 41.390 (3) Å T = 173 K
V = 2966.6 (5) Å3 Needle, colourless
Z = 8 0.20 × 0.09 × 0.08 mm

Data collection

Stoe IPDS II two-circle diffractometer 5217 independent reflections
Radiation source: fine-focus sealed tube 2395 reflections with I > 2σ(I)
graphite Rint = 0.169
ω scans θmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan (MULABS; Spek, 200; Blessing, 1995) h = −4→5
Tmin = 0.954, Tmax = 0.981 k = −17→17
14206 measured reflections l = −49→47

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0007P)2] where P = (Fo2 + 2Fc2)/3
S = 0.68 (Δ/σ)max = 0.001
5217 reflections Δρmax = 0.28 e Å3
377 parameters Δρmin = −0.30 e Å3
0 restraints Absolute structure: Flack (1983), 2269 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.25 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.3816 (4) 0.92470 (10) 0.85163 (4) 0.0217 (4)
O1 0.2305 (9) 0.7771 (2) 0.82113 (11) 0.0186 (11)
C2 0.1463 (14) 0.8684 (3) 0.82448 (14) 0.0171 (14)
H2 −0.0432 0.8697 0.8341 0.020*
C3 0.1355 (15) 0.9128 (3) 0.79134 (14) 0.0192 (15)
H3 0.3253 0.9114 0.7818 0.023*
C4 −0.0578 (14) 0.8611 (4) 0.76924 (14) 0.0150 (14)
H4 −0.2469 0.8656 0.7789 0.018*
C5 0.0165 (15) 0.7603 (4) 0.76836 (16) 0.0206 (17)
H5 −0.1313 0.7263 0.7566 0.025*
C6 0.0370 (14) 0.7259 (4) 0.80286 (15) 0.0176 (15)
H6 −0.1488 0.7321 0.8132 0.021*
C7 0.1644 (18) 0.9413 (4) 0.88681 (16) 0.0298 (18)
H7A 0.2706 0.9759 0.9031 0.036*
H7B 0.0036 0.9785 0.8804 0.036*
C8 0.0570 (17) 0.8546 (4) 0.90277 (18) 0.0335 (19)
H8A −0.0909 0.8706 0.9183 0.040*
H8B −0.0258 0.8156 0.8859 0.040*
C11 0.2787 (17) 0.8018 (4) 0.92039 (17) 0.0302 (19)
C12 0.3759 (19) 0.8276 (4) 0.95047 (17) 0.036 (2)
H12 0.3035 0.8805 0.9603 0.043*
C13 0.5745 (19) 0.7786 (5) 0.96658 (19) 0.040 (2)
H13 0.6369 0.7982 0.9872 0.049*
C14 0.684 (2) 0.7011 (4) 0.9531 (2) 0.044 (2)
H14 0.8212 0.6671 0.9641 0.053*
C15 0.588 (2) 0.6744 (5) 0.9230 (2) 0.050 (3)
H15 0.6588 0.6205 0.9137 0.060*
C16 0.395 (2) 0.7234 (4) 0.90633 (19) 0.042 (2)
H16 0.3392 0.7048 0.8854 0.050*
O31 0.0486 (12) 1.0048 (3) 0.79387 (11) 0.0352 (14)
H31 −0.0953 1.0262 0.7855 0.053*
O41 −0.0739 (10) 0.8992 (3) 0.73781 (10) 0.0234 (11)
H41 0.0863 0.9052 0.7303 0.035*
O51 0.2726 (10) 0.7497 (2) 0.75186 (12) 0.0239 (12)
H51 0.3191 0.6951 0.7521 0.036*
C61 0.1245 (16) 0.6275 (4) 0.80496 (16) 0.0254 (16)
H61B 0.0055 0.5902 0.7908 0.030*
H61C 0.3182 0.6210 0.7976 0.030*
O61 0.0999 (11) 0.5973 (3) 0.83768 (11) 0.0276 (11)
H61 0.2498 0.5739 0.8436 0.041*
S1A 0.1800 (4) 0.92289 (11) 0.58806 (4) 0.0207 (4)
O1A 0.4361 (10) 0.7963 (2) 0.62109 (10) 0.0185 (11)
C2A 0.4278 (15) 0.8930 (4) 0.61866 (14) 0.0174 (15)
H2A 0.6142 0.9150 0.6118 0.021*
C3A 0.3507 (14) 0.9383 (3) 0.65050 (15) 0.0162 (14)
H3A 0.1519 0.9264 0.6556 0.019*
C4A 0.5327 (14) 0.9033 (4) 0.67780 (14) 0.0166 (15)
H4A 0.7246 0.9268 0.6747 0.020*
C5A 0.5420 (14) 0.8010 (4) 0.67805 (16) 0.0170 (15)
H5A 0.6784 0.7805 0.6947 0.020*
C6A 0.6377 (15) 0.7696 (3) 0.64495 (15) 0.0171 (14)
H6A 0.8174 0.7998 0.6398 0.021*
C7A 0.3763 (16) 0.8986 (4) 0.55177 (15) 0.0246 (16)
H7A1 0.5560 0.9305 0.5526 0.030*
H7A2 0.4135 0.8330 0.5504 0.030*
C8A 0.2146 (16) 0.9289 (5) 0.52203 (15) 0.0298 (18)
H8A1 0.0333 0.8979 0.5216 0.036*
H8A2 0.1805 0.9946 0.5233 0.036*
C11A 0.3715 (16) 0.9077 (4) 0.49135 (15) 0.0265 (16)
C12A 0.5655 (18) 0.9652 (5) 0.47895 (18) 0.0323 (19)
H12A 0.6040 1.0207 0.4896 0.039*
C13A 0.7059 (17) 0.9425 (5) 0.45085 (19) 0.042 (2)
H13A 0.8432 0.9822 0.4426 0.050*
C14A 0.650 (2) 0.8640 (6) 0.43483 (19) 0.046 (2)
H14A 0.7484 0.8492 0.4157 0.055*
C15A 0.4537 (19) 0.8077 (5) 0.44622 (19) 0.039 (2)
H15A 0.4146 0.7536 0.4348 0.047*
C16A 0.3062 (18) 0.8271 (4) 0.47450 (17) 0.034 (2)
H16A 0.1666 0.7874 0.4822 0.041*
O31A 0.3948 (11) 1.0327 (2) 0.64734 (11) 0.0213 (10)
H31A 0.2432 1.0585 0.6437 0.032*
O41A 0.4250 (10) 0.9385 (3) 0.70761 (10) 0.0241 (11)
H41A 0.5551 0.9456 0.7208 0.036*
O51A 0.2770 (10) 0.7663 (3) 0.68599 (11) 0.0261 (12)
H51A 0.2409 0.7220 0.6740 0.039*
C61A 0.6753 (15) 0.6677 (4) 0.64172 (16) 0.0196 (15)
H61D 0.5043 0.6362 0.6484 0.023*
H61E 0.7153 0.6517 0.6190 0.023*
O61A 0.8991 (13) 0.6415 (3) 0.66183 (13) 0.0420 (15)
H61A 0.8688 0.5898 0.6693 0.063*
O1W −0.4231 (11) 1.0767 (3) 0.76658 (13) 0.0445 (14)
H1WA −0.5761 1.0770 0.7762 0.067*
H1WB −0.4623 1.0412 0.7514 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0215 (10) 0.0253 (7) 0.0184 (9) 0.0002 (8) −0.0020 (8) −0.0018 (7)
O1 0.016 (3) 0.018 (2) 0.022 (3) 0.0012 (18) −0.004 (2) 0.0002 (19)
C2 0.016 (4) 0.020 (3) 0.015 (4) 0.003 (3) −0.001 (3) 0.002 (3)
C3 0.029 (4) 0.015 (3) 0.014 (3) 0.003 (3) −0.005 (3) −0.004 (2)
C4 0.012 (4) 0.024 (3) 0.009 (4) 0.004 (3) 0.003 (3) 0.006 (2)
C5 0.020 (4) 0.025 (3) 0.017 (4) −0.003 (3) 0.003 (3) −0.003 (3)
C6 0.019 (4) 0.017 (3) 0.017 (4) −0.002 (3) −0.001 (3) −0.003 (3)
C7 0.038 (5) 0.035 (4) 0.017 (4) 0.004 (4) 0.000 (4) 0.000 (3)
C8 0.033 (5) 0.039 (4) 0.028 (5) 0.007 (4) 0.003 (4) 0.003 (3)
C11 0.041 (5) 0.024 (3) 0.025 (5) −0.010 (3) 0.002 (4) 0.007 (3)
C12 0.044 (6) 0.038 (4) 0.024 (4) 0.011 (4) 0.011 (4) 0.002 (3)
C13 0.051 (6) 0.040 (4) 0.030 (5) −0.010 (4) 0.004 (5) 0.008 (4)
C14 0.063 (7) 0.028 (4) 0.041 (5) 0.004 (4) −0.013 (5) 0.007 (3)
C15 0.066 (7) 0.033 (4) 0.053 (6) 0.011 (5) −0.001 (6) −0.004 (4)
C16 0.062 (6) 0.034 (4) 0.029 (5) −0.005 (4) −0.013 (5) −0.004 (3)
O31 0.055 (4) 0.021 (2) 0.029 (3) 0.020 (2) −0.018 (3) 0.001 (2)
O41 0.021 (3) 0.029 (2) 0.021 (3) 0.000 (2) −0.005 (2) 0.0035 (19)
O51 0.034 (3) 0.013 (2) 0.024 (3) 0.0057 (19) 0.002 (3) 0.0008 (19)
C61 0.019 (4) 0.024 (3) 0.033 (4) −0.009 (3) 0.002 (4) 0.001 (3)
O61 0.023 (3) 0.028 (2) 0.032 (3) 0.001 (2) 0.002 (2) 0.0133 (19)
S1A 0.0180 (9) 0.0286 (8) 0.0154 (9) 0.0032 (7) −0.0022 (7) −0.0005 (7)
O1A 0.020 (3) 0.0161 (19) 0.020 (3) 0.0050 (19) −0.006 (2) 0.0004 (17)
C2A 0.017 (4) 0.021 (3) 0.014 (4) 0.002 (3) −0.003 (3) 0.004 (2)
C3A 0.015 (4) 0.015 (3) 0.019 (3) −0.003 (3) 0.000 (3) −0.002 (3)
C4A 0.020 (4) 0.021 (3) 0.008 (3) −0.005 (3) −0.007 (3) −0.002 (3)
C5A 0.014 (4) 0.019 (3) 0.018 (4) −0.002 (3) −0.002 (3) 0.002 (3)
C6A 0.015 (4) 0.018 (3) 0.019 (4) 0.003 (3) −0.003 (3) 0.002 (3)
C7A 0.029 (4) 0.033 (3) 0.012 (4) 0.004 (3) 0.003 (4) 0.007 (3)
C8A 0.043 (5) 0.031 (3) 0.016 (4) 0.014 (4) −0.003 (3) −0.003 (3)
C11A 0.026 (4) 0.035 (4) 0.018 (4) 0.007 (4) −0.006 (3) 0.001 (3)
C12A 0.034 (5) 0.035 (4) 0.028 (4) 0.002 (4) −0.004 (4) 0.002 (3)
C13A 0.025 (5) 0.067 (5) 0.032 (5) −0.001 (4) 0.004 (4) 0.016 (4)
C14A 0.042 (6) 0.074 (5) 0.022 (5) 0.023 (5) 0.000 (4) 0.000 (4)
C15A 0.044 (6) 0.042 (4) 0.032 (5) 0.013 (4) 0.005 (5) −0.011 (4)
C16A 0.051 (6) 0.031 (4) 0.022 (4) 0.007 (4) 0.002 (4) 0.005 (3)
O31A 0.022 (3) 0.0197 (19) 0.023 (3) −0.002 (2) −0.008 (3) 0.002 (2)
O41A 0.032 (3) 0.027 (2) 0.014 (2) −0.005 (2) −0.003 (2) −0.0025 (19)
O51A 0.029 (3) 0.028 (2) 0.021 (3) −0.012 (2) 0.003 (2) −0.001 (2)
C61A 0.020 (4) 0.021 (3) 0.018 (4) 0.001 (3) 0.003 (3) 0.000 (3)
O61A 0.050 (4) 0.019 (2) 0.057 (4) 0.005 (3) −0.021 (3) 0.007 (2)
O1W 0.026 (3) 0.049 (3) 0.058 (4) −0.015 (3) 0.005 (3) −0.002 (3)

Geometric parameters (Å, °)

S1—C2 1.804 (7) S1A—C7A 1.813 (7)
S1—C7 1.812 (7) O1A—C2A 1.437 (6)
O1—C2 1.420 (7) O1A—C6A 1.443 (8)
O1—C6 1.422 (7) C2A—C3A 1.526 (8)
C2—C3 1.522 (8) C2A—H2A 1.0000
C2—H2 1.0000 C3A—O31A 1.421 (6)
C3—O31 1.432 (7) C3A—C4A 1.523 (8)
C3—C4 1.516 (9) C3A—H3A 1.0000
C3—H3 1.0000 C4A—O41A 1.437 (7)
C4—O41 1.420 (7) C4A—C5A 1.517 (8)
C4—C5 1.537 (8) C4A—H4A 1.0000
C4—H4 1.0000 C5A—O51A 1.419 (8)
C5—O51 1.423 (8) C5A—C6A 1.519 (9)
C5—C6 1.519 (9) C5A—H5A 1.0000
C5—H5 1.0000 C6A—C61A 1.527 (7)
C6—C61 1.521 (8) C6A—H6A 1.0000
C6—H6 1.0000 C7A—C8A 1.525 (9)
C7—C8 1.535 (9) C7A—H7A1 0.9900
C7—H7A 0.9900 C7A—H7A2 0.9900
C7—H7B 0.9900 C8A—C11A 1.512 (9)
C8—C11 1.515 (10) C8A—H8A1 0.9900
C8—H8A 0.9900 C8A—H8A2 0.9900
C8—H8B 0.9900 C11A—C12A 1.368 (11)
C11—C12 1.385 (10) C11A—C16A 1.419 (9)
C11—C16 1.416 (10) C12A—C13A 1.388 (10)
C12—C13 1.376 (11) C12A—H12A 0.9500
C12—H12 0.9500 C13A—C14A 1.366 (11)
C13—C14 1.383 (10) C13A—H13A 0.9500
C13—H13 0.9500 C14A—C15A 1.348 (12)
C14—C15 1.386 (11) C14A—H14A 0.9500
C14—H14 0.9500 C15A—C16A 1.400 (10)
C15—C16 1.371 (12) C15A—H15A 0.9500
C15—H15 0.9500 C16A—H16A 0.9500
C16—H16 0.9500 O31A—H31A 0.8400
O31—H31 0.8395 O41A—H41A 0.8400
O41—H41 0.8400 O51A—H51A 0.8400
O51—H51 0.8400 C61A—O61A 1.420 (8)
C61—O61 1.431 (8) C61A—H61D 0.9900
C61—H61B 0.9900 C61A—H61E 0.9900
C61—H61C 0.9900 O61A—H61A 0.8400
O61—H61 0.8400 O1W—H1WA 0.8394
S1A—C2A 1.799 (7) O1W—H1WB 0.8399
C2—S1—C7 101.4 (4) C2A—O1A—C6A 109.8 (4)
C2—O1—C6 111.8 (5) O1A—C2A—C3A 112.7 (5)
O1—C2—C3 109.5 (5) O1A—C2A—S1A 108.3 (4)
O1—C2—S1 108.7 (4) C3A—C2A—S1A 109.7 (4)
C3—C2—S1 112.5 (4) O1A—C2A—H2A 108.7
O1—C2—H2 108.7 C3A—C2A—H2A 108.7
C3—C2—H2 108.7 S1A—C2A—H2A 108.7
S1—C2—H2 108.7 O31A—C3A—C4A 108.5 (5)
O31—C3—C4 110.2 (5) O31A—C3A—C2A 108.5 (5)
O31—C3—C2 110.9 (5) C4A—C3A—C2A 110.4 (5)
C4—C3—C2 110.2 (5) O31A—C3A—H3A 109.8
O31—C3—H3 108.5 C4A—C3A—H3A 109.8
C4—C3—H3 108.5 C2A—C3A—H3A 109.8
C2—C3—H3 108.5 O41A—C4A—C5A 111.6 (5)
O41—C4—C3 112.7 (5) O41A—C4A—C3A 107.7 (5)
O41—C4—C5 112.2 (5) C5A—C4A—C3A 111.3 (5)
C3—C4—C5 111.2 (5) O41A—C4A—H4A 108.7
O41—C4—H4 106.8 C5A—C4A—H4A 108.7
C3—C4—H4 106.8 C3A—C4A—H4A 108.7
C5—C4—H4 106.8 O51A—C5A—C4A 109.7 (5)
O51—C5—C6 110.9 (6) O51A—C5A—C6A 111.9 (5)
O51—C5—C4 108.8 (5) C4A—C5A—C6A 108.0 (5)
C6—C5—C4 108.6 (5) O51A—C5A—H5A 109.1
O51—C5—H5 109.5 C4A—C5A—H5A 109.1
C6—C5—H5 109.5 C6A—C5A—H5A 109.1
C4—C5—H5 109.5 O1A—C6A—C5A 109.1 (5)
O1—C6—C5 111.3 (5) O1A—C6A—C61A 106.9 (5)
O1—C6—C61 107.4 (5) C5A—C6A—C61A 114.7 (5)
C5—C6—C61 113.2 (5) O1A—C6A—H6A 108.6
O1—C6—H6 108.3 C5A—C6A—H6A 108.6
C5—C6—H6 108.3 C61A—C6A—H6A 108.6
C61—C6—H6 108.3 C8A—C7A—S1A 110.0 (5)
C8—C7—S1 115.4 (5) C8A—C7A—H7A1 109.7
C8—C7—H7A 108.4 S1A—C7A—H7A1 109.7
S1—C7—H7A 108.4 C8A—C7A—H7A2 109.7
C8—C7—H7B 108.4 S1A—C7A—H7A2 109.7
S1—C7—H7B 108.4 H7A1—C7A—H7A2 108.2
H7A—C7—H7B 107.5 C11A—C8A—C7A 111.1 (6)
C11—C8—C7 113.6 (7) C11A—C8A—H8A1 109.4
C11—C8—H8A 108.8 C7A—C8A—H8A1 109.4
C7—C8—H8A 108.8 C11A—C8A—H8A2 109.4
C11—C8—H8B 108.8 C7A—C8A—H8A2 109.4
C7—C8—H8B 108.8 H8A1—C8A—H8A2 108.0
H8A—C8—H8B 107.7 C12A—C11A—C16A 119.6 (7)
C12—C11—C16 117.5 (7) C12A—C11A—C8A 122.0 (6)
C12—C11—C8 122.0 (6) C16A—C11A—C8A 118.4 (7)
C16—C11—C8 120.5 (7) C11A—C12A—C13A 119.9 (7)
C13—C12—C11 121.8 (7) C11A—C12A—H12A 120.1
C13—C12—H12 119.1 C13A—C12A—H12A 120.1
C11—C12—H12 119.1 C14A—C13A—C12A 121.1 (8)
C12—C13—C14 120.7 (8) C14A—C13A—H13A 119.5
C12—C13—H13 119.7 C12A—C13A—H13A 119.5
C14—C13—H13 119.7 C15A—C14A—C13A 119.8 (8)
C13—C14—C15 118.2 (8) C15A—C14A—H14A 120.1
C13—C14—H14 120.9 C13A—C14A—H14A 120.1
C15—C14—H14 120.9 C14A—C15A—C16A 121.6 (7)
C16—C15—C14 121.9 (8) C14A—C15A—H15A 119.2
C16—C15—H15 119.0 C16A—C15A—H15A 119.2
C14—C15—H15 119.0 C15A—C16A—C11A 118.0 (8)
C15—C16—C11 119.9 (7) C15A—C16A—H16A 121.0
C15—C16—H16 120.0 C11A—C16A—H16A 121.0
C11—C16—H16 120.0 C3A—O31A—H31A 109.5
C3—O31—H31 125.0 C4A—O41A—H41A 109.5
C4—O41—H41 109.5 C5A—O51A—H51A 109.5
C5—O51—H51 109.5 O61A—C61A—C6A 108.1 (5)
O61—C61—C6 109.3 (5) O61A—C61A—H61D 110.1
O61—C61—H61B 109.8 C6A—C61A—H61D 110.1
C6—C61—H61B 109.8 O61A—C61A—H61E 110.1
O61—C61—H61C 109.8 C6A—C61A—H61E 110.1
C6—C61—H61C 109.8 H61D—C61A—H61E 108.4
H61B—C61—H61C 108.3 C61A—O61A—H61A 109.5
C61—O61—H61 109.5 H1WA—O1W—H1WB 99.1
C2A—S1A—C7A 100.7 (3)
C6—O1—C2—C3 −63.2 (7) C6A—O1A—C2A—C3A −59.8 (7)
C6—O1—C2—S1 173.6 (4) C6A—O1A—C2A—S1A 178.7 (4)
C7—S1—C2—O1 −109.5 (4) C7A—S1A—C2A—O1A −76.8 (5)
C7—S1—C2—C3 129.0 (5) C7A—S1A—C2A—C3A 159.8 (4)
O1—C2—C3—O31 179.5 (5) O1A—C2A—C3A—O31A 169.9 (5)
S1—C2—C3—O31 −59.5 (6) S1A—C2A—C3A—O31A −69.4 (6)
O1—C2—C3—C4 57.2 (7) O1A—C2A—C3A—C4A 51.1 (7)
S1—C2—C3—C4 178.2 (4) S1A—C2A—C3A—C4A 171.8 (4)
O31—C3—C4—O41 57.8 (7) O31A—C3A—C4A—O41A 69.2 (6)
C2—C3—C4—O41 −179.5 (5) C2A—C3A—C4A—O41A −171.9 (5)
O31—C3—C4—C5 −175.2 (5) O31A—C3A—C4A—C5A −168.2 (5)
C2—C3—C4—C5 −52.5 (7) C2A—C3A—C4A—C5A −49.3 (7)
O41—C4—C5—O51 57.6 (7) O41A—C4A—C5A—O51A 53.7 (7)
C3—C4—C5—O51 −69.6 (6) C3A—C4A—C5A—O51A −66.6 (7)
O41—C4—C5—C6 178.4 (6) O41A—C4A—C5A—C6A 175.9 (5)
C3—C4—C5—C6 51.3 (7) C3A—C4A—C5A—C6A 55.6 (7)
C2—O1—C6—C5 63.8 (7) C2A—O1A—C6A—C5A 66.0 (6)
C2—O1—C6—C61 −171.8 (5) C2A—O1A—C6A—C61A −169.4 (5)
O51—C5—C6—O1 63.5 (6) O51A—C5A—C6A—O1A 57.2 (6)
C4—C5—C6—O1 −56.0 (7) C4A—C5A—C6A—O1A −63.6 (6)
O51—C5—C6—C61 −57.5 (7) O51A—C5A—C6A—C61A −62.7 (7)
C4—C5—C6—C61 −177.1 (5) C4A—C5A—C6A—C61A 176.5 (6)
C2—S1—C7—C8 61.9 (6) C2A—S1A—C7A—C8A −174.0 (5)
S1—C7—C8—C11 71.3 (7) S1A—C7A—C8A—C11A −178.9 (5)
C7—C8—C11—C12 77.3 (9) C7A—C8A—C11A—C12A −86.0 (8)
C7—C8—C11—C16 −102.6 (8) C7A—C8A—C11A—C16A 96.4 (8)
C16—C11—C12—C13 −1.1 (12) C16A—C11A—C12A—C13A −3.0 (11)
C8—C11—C12—C13 179.0 (8) C8A—C11A—C12A—C13A 179.5 (7)
C11—C12—C13—C14 −0.1 (13) C11A—C12A—C13A—C14A 1.4 (12)
C12—C13—C14—C15 0.0 (13) C12A—C13A—C14A—C15A 0.5 (12)
C13—C14—C15—C16 1.4 (14) C13A—C14A—C15A—C16A −0.7 (13)
C14—C15—C16—C11 −2.7 (14) C14A—C15A—C16A—C11A −0.9 (12)
C12—C11—C16—C15 2.5 (12) C12A—C11A—C16A—C15A 2.7 (11)
C8—C11—C16—C15 −177.7 (8) C8A—C11A—C16A—C15A −179.6 (7)
O1—C6—C61—O61 65.0 (7) O1A—C6A—C61A—O61A 172.2 (5)
C5—C6—C61—O61 −171.8 (6) C5A—C6A—C61A—O61A −66.6 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O31—H31···O1W 0.84 1.92 2.759 (7) 179.
O41—H41···O41A 0.84 1.95 2.779 (7) 169.
O51—H51···O1Wi 0.84 1.98 2.773 (6) 156.
O61—H61···O31Aii 0.84 1.86 2.697 (7) 172.
O31A—H31A···O61iii 0.84 1.92 2.650 (7) 145.
O41A—H41A···O41iv 0.84 2.05 2.788 (7) 147.
O51A—H51A···O61Av 0.84 2.10 2.785 (7) 138.
O61A—H61A···O31ii 0.84 2.02 2.744 (6) 145.
O1W—H1WA···O31v 0.84 2.23 2.989 (8) 150.
O1W—H1WB···O41Av 0.84 2.43 3.270 (6) 180.

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x, y+1/2, −z+3/2; (iv) x+1, y, z; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2454).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Choi, J. H., Choe, Y. S., Lee, K.-H., Choi, Y., Kim, S. E. & Kim, B.-T. (2003). Carbohydr. Res 338, 29–34. [DOI] [PubMed]
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. De Bruyne, C. K. & Yde, M. (1977). Carbohydr. Res. 56, 153-164. [DOI] [PubMed]
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Gutiérrez, B., Muñoz, C., Osorio, L., Ambati, A. K., Kövér, K. E., Sagua, H., Araya, J. E., Morales, P., Szilágyi, L. & González, J. (2011). Acta Trop. Submitted.
  7. Helferich, B. & Türk, D. (1956). Chem. Ber. 89, 2215–2219.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031667/om2454sup1.cif

e-67-o2308-sup1.cif (27.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031667/om2454Isup2.hkl

e-67-o2308-Isup2.hkl (255.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES