Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2515. doi: 10.1107/S1600536811034763

2-(1-Adamant­yl)-1-(3-amino­phen­yl)ethanol

Michal Rouchal a, Zuzana Kozubková a, Marek Nečas b, Robert Vícha a,*
PMCID: PMC3200880  PMID: 22059055

Abstract

In the crystal structure of the title compound, C18H25NO, mol­ecules are linked via O—H⋯N hydrogen bonds, forming chains parallel to the c axis. Additional weak N—H⋯O inter­actions stabilize the crystal packing. The adamantane cage consists of three fused cyclo­hexane rings in almost ideal chair conformations, with C—C—C angles in the range 107.9 (10)–111.3 (11)°.

Related literature

For the biological activity of adamantane-bearing compounds, see: van der Schyf & Geldenhuys (2009). For related structures, see: Rouchal et al. (2009, 2010).graphic file with name e-67-o2515-scheme1.jpg

Experimental

Crystal data

  • C18H25NO

  • M r = 271.39

  • Orthorhombic, Inline graphic

  • a = 16.4467 (7) Å

  • b = 22.1873 (9) Å

  • c = 8.1033 (4) Å

  • V = 2957.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Kuma KM-4 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.984, T max = 1.000

  • 30937 measured reflections

  • 2602 independent reflections

  • 1716 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.068

  • S = 0.85

  • 2602 reflections

  • 190 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034763/pk2344sup1.cif

e-67-o2515-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034763/pk2344Isup2.hkl

e-67-o2515-Isup2.hkl (127.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034763/pk2344Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.84 2.10 2.9400 (14) 176
N1—H1C⋯O1ii 0.930 (15) 2.295 (15) 3.2048 (16) 166.0 (13)
N1—H1B⋯O1iii 0.930 (16) 2.357 (16) 3.2472 (16) 160.1 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Financial support of this work by the Tomas Bata Foundation, the Czech Ministry of Education (project No. MSM 7088352101) and the Inter­nal Funding Agency of Tomas Bata University in Zlin (project No. IGA/6/FT/11/D) is gratefully acknowledged.

supplementary crystallographic information

Comment

It is matter of common knowledge that the well advised introduction of the highly lipophilic adamantane moiety into biologically active compounds might improve some pharmacological properties of the resulting molecule (van der Schyf & Geldenhuys, 2009). The title compound belongs to the series of recently synthesized building blocks for drug modification based on adamantylated aromatic amines.

The asymmetric unit of the title compound consists of a single molecule (Fig. 1). The benzene ring is nearly planar with a maximum deviation from the best plane being 0.006 (13) Å for C13. The torsion angles describing an arrangement of adamantane cage, benzene ring and aliphatic linker C1–C11–C12–C13, C11–C12–C13–C18, and C10–C1–C11–C12 are 158.37 (11), -95.75 (14), and -178.42 (11)°, respectively. The presented structure is linked into pairs by O–H···N hydrogen bonds (Fig. 2, Table 1). The crystal packing is further stabilized via intermolecular N–H···O interactions (Table 1).

Experimental

2-(1-Adamantyl)-1-(3-nitrophenyl)ethanol (350 mg, 1.16 mmol) was dissolved in methanol (34 cm3) and 7 cm3 of hydrochloric acid/water (1/1, v/v) was added. Into the refluxed and well stirred mixture, portions of an iron powder were added successively. The reaction was stopped when TLC indicated the consumption of all starting material. The mixture was neutralized with 5% solution of NaOH (50 cm3) and extracted with diethyl ether (6 × 10 cm3). Combined organic layers were twice washed with brine, dried over sodium sulfate and evaporated in vacuum. The purification of crude material by washing with hexane provided the desired product as a colourless crystalline powder (258 mg, 82%, mp 415–418 K). The crystal used for data collection was grown by spontaneous evaporation from diethyl ether at room temperature.

Refinement

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to 1.2Ueq of the respective carrier atoms. The oxygen bound hydrogen was placed at calculated coordinates refined with a torsional degree of freedom, and with Uiso set to 1.5Ueq of the carrier atom. Nitrogen bound H atoms were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

Ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellipsoids. Hydrogen atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound showing the H-bonds (dashed lines). H-atoms (except those which are involved in H-bonding) have been omitted for clarity. Symmetry codes: (i) -x+0.5,y,z-0.5; (ii) x,-y+1.5,z+0.5; (iii) x,y,z+1.

Crystal data

C18H25NO Dx = 1.219 Mg m3
Mr = 271.39 Melting point: 417 K
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 6715 reflections
a = 16.4467 (7) Å θ = 2.9–27.3°
b = 22.1873 (9) Å µ = 0.07 mm1
c = 8.1033 (4) Å T = 120 K
V = 2957.0 (2) Å3 Block, colourless
Z = 8 0.30 × 0.20 × 0.10 mm
F(000) = 1184

Data collection

Kuma KM-4 CCD diffractometer 2602 independent reflections
Radiation source: fine-focus sealed tube 1716 reflections with I > 2σ(I)
graphite Rint = 0.053
Detector resolution: 0.06 pixels mm-1 θmax = 25.0°, θmin = 3.0°
ω scans h = −18→19
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −26→26
Tmin = 0.984, Tmax = 1.000 l = −8→9
30937 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068 H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0369P)2] where P = (Fo2 + 2Fc2)/3
2602 reflections (Δ/σ)max = 0.001
190 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.36193 (5) 0.68130 (4) 0.21617 (11) 0.0266 (2)
H1A 0.3139 0.6810 0.2513 0.040*
N1 0.30745 (7) 0.68654 (6) 0.83127 (16) 0.0257 (3)
C1 0.54376 (8) 0.63700 (5) 0.11634 (15) 0.0185 (3)
C2 0.53840 (8) 0.57371 (6) 0.04034 (16) 0.0240 (3)
H2A 0.5560 0.5434 0.1227 0.029*
H2B 0.4813 0.5649 0.0102 0.029*
C3 0.59193 (8) 0.56895 (6) −0.11291 (17) 0.0271 (4)
H3 0.5875 0.5274 −0.1599 0.033*
C4 0.68033 (8) 0.58181 (6) −0.06886 (18) 0.0290 (4)
H4A 0.6998 0.5519 0.0127 0.035*
H4B 0.7147 0.5785 −0.1688 0.035*
C5 0.68711 (8) 0.64514 (6) 0.00313 (17) 0.0258 (3)
H5 0.7450 0.6536 0.0332 0.031*
C6 0.65776 (8) 0.69158 (6) −0.12231 (18) 0.0281 (4)
H6A 0.6923 0.6900 −0.2222 0.034*
H6B 0.6619 0.7326 −0.0746 0.034*
C7 0.56932 (8) 0.67818 (6) −0.16850 (17) 0.0254 (3)
H7 0.5503 0.7082 −0.2519 0.030*
C8 0.51604 (8) 0.68229 (6) −0.01404 (15) 0.0228 (3)
H8A 0.5191 0.7236 0.0319 0.027*
H8B 0.4587 0.6741 −0.0440 0.027*
C9 0.56360 (8) 0.61470 (6) −0.24141 (16) 0.0282 (4)
H9A 0.5067 0.6060 −0.2737 0.034*
H9B 0.5981 0.6118 −0.3412 0.034*
C10 0.63360 (8) 0.64953 (6) 0.15736 (17) 0.0242 (3)
H10A 0.6387 0.6904 0.2056 0.029*
H10B 0.6527 0.6201 0.2405 0.029*
C11 0.49559 (8) 0.64112 (6) 0.27851 (16) 0.0226 (3)
H11A 0.5205 0.6125 0.3574 0.027*
H11B 0.5039 0.6821 0.3238 0.027*
C12 0.40426 (8) 0.62906 (6) 0.27706 (16) 0.0221 (3)
H12 0.3932 0.5945 0.2009 0.027*
C13 0.37566 (8) 0.61198 (6) 0.44839 (16) 0.0197 (3)
C14 0.35838 (7) 0.65598 (6) 0.56444 (16) 0.0199 (3)
H14 0.3645 0.6972 0.5356 0.024*
C15 0.33224 (7) 0.64093 (6) 0.72247 (17) 0.0209 (3)
C16 0.32485 (8) 0.58040 (6) 0.76474 (17) 0.0250 (3)
H16 0.3071 0.5694 0.8721 0.030*
C17 0.34335 (8) 0.53647 (6) 0.65039 (18) 0.0277 (4)
H17 0.3390 0.4952 0.6804 0.033*
C18 0.36811 (8) 0.55162 (6) 0.49282 (17) 0.0259 (3)
H18 0.3800 0.5209 0.4149 0.031*
H1B 0.3144 (9) 0.6768 (6) 0.942 (2) 0.045 (5)*
H1C 0.3315 (8) 0.7235 (7) 0.8081 (17) 0.033 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0216 (5) 0.0341 (5) 0.0241 (6) 0.0052 (4) 0.0027 (5) 0.0062 (5)
N1 0.0280 (7) 0.0324 (8) 0.0166 (8) 0.0026 (6) 0.0010 (6) 0.0003 (6)
C1 0.0189 (8) 0.0208 (7) 0.0158 (8) 0.0003 (6) 0.0010 (6) −0.0002 (6)
C2 0.0250 (8) 0.0223 (7) 0.0247 (8) −0.0017 (6) 0.0019 (6) 0.0005 (6)
C3 0.0303 (8) 0.0224 (7) 0.0286 (9) −0.0005 (6) 0.0046 (7) −0.0073 (7)
C4 0.0272 (9) 0.0322 (8) 0.0276 (9) 0.0082 (6) 0.0086 (7) 0.0036 (7)
C5 0.0160 (7) 0.0359 (8) 0.0257 (9) −0.0040 (6) −0.0009 (6) 0.0016 (7)
C6 0.0296 (9) 0.0280 (8) 0.0268 (9) −0.0056 (6) 0.0071 (7) 0.0018 (7)
C7 0.0270 (8) 0.0281 (8) 0.0210 (8) 0.0034 (6) 0.0015 (6) 0.0073 (7)
C8 0.0212 (7) 0.0241 (7) 0.0230 (8) 0.0027 (6) −0.0003 (6) 0.0011 (6)
C9 0.0255 (8) 0.0403 (9) 0.0188 (8) −0.0011 (7) 0.0026 (7) −0.0045 (7)
C10 0.0239 (8) 0.0267 (8) 0.0221 (8) 0.0004 (6) −0.0040 (7) 0.0005 (6)
C11 0.0252 (8) 0.0241 (7) 0.0185 (8) −0.0008 (6) −0.0023 (6) 0.0001 (6)
C12 0.0229 (8) 0.0232 (7) 0.0202 (8) 0.0023 (6) 0.0005 (7) −0.0006 (6)
C13 0.0157 (7) 0.0256 (7) 0.0177 (8) −0.0003 (6) −0.0007 (6) 0.0008 (6)
C14 0.0174 (7) 0.0217 (7) 0.0206 (8) −0.0004 (6) −0.0006 (6) 0.0044 (6)
C15 0.0153 (7) 0.0291 (8) 0.0182 (8) 0.0010 (6) −0.0018 (6) 0.0001 (6)
C16 0.0214 (8) 0.0331 (8) 0.0205 (9) −0.0026 (6) 0.0009 (6) 0.0081 (7)
C17 0.0279 (9) 0.0239 (8) 0.0315 (10) −0.0037 (6) −0.0023 (7) 0.0070 (7)
C18 0.0277 (8) 0.0244 (7) 0.0255 (9) 0.0005 (6) −0.0004 (7) −0.0022 (7)

Geometric parameters (Å, °)

O1—C12 1.4393 (14) C7—C9 1.5302 (18)
O1—H1A 0.8400 C7—C8 1.5305 (17)
N1—C15 1.4027 (17) C7—H7 1.0000
N1—H1C 0.930 (14) C8—H8A 0.9900
N1—H1B 0.934 (16) C8—H8B 0.9900
C1—C8 1.5277 (16) C9—H9A 0.9900
C1—C2 1.5360 (16) C9—H9B 0.9900
C1—C11 1.5373 (17) C10—H10A 0.9900
C1—C10 1.5397 (18) C10—H10B 0.9900
C2—C3 1.5258 (17) C11—C12 1.5257 (18)
C2—H2A 0.9900 C11—H11A 0.9900
C2—H2B 0.9900 C11—H11B 0.9900
C3—C4 1.5240 (18) C12—C13 1.5141 (17)
C3—C9 1.5271 (18) C12—H12 1.0000
C3—H3 1.0000 C13—C14 1.3850 (17)
C4—C5 1.5254 (18) C13—C18 1.3923 (17)
C4—H4A 0.9900 C14—C15 1.3915 (18)
C4—H4B 0.9900 C14—H14 0.9500
C5—C6 1.5258 (18) C15—C16 1.3912 (17)
C5—C10 1.5317 (18) C16—C17 1.3789 (19)
C5—H5 1.0000 C16—H16 0.9500
C6—C7 1.5311 (18) C17—C18 1.3817 (18)
C6—H6A 0.9900 C17—H17 0.9500
C6—H6B 0.9900 C18—H18 0.9500
C12—O1—H1A 109.5 C1—C8—H8A 109.5
C15—N1—H1C 112.7 (9) C7—C8—H8A 109.5
C15—N1—H1B 113.8 (9) C1—C8—H8B 109.5
H1C—N1—H1B 110.3 (13) C7—C8—H8B 109.5
C8—C1—C2 107.88 (10) H8A—C8—H8B 108.1
C8—C1—C11 113.47 (10) C3—C9—C7 109.26 (11)
C2—C1—C11 111.57 (10) C3—C9—H9A 109.8
C8—C1—C10 108.48 (10) C7—C9—H9A 109.8
C2—C1—C10 107.86 (10) C3—C9—H9B 109.8
C11—C1—C10 107.42 (10) C7—C9—H9B 109.8
C3—C2—C1 110.89 (10) H9A—C9—H9B 108.3
C3—C2—H2A 109.5 C5—C10—C1 111.33 (11)
C1—C2—H2A 109.5 C5—C10—H10A 109.4
C3—C2—H2B 109.5 C1—C10—H10A 109.4
C1—C2—H2B 109.5 C5—C10—H10B 109.4
H2A—C2—H2B 108.1 C1—C10—H10B 109.4
C2—C3—C4 110.29 (11) H10A—C10—H10B 108.0
C2—C3—C9 109.45 (11) C12—C11—C1 119.36 (11)
C4—C3—C9 109.04 (11) C12—C11—H11A 107.5
C2—C3—H3 109.3 C1—C11—H11A 107.5
C4—C3—H3 109.3 C12—C11—H11B 107.5
C9—C3—H3 109.3 C1—C11—H11B 107.5
C5—C4—C3 109.38 (11) H11A—C11—H11B 107.0
C5—C4—H4A 109.8 O1—C12—C13 111.45 (10)
C3—C4—H4A 109.8 O1—C12—C11 109.72 (10)
C5—C4—H4B 109.8 C13—C12—C11 110.04 (11)
C3—C4—H4B 109.8 O1—C12—H12 108.5
H4A—C4—H4B 108.2 C13—C12—H12 108.5
C6—C5—C4 110.13 (11) C11—C12—H12 108.5
C6—C5—C10 108.59 (11) C14—C13—C18 118.96 (12)
C4—C5—C10 109.19 (11) C14—C13—C12 120.66 (11)
C6—C5—H5 109.6 C18—C13—C12 120.37 (12)
C4—C5—H5 109.6 C13—C14—C15 121.27 (12)
C10—C5—H5 109.6 C13—C14—H14 119.4
C5—C6—C7 109.41 (11) C15—C14—H14 119.4
C5—C6—H6A 109.8 C14—C15—C16 119.03 (12)
C7—C6—H6A 109.8 C14—C15—N1 119.67 (12)
C5—C6—H6B 109.8 C16—C15—N1 121.08 (13)
C7—C6—H6B 109.8 C17—C16—C15 119.84 (13)
H6A—C6—H6B 108.2 C17—C16—H16 120.1
C6—C7—C9 109.36 (11) C15—C16—H16 120.1
C6—C7—C8 109.41 (11) C16—C17—C18 120.94 (13)
C9—C7—C8 109.60 (10) C16—C17—H17 119.5
C6—C7—H7 109.5 C18—C17—H17 119.5
C9—C7—H7 109.5 C17—C18—C13 119.95 (13)
C8—C7—H7 109.5 C17—C18—H18 120.0
C1—C8—C7 110.82 (10) C13—C18—H18 120.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1i 0.84 2.10 2.9400 (14) 176.
N1—H1C···O1ii 0.930 (15) 2.295 (15) 3.2048 (16) 166.0 (13)
N1—H1B···O1iii 0.930 (16) 2.357 (16) 3.2472 (16) 160.1 (14)

Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) x, −y+3/2, z+1/2; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2344).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  3. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  4. Rouchal, M., Nečas, M. & Vícha, R. (2009). Acta Cryst. E65, o1018. [DOI] [PMC free article] [PubMed]
  5. Rouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736. [DOI] [PMC free article] [PubMed]
  6. Schyf, C. J. van der & Geldenhuys, W. J. (2009). Neurotherapeutics, 6, 175–186. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034763/pk2344sup1.cif

e-67-o2515-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034763/pk2344Isup2.hkl

e-67-o2515-Isup2.hkl (127.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034763/pk2344Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES