Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2387–o2388. doi: 10.1107/S1600536811033290

2-[(E)-(6-Amino-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-5-yl)imino­meth­yl]pyridinium bromide

Irvin Booysen a, Muhammed Ismail a, Thomas Gerber b, Eric Hosten b, Richard Betz b,*
PMCID: PMC3200889  PMID: 22065608

Abstract

The title compound, C12H14N5O2 +·Br, is the hydro­bromide salt of a Schiff base in which protonation has taken place at the pyridine N atom. This organic cation is essentially planar (r.m.s. of all fitted non-H atoms = 0.0448 Å). In the crystal, N—H⋯Br hydrogen bonds as well as C—H⋯O and C–H⋯Br inter­actions connect the mol­ecules, forming a three-dimensional network.

Related literature

For the development of radiopharmaceuticals, see: Gerber et al. (2011). For the crystal structure of the neutral organic parent molecule, see: Booysen et al. (2011a ). For the crystal structures of polymorphs of 6-amino-1,3-dimethyl-5-[(E-2-(methyl­sulfan­yl)benzyl­idene­amino]pyrimidine-2,4(1H,3H)-dione, see: Booysen et al. (2011b,c ). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-67-o2387-scheme1.jpg

Experimental

Crystal data

  • C12H14N5O2 +·Br

  • M r = 340.19

  • Monoclinic, Inline graphic

  • a = 8.9520 (2) Å

  • b = 4.9630 (1) Å

  • c = 30.9123 (6) Å

  • β = 105.391 (1)°

  • V = 1324.14 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.11 mm−1

  • T = 200 K

  • 0.55 × 0.28 × 0.12 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.660, T max = 1.000

  • 10606 measured reflections

  • 3277 independent reflections

  • 2998 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.068

  • S = 1.16

  • 3277 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033290/su2307sup1.cif

e-67-o2387-sup1.cif (17.2KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811033290/su2307Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033290/su2307Isup3.hkl

e-67-o2387-Isup3.hkl (160.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033290/su2307Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H741⋯Br1i 0.87 (3) 2.77 (3) 3.4584 (19) 138 (2)
N4—H742⋯Br1ii 0.82 (3) 2.55 (3) 3.312 (2) 154 (2)
N5—H751⋯Br1ii 0.85 (3) 2.41 (3) 3.1763 (18) 151 (2)
C5—H5A⋯Br1i 0.98 2.89 3.764 (2) 148
C6—H6A⋯O1iii 0.98 2.60 3.453 (3) 145
C9—H9⋯O2iv 0.95 2.53 3.446 (3) 162
C10—H10⋯O1v 0.95 2.56 3.429 (3) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank Ms Dakota Neale-Shutte for helpful discussions.

supplementary crystallographic information

Comment

Next to cardiovascular diseases, cancer has become one of the main fatal diseases in industrialized countries. Apart from classical surgery, chemo- and radiotherapeutic treatments have entered the arsenal of possible cures for certain types of cancer. All methods, however, suffer from their own set of problematic side-effects and, as a consequence, the development of radiopharmaceuticals – combining the advantages of chemotherapy as well as radiation methods while at the same time avoiding their unique respective undesired side-effects – has been a topic of research (Gerber et al., 2011). Tailoring and fine-tuning of the envisioned radiopharmaceuticals' properties such as lipophilicity and, in particular, inertness is of paramount importance with respect to possible future in vivo applications in contemporary medicine and requires sound knowledge about structural parameters of the ligands applied if a more heuristic approach in the synthesis is to triumph over pure trial-and-error as it is encountered in this specific field of coordination chemistry up to the present day. To allow for an assessment of changes in structural features upon coordination, the molecular and crystal structure of the title compound has been determined. The crystal structure of the neutral compound (Booysen et al., 2011a), and other 6-amino-1,3-dimethyl-2,4(1H,3H)-dione-derived Schiff-base ligands (Booysen et al., 2011b,c), have been described previously.

The molecular structure of the title molecule is illustrated in Fig. 1. Protonation of the neutral organic ligand took place on the nitrogen atom, N5, of the pyridine moiety. The molecule has the E configuration about the C=N bond. As expected the intracyclic angles in the protonated pyridine moiety cover a range of 118.09 (19)–123.33 (19) °, with the largest angle on the protonated nitrogen atom, N, and the smallest angle on the carbon atom, C , bonded to the exocyclic substituent. The organic cation is essentially planar (r.m.s. for all its fitted non-hydrogen atoms = 0.0448 Å).

In the crystal, N-H···Br hydrogen bonds as well as C–H···O and C–H···Br contacts are observed (Table 1). While the hydrogen bonds are formed between the nitrogen-bonded hydrogen atoms and the bromide anion exclusively, the C–H···O contacts involve the hydrogen atoms of the pyridine moiety and one of the nitrogen-bonded methyl groups as donors and both oxygen atoms as acceptors. The C–H···Br contact is supported by one of the hydrogen atoms of the second nitrogen-bonded methyl group. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unitary level, whereas the C–H···O contacts necessitate a C(5)C(8)C(11) on the same level. In total, these contact result in the formation of a three-dimensional network (Fig. 3).

Experimental

The title compound was prepared by the reaction of (E)-6-amino-1,3- dimethyl-5-(pyridin-2-ylmethyleneamino)pyrimidine-2,4(1H,3H)- dione and trans-[ReOBr3(PPh3)2] in methanol. The solution was filtered and single crystals suitable for the X-ray analysis were obtained from the mother liquor which was left in a fridge for several days.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). All nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the b-axis of the intermolecular contacts in the crystal of the title compound [Blue dashed lines indicate N-H···Br hydrogen bonds, green dashed lines C–H···O contacts and yellow dashed lines C–H···Br contacts; see Table 1 for details; Symmetry operators: (i) x - 1, y - 2, z; (ii) -x + 2, y - 1/2, -z + 1/2; (iii) -x + 3, y - 1/2,-z + 1/2; (iv) x + 1, y + 2, z; (v) -x + 2, -y + 1, -z; (vi) x, y - 1, z].

Fig. 3.

Fig. 3.

The crystal packing of the title compound, viewed along the b-axis. The N-H···Br, C-H···Br and C-H···O interactions are shown as dashed cyan lines - see Table 1 for details.

Crystal data

C12H14N5O2+·Br F(000) = 688
Mr = 340.19 Dx = 1.706 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 7045 reflections
a = 8.9520 (2) Å θ = 2.7–28.3°
b = 4.9630 (1) Å µ = 3.11 mm1
c = 30.9123 (6) Å T = 200 K
β = 105.391 (1)° Plate, orange
V = 1324.14 (5) Å3 0.55 × 0.28 × 0.12 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3277 independent reflections
Radiation source: fine-focus sealed tube 2998 reflections with I > 2σ(I)
graphite Rint = 0.017
φ and ω scans θmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −11→11
Tmin = 0.660, Tmax = 1.000 k = −6→6
10606 measured reflections l = −41→38

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068 H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0154P)2 + 1.8033P] where P = (Fo2 + 2Fc2)/3
3277 reflections (Δ/σ)max < 0.001
195 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.36 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.37652 (19) 0.7382 (4) 0.17215 (6) 0.0318 (4)
O2 1.1136 (2) 0.0840 (3) 0.22406 (5) 0.0308 (4)
N1 1.2019 (2) 0.4910 (4) 0.12052 (6) 0.0207 (4)
N2 1.2433 (2) 0.4126 (4) 0.19775 (6) 0.0231 (4)
N3 0.94690 (19) −0.0572 (4) 0.13177 (6) 0.0190 (3)
N4 1.0173 (2) 0.2538 (4) 0.06812 (6) 0.0242 (4)
H741 1.053 (3) 0.317 (6) 0.0469 (10) 0.039 (8)*
H742 0.950 (3) 0.138 (6) 0.0608 (9) 0.026 (7)*
N5 0.7294 (2) −0.4378 (4) 0.09421 (6) 0.0222 (4)
H751 0.763 (3) −0.333 (6) 0.0774 (9) 0.030 (7)*
C1 1.0559 (2) 0.1427 (4) 0.14542 (6) 0.0189 (4)
C2 1.0908 (2) 0.2922 (4) 0.11067 (7) 0.0188 (4)
C3 1.2809 (2) 0.5581 (4) 0.16435 (7) 0.0226 (4)
C4 1.1344 (2) 0.2018 (4) 0.19125 (7) 0.0212 (4)
C5 1.2294 (3) 0.6593 (5) 0.08419 (8) 0.0292 (5)
H5A 1.2784 0.5504 0.0653 0.044*
H5B 1.2977 0.8096 0.0971 0.044*
H5C 1.1304 0.7298 0.0659 0.044*
C6 1.3189 (3) 0.4895 (6) 0.24431 (8) 0.0354 (6)
H6A 1.4077 0.3709 0.2564 0.053*
H6B 1.2448 0.4724 0.2625 0.053*
H6C 1.3546 0.6766 0.2451 0.053*
C7 0.8975 (2) −0.2117 (4) 0.15854 (7) 0.0201 (4)
H7 0.9368 −0.1947 0.1901 0.024*
C8 0.7801 (2) −0.4132 (4) 0.13933 (7) 0.0194 (4)
C9 0.7160 (2) −0.5808 (4) 0.16555 (7) 0.0235 (4)
H9 0.7485 −0.5673 0.1973 0.028*
C10 0.6044 (3) −0.7680 (5) 0.14522 (8) 0.0269 (5)
H10 0.5598 −0.8822 0.1631 0.032*
C11 0.5580 (3) −0.7884 (5) 0.09892 (8) 0.0287 (5)
H11 0.4823 −0.9173 0.0847 0.034*
C12 0.6233 (2) −0.6188 (5) 0.07375 (7) 0.0269 (5)
H12 0.5930 −0.6304 0.0419 0.032*
Br1 0.75392 (3) 0.85034 (5) 0.004599 (7) 0.03093 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0294 (8) 0.0307 (9) 0.0339 (9) −0.0127 (7) 0.0057 (7) −0.0055 (7)
O2 0.0388 (9) 0.0325 (9) 0.0189 (7) −0.0090 (7) 0.0039 (6) 0.0023 (7)
N1 0.0219 (8) 0.0197 (9) 0.0213 (8) −0.0046 (7) 0.0073 (7) −0.0011 (7)
N2 0.0253 (9) 0.0225 (9) 0.0190 (8) −0.0031 (7) 0.0013 (7) −0.0029 (7)
N3 0.0189 (8) 0.0183 (8) 0.0200 (8) −0.0004 (7) 0.0054 (6) −0.0006 (7)
N4 0.0271 (9) 0.0271 (10) 0.0182 (8) −0.0072 (8) 0.0056 (7) 0.0012 (7)
N5 0.0228 (8) 0.0245 (9) 0.0197 (8) −0.0040 (7) 0.0067 (7) 0.0021 (7)
C1 0.0192 (9) 0.0187 (10) 0.0186 (9) −0.0003 (8) 0.0047 (7) −0.0009 (8)
C2 0.0185 (9) 0.0171 (10) 0.0207 (9) 0.0012 (7) 0.0052 (7) −0.0008 (8)
C3 0.0193 (9) 0.0227 (10) 0.0250 (10) 0.0000 (8) 0.0042 (8) −0.0026 (8)
C4 0.0224 (9) 0.0192 (10) 0.0209 (10) 0.0008 (8) 0.0035 (8) −0.0008 (8)
C5 0.0359 (12) 0.0257 (11) 0.0290 (11) −0.0091 (10) 0.0138 (9) 0.0017 (10)
C6 0.0413 (13) 0.0355 (14) 0.0223 (11) −0.0073 (11) −0.0038 (10) −0.0053 (10)
C7 0.0211 (9) 0.0205 (10) 0.0188 (9) −0.0001 (8) 0.0055 (7) −0.0003 (8)
C8 0.0194 (9) 0.0199 (10) 0.0192 (9) 0.0012 (8) 0.0055 (7) 0.0002 (8)
C9 0.0254 (10) 0.0245 (11) 0.0213 (10) −0.0004 (9) 0.0075 (8) 0.0024 (8)
C10 0.0245 (10) 0.0271 (11) 0.0301 (11) −0.0033 (9) 0.0089 (9) 0.0055 (9)
C11 0.0232 (10) 0.0287 (12) 0.0318 (12) −0.0068 (9) 0.0030 (9) 0.0010 (9)
C12 0.0246 (10) 0.0310 (12) 0.0223 (10) −0.0043 (9) 0.0015 (8) −0.0004 (9)
Br1 0.03684 (13) 0.03914 (14) 0.01623 (10) −0.01255 (11) 0.00606 (8) −0.00141 (10)

Geometric parameters (Å, °)

O1—C3 1.217 (3) C1—C4 1.435 (3)
O2—C4 1.227 (3) C5—H5A 0.9800
N1—C2 1.377 (3) C5—H5B 0.9800
N1—C3 1.392 (3) C5—H5C 0.9800
N1—C5 1.471 (3) C6—H6A 0.9800
N2—C3 1.373 (3) C6—H6B 0.9800
N2—C4 1.407 (3) C6—H6C 0.9800
N2—C6 1.469 (3) C7—C8 1.458 (3)
N3—C7 1.290 (3) C7—H7 0.9500
N3—C1 1.377 (3) C8—C9 1.387 (3)
N4—C2 1.319 (3) C9—C10 1.387 (3)
N4—H741 0.87 (3) C9—H9 0.9500
N4—H742 0.82 (3) C10—C11 1.384 (3)
N5—C12 1.338 (3) C10—H10 0.9500
N5—C8 1.353 (3) C11—C12 1.377 (3)
N5—H751 0.85 (3) C11—H11 0.9500
C1—C2 1.407 (3) C12—H12 0.9500
C2—N1—C3 122.47 (17) N1—C5—H5C 109.5
C2—N1—C5 119.69 (18) H5A—C5—H5C 109.5
C3—N1—C5 117.56 (18) H5B—C5—H5C 109.5
C3—N2—C4 125.60 (18) N2—C6—H6A 109.5
C3—N2—C6 117.31 (19) N2—C6—H6B 109.5
C4—N2—C6 117.04 (18) H6A—C6—H6B 109.5
C7—N3—C1 124.61 (18) N2—C6—H6C 109.5
C2—N4—H741 121 (2) H6A—C6—H6C 109.5
C2—N4—H742 120.8 (18) H6B—C6—H6C 109.5
H741—N4—H742 116 (3) N3—C7—C8 118.67 (18)
C12—N5—C8 123.33 (19) N3—C7—H7 120.7
C12—N5—H751 116.5 (18) C8—C7—H7 120.7
C8—N5—H751 120.1 (18) N5—C8—C9 118.09 (19)
N3—C1—C2 115.38 (17) N5—C8—C7 119.33 (18)
N3—C1—C4 124.84 (18) C9—C8—C7 122.58 (19)
C2—C1—C4 119.77 (18) C10—C9—C8 119.8 (2)
N4—C2—N1 117.62 (19) C10—C9—H9 120.1
N4—C2—C1 122.17 (19) C8—C9—H9 120.1
N1—C2—C1 120.19 (18) C11—C10—C9 120.0 (2)
O1—C3—N2 122.5 (2) C11—C10—H10 120.0
O1—C3—N1 121.2 (2) C9—C10—H10 120.0
N2—C3—N1 116.34 (18) C12—C11—C10 118.9 (2)
O2—C4—N2 119.16 (19) C12—C11—H11 120.5
O2—C4—C1 125.2 (2) C10—C11—H11 120.5
N2—C4—C1 115.60 (18) N5—C12—C11 119.8 (2)
N1—C5—H5A 109.5 N5—C12—H12 120.1
N1—C5—H5B 109.5 C11—C12—H12 120.1
H5A—C5—H5B 109.5
C7—N3—C1—C2 −178.59 (19) C6—N2—C4—O2 −3.8 (3)
C7—N3—C1—C4 2.4 (3) C3—N2—C4—C1 −1.3 (3)
C3—N1—C2—N4 176.60 (19) C6—N2—C4—C1 176.35 (19)
C5—N1—C2—N4 2.8 (3) N3—C1—C4—O2 −0.7 (3)
C3—N1—C2—C1 −1.7 (3) C2—C1—C4—O2 −179.7 (2)
C5—N1—C2—C1 −175.54 (19) N3—C1—C4—N2 179.18 (18)
N3—C1—C2—N4 3.9 (3) C2—C1—C4—N2 0.2 (3)
C4—C1—C2—N4 −177.0 (2) C1—N3—C7—C8 179.27 (18)
N3—C1—C2—N1 −177.84 (17) C12—N5—C8—C9 −1.5 (3)
C4—C1—C2—N1 1.3 (3) C12—N5—C8—C7 179.3 (2)
C4—N2—C3—O1 −179.9 (2) N3—C7—C8—N5 1.8 (3)
C6—N2—C3—O1 2.5 (3) N3—C7—C8—C9 −177.43 (19)
C4—N2—C3—N1 0.9 (3) N5—C8—C9—C10 0.6 (3)
C6—N2—C3—N1 −176.75 (19) C7—C8—C9—C10 179.8 (2)
C2—N1—C3—O1 −178.6 (2) C8—C9—C10—C11 0.4 (3)
C5—N1—C3—O1 −4.7 (3) C9—C10—C11—C12 −0.6 (4)
C2—N1—C3—N2 0.7 (3) C8—N5—C12—C11 1.3 (3)
C5—N1—C3—N2 174.62 (19) C10—C11—C12—N5 −0.2 (4)
C3—N2—C4—O2 178.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H741···Br1i 0.87 (3) 2.77 (3) 3.4584 (19) 138 (2)
N4—H742···Br1ii 0.82 (3) 2.55 (3) 3.312 (2) 154 (2)
N5—H751···Br1ii 0.85 (3) 2.41 (3) 3.1763 (18) 151 (2)
C5—H5A···Br1i 0.98 2.89 3.764 (2) 148.
C6—H6A···O1iii 0.98 2.60 3.453 (3) 145.
C9—H9···O2iv 0.95 2.53 3.446 (3) 162.
C10—H10···O1v 0.95 2.56 3.429 (3) 152.

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, y−1, z; (iii) −x+3, y−1/2, −z+1/2; (iv) −x+2, y−1/2, −z+1/2; (v) x−1, y−2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2307).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Booysen, I., Hlela, T., Ismail, M., Gerber, T., Hosten, E. & Betz, R. (2011a). Acta Cryst. E67, o2289. [DOI] [PMC free article] [PubMed]
  4. Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011b). Acta Cryst. E67, o1592. [DOI] [PMC free article] [PubMed]
  5. Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011c). Acta Cryst. E67, o2025–o2026. [DOI] [PMC free article] [PubMed]
  6. Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.
  8. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  10. Gerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739–1745.
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033290/su2307sup1.cif

e-67-o2387-sup1.cif (17.2KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811033290/su2307Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033290/su2307Isup3.hkl

e-67-o2387-Isup3.hkl (160.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033290/su2307Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES