Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):m1232–m1233. doi: 10.1107/S1600536811031783

Tris(1,10-phenanthroline)iron(II) μ-oxido-bis­[trichloridoferrate(III)]

Chun Ling a, Li Song a,*, Xinping Wang a
PMCID: PMC3200904  PMID: 22065697

Abstract

In the title salt, [Fe(C12H8N2)3][Fe2Cl6O], the ionic components are linked into a two-dimensional supra­molecular layer by two pairs of C—H⋯Cl hydrogen bonds and π–π stacking inter­actions [centroid–centroid distances = 3.655 (4) and 3.498 (3) Å]. The salt is characterized as a mixed-valent FeII–FeIII compound, in which an FeII atom is coordinated by three phen ligands, forming a six-coordinated cationic entity and the anionic part is formed by two FeIII atoms in tetra­hedral coordination environments constructed by three chloride ions and one bridging oxide ligand. Intra­molecular C—H⋯N hydrogen bonds are observed.

Related literature

For related compounds containing the [Cl3FeOFeCl3]2− anion, see: Yan et al. (2000); Li et al. (2008); Haselhorst et al. (1993); Drew et al. (1978); Ondrejkovicová et al. (1998); James et al. (1997); Köhn et al. (1997); Bullen et al. (1986). For polynuclear iron(II/III) clusters, see: Pierre et al. (1996); Proul-Curry & Chasteen (1995). For the use of iron(III) complexes containing an Fe—O—Fe linkage as models for non-heme metalloproteins, see: Kurtz (1990); Gorun & Lippard (1991); Davydov et al. (1997); Ito et al. (1996); Mauerer et al. (1993); Menage et al. (1993); Okuno et al. (1997). For their use as models in studies of intra­molecular anti­ferromagnetic spin exchange coupling between high-spin ferric ions in material science, see: Kurtz (1990); Gatteschi et al. (2000); Haselhorst et al. (1993). For π–π stacking inter­actions between two phen ligands, see: Chandrasekhar et al. (2006). graphic file with name e-67-m1232-scheme1.jpg

Experimental

Crystal data

  • [Fe(C12H8N2)3][Fe2Cl6O]

  • M r = 936.86

  • Triclinic, Inline graphic

  • a = 11.422 (2) Å

  • b = 13.357 (3) Å

  • c = 14.045 (3) Å

  • α = 77.61 (3)°

  • β = 89.16 (3)°

  • γ = 65.99 (3)°

  • V = 1905.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 293 K

  • 0.38 × 0.20 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.584, T max = 0.832

  • 18867 measured reflections

  • 8629 independent reflections

  • 5284 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.172

  • S = 1.14

  • 8629 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.14 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031783/bg2417sup1.cif

e-67-m1232-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031783/bg2417Isup2.hkl

e-67-m1232-Isup2.hkl (422KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl6i 0.93 2.80 3.416 (7) 125
C11—H11⋯Cl2 0.93 2.82 3.740 (7) 172
C12—H12⋯N4 0.93 2.55 3.038 (7) 113
C25—H25⋯N3 0.93 2.62 3.098 (7) 113
C36—H36⋯N2 0.93 2.60 3.084 (8) 113

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful for financial support from the Natural Science Foundation of Zhejiang Province (project Y4100610).

supplementary crystallographic information

Comment

Recently polynuclear iron(II/III) clusters have received considerable attention in inorganic chemistry and material science (Proul-Curry et al., 1995; Pierre et al., 1996). In particular, iron(III) complexes containing Fe—O—Fe linkage have been one of the more celebrated objects for research and exploiture. In bioioganic chemistry, they are simple and useful models for non-heme metalloproteins containing dinuclear iron units in their active site, such as the methane monooxygenase, hemerythrin, etc (Kurtz et al., 1990; Gorun et al., 1991; Davydov et al., 1997). In material science, they have also been considered as useful models in studies of intramolecular antiferromagnetic spin exchange coupling between high-spin ferric ions (Kurtz et al., 1990; Haselhorst et al., 1993; Gatteschi et al., 2000). Previously, many efforts have been contributed to these researches, especially to the models for non-heme metalloproteins (Davydov et al., 1997; Mauerer et al., 1993; Ito et al., 1996; Okuno et al., 1997; Menage et al., 1993). Here, we report a ionic compound, [Fe(phen)3][Cl3FeOFeCl3] (I), composed of a dinuclear FeIII cluster anion, [Cl3FeOFeCl3]2-, and a coordinated cation containing FeII, [Fe(phen)3]2+.

The FeII centre is coordinated in octahedral geometry by three phen ligands to form a coordination cation. In this FeN6 octahedron, Fe—N bond lengths range from 1.972 (4) Å to 1.985 (4) Å and are similar to those reported in the literature (Yan et al., 2000; Li et al., 2008). In the anionic group two FeIII cations locate in similar tetrahedral environments constructed by three Cl- and one µ2-bridged O2- ligand. Fe—Cl bond lengths range from 2.206 (2) Å to 2.247 (2) Å and are similar to those in the literature (Haselhorst et al., 1993; Drew et al., 1978; Ondrejkovicová et al., 1998; James et al., 1997; Köhn et al., 1997; Bullen et al., 1986). These two FeOCl3 tetrahedra are fused through the µ2-bridged O2- ligand (Fe1—O1 = 1.747 (4) Å, Fe2—O1 = 1.753 (4) Å ) to give out a dinuclear cluster.

In the crystal structure offset face-to face aromatic π-π stacking interactions and hydrogen bonds lead to the formation of a two-dimensional supramolecular layer. Firstly, along the [1 - 1 1] direction, all adjacent cation of [Fe(phen)3]2+ are joined to each other by virtue of π–π stacking interactions between two phen ligands to form a one-dimensional supramolecular chain (Chandrasekhar et al., 2006). Two pairs of phen skeletons are arranged in a parallel fashion, ring 1 (C4—C9) of one cation stacks with ring 2 (C4—C9)i [(i): 2 - x, -y, 1 - z] of a neighbouring cation with an interplanar distance of 3.487 (9) Å, and ring 3 (N4/C20—C24) of one cation stacks with ring 4 (N4/C20—C24)ii [(ii) 1 - x, 1 - y, -z] of a neighbouring cation with an interplanar distance of 3.250 (6) Å. Adjacent chains, in turn, are fused together by the [Cl3FeOFeCl3]2-inorganic anion through two pairs of (C—H···Cl) hydrogen bonding interactions between cations and anions (Table 1). As a result, the supramolecular chains interconnect to form a two-dimensional supramolecular layer.

Experimental

The title compound (I) was synthesized by solvothermal reaction of FeCl2 tetrahydrate (20 mg, 0.1 mmol), Et4NBr (21 mg, 0.1 mmol), α-Ketoglutaric acid (15 mg, 0.1 mmol) and 1,10-phenanthroline monohydrate (20 mg, 0.1 mmol) in 6 mL e thanol and 0.5 ml water containing NaOH (4 mg, 0.1 mmol). The mixture was heated to 373 K at a rate of 20 K/h, and kept at this temperature for 1 day and then cooled to room temperature at a rate of 2 K/h. Dark red crystals of (I) were obtained. Anal. Calc. for C36H24Cl6Fe3N6O (%): C, 46.15; H, 2.58; N, 8.97; O, 1.71. Found: C, 42.58; H, 2.73; N, 8.36;O, 1.97. Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement

All hydrogen atoms were added at calculated positions and refined using a riding model (C-H: 0.93Å, U(H): 1.2 × Ueq(C).

Figures

Fig. 1.

Fig. 1.

Structure and labeling of the title compound, with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The supramolecular organic-inorganic hybrid layer constructed by π-π stacking interactions and hydrogen bonds.

Fig. 3.

Fig. 3.

The packing diagram viewed along the a-direction.

Crystal data

[Fe(C12H8N2)3][Fe2Cl6O] V = 1905.3 (7) Å3
Mr = 936.86 Z = 2
Triclinic, P1 F(000) = 940
Hall symbol: -P 1 Dx = 1.633 Mg m3
a = 11.422 (2) Å Mo Kα radiation, λ = 0.71075 Å
b = 13.357 (3) Å θ = 3.1–27.4°
c = 14.045 (3) Å µ = 1.59 mm1
α = 77.61 (3)° T = 293 K
β = 89.16 (3)° Chunk, dark red
γ = 65.99 (3)° 0.38 × 0.20 × 0.12 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 8629 independent reflections
Radiation source: fine-focus sealed tube 5284 reflections with I > 2σ(I)
graphite Rint = 0.038
Detector resolution: 14.6306 pixels mm-1 θmax = 27.4°, θmin = 3.1°
CCD_Profile_fitting scans h = −14→14
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −16→17
Tmin = 0.584, Tmax = 0.832 l = −18→18
18867 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0663P)2 + 2.5229P] where P = (Fo2 + 2Fc2)/3
8629 reflections (Δ/σ)max < 0.001
469 parameters Δρmax = 1.02 e Å3
0 restraints Δρmin = −1.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.77271 (7) 0.70380 (6) 0.21753 (6) 0.0453 (2)
Fe2 0.45222 (7) 0.78460 (8) 0.25534 (7) 0.0592 (2)
Fe3 0.63944 (6) 0.23329 (5) 0.26545 (5) 0.03354 (17)
Cl1 0.87079 (12) 0.57349 (12) 0.13308 (12) 0.0588 (4)
Cl2 0.88071 (16) 0.64218 (14) 0.36574 (11) 0.0678 (4)
Cl3 0.78594 (18) 0.86418 (12) 0.14353 (12) 0.0726 (5)
Cl4 0.4048 (2) 0.64893 (16) 0.34770 (13) 0.0815 (5)
Cl5 0.31464 (15) 0.86581 (16) 0.12050 (13) 0.0815 (5)
Cl6 0.4309 (2) 0.9143 (3) 0.3368 (2) 0.1410 (12)
O1 0.6116 (4) 0.7255 (4) 0.2250 (4) 0.0808 (14)
N1 0.6923 (4) 0.0922 (3) 0.3668 (3) 0.0388 (8)
N2 0.7466 (4) 0.2671 (3) 0.3528 (3) 0.0376 (8)
N3 0.7857 (3) 0.1709 (3) 0.1870 (3) 0.0350 (8)
N4 0.6082 (4) 0.3749 (3) 0.1681 (3) 0.0372 (8)
N5 0.5217 (4) 0.2003 (3) 0.1873 (3) 0.0388 (8)
N6 0.4822 (3) 0.3024 (3) 0.3321 (3) 0.0390 (9)
C1 0.6653 (5) 0.0032 (4) 0.3706 (4) 0.0504 (12)
H1 0.6160 0.0030 0.3186 0.060*
C2 0.7092 (6) −0.0902 (5) 0.4507 (4) 0.0620 (15)
H2 0.6884 −0.1508 0.4513 0.074*
C3 0.7815 (6) −0.0918 (5) 0.5265 (4) 0.0633 (15)
H3 0.8112 −0.1536 0.5793 0.076*
C4 0.8118 (5) 0.0006 (4) 0.5251 (4) 0.0497 (12)
C5 0.7658 (4) 0.0887 (4) 0.4445 (4) 0.0420 (11)
C6 0.8841 (6) 0.0092 (6) 0.6028 (4) 0.0688 (17)
H6 0.9149 −0.0494 0.6582 0.083*
C7 0.9084 (6) 0.1003 (6) 0.5973 (4) 0.0676 (17)
H7 0.9538 0.1042 0.6497 0.081*
C8 0.8658 (5) 0.1921 (5) 0.5122 (4) 0.0504 (12)
C9 0.7944 (4) 0.1850 (4) 0.4368 (4) 0.0416 (11)
C10 0.8893 (5) 0.2893 (5) 0.5004 (4) 0.0602 (15)
H10 0.9346 0.2985 0.5499 0.072*
C11 0.8450 (5) 0.3699 (5) 0.4156 (4) 0.0564 (14)
H11 0.8628 0.4333 0.4058 0.068*
C12 0.7732 (5) 0.3570 (5) 0.3440 (4) 0.0494 (12)
H12 0.7422 0.4136 0.2873 0.059*
C13 0.8717 (4) 0.0659 (4) 0.1962 (4) 0.0451 (11)
H13 0.8637 0.0097 0.2444 0.054*
C14 0.9742 (5) 0.0355 (5) 0.1367 (4) 0.0533 (13)
H14 1.0332 −0.0392 0.1462 0.064*
C15 0.9870 (5) 0.1160 (5) 0.0647 (4) 0.0562 (14)
H15 1.0552 0.0968 0.0252 0.067*
C16 0.8967 (5) 0.2280 (5) 0.0505 (4) 0.0488 (12)
C17 0.7975 (4) 0.2507 (4) 0.1139 (3) 0.0363 (10)
C18 0.8991 (6) 0.3197 (6) −0.0222 (4) 0.0624 (16)
H18 0.9632 0.3063 −0.0655 0.075*
C19 0.8106 (6) 0.4249 (5) −0.0291 (4) 0.0588 (15)
H19 0.8164 0.4832 −0.0759 0.071*
C20 0.7072 (5) 0.4504 (4) 0.0336 (4) 0.0463 (12)
C21 0.7017 (4) 0.3619 (4) 0.1050 (3) 0.0379 (10)
C22 0.6122 (6) 0.5585 (4) 0.0306 (4) 0.0522 (13)
H22 0.6130 0.6204 −0.0144 0.063*
C23 0.5188 (5) 0.5719 (4) 0.0942 (4) 0.0503 (12)
H23 0.4551 0.6432 0.0928 0.060*
C24 0.5192 (5) 0.4778 (4) 0.1619 (4) 0.0428 (11)
H24 0.4540 0.4882 0.2043 0.051*
C25 0.5450 (5) 0.1474 (4) 0.1150 (4) 0.0455 (11)
H25 0.6290 0.1156 0.0977 0.055*
C26 0.4467 (6) 0.1377 (5) 0.0631 (4) 0.0591 (14)
H26 0.4662 0.1009 0.0119 0.071*
C27 0.3247 (6) 0.1815 (5) 0.0876 (5) 0.0640 (16)
H27 0.2602 0.1735 0.0545 0.077*
C28 0.2949 (5) 0.2394 (4) 0.1632 (4) 0.0498 (12)
C29 0.3974 (4) 0.2457 (4) 0.2119 (4) 0.0397 (10)
C30 0.1686 (5) 0.2942 (6) 0.1940 (5) 0.0660 (17)
H30 0.0989 0.2925 0.1622 0.079*
C31 0.1479 (5) 0.3481 (5) 0.2676 (5) 0.0646 (17)
H31 0.0644 0.3830 0.2849 0.077*
C32 0.2513 (5) 0.3525 (4) 0.3196 (4) 0.0506 (13)
C33 0.3761 (4) 0.3017 (4) 0.2895 (4) 0.0408 (10)
C34 0.2381 (5) 0.4033 (5) 0.3984 (5) 0.0640 (16)
H34 0.1575 0.4389 0.4201 0.077*
C35 0.3444 (6) 0.4002 (5) 0.4429 (5) 0.0634 (16)
H35 0.3369 0.4314 0.4971 0.076*
C36 0.4660 (5) 0.3501 (5) 0.4081 (4) 0.0517 (13)
H36 0.5371 0.3505 0.4391 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0378 (4) 0.0458 (4) 0.0546 (5) −0.0166 (3) 0.0088 (3) −0.0176 (3)
Fe2 0.0421 (4) 0.0729 (6) 0.0750 (6) −0.0270 (4) 0.0207 (4) −0.0364 (5)
Fe3 0.0321 (3) 0.0315 (3) 0.0363 (4) −0.0117 (3) 0.0047 (3) −0.0094 (3)
Cl1 0.0447 (7) 0.0568 (8) 0.0797 (10) −0.0154 (6) 0.0089 (7) −0.0369 (7)
Cl2 0.0802 (10) 0.0777 (10) 0.0498 (8) −0.0375 (9) −0.0072 (7) −0.0122 (7)
Cl3 0.1030 (12) 0.0447 (8) 0.0744 (10) −0.0344 (9) 0.0205 (9) −0.0150 (7)
Cl4 0.1150 (14) 0.0870 (12) 0.0655 (10) −0.0621 (12) 0.0340 (10) −0.0241 (9)
Cl5 0.0482 (8) 0.0802 (11) 0.0802 (11) 0.0078 (8) −0.0025 (8) −0.0149 (9)
Cl6 0.1111 (16) 0.183 (3) 0.226 (3) −0.1023 (18) 0.0912 (19) −0.164 (3)
O1 0.041 (2) 0.104 (4) 0.107 (4) −0.027 (2) 0.020 (2) −0.049 (3)
N1 0.040 (2) 0.037 (2) 0.040 (2) −0.0161 (18) 0.0058 (17) −0.0100 (17)
N2 0.0375 (19) 0.038 (2) 0.038 (2) −0.0161 (17) 0.0071 (17) −0.0113 (17)
N3 0.0319 (18) 0.0342 (19) 0.038 (2) −0.0109 (16) 0.0040 (16) −0.0126 (16)
N4 0.0381 (19) 0.032 (2) 0.037 (2) −0.0106 (17) 0.0030 (16) −0.0069 (16)
N5 0.039 (2) 0.035 (2) 0.041 (2) −0.0148 (18) 0.0003 (17) −0.0065 (17)
N6 0.0362 (19) 0.034 (2) 0.046 (2) −0.0123 (17) 0.0098 (17) −0.0128 (17)
C1 0.059 (3) 0.037 (3) 0.056 (3) −0.023 (3) 0.008 (3) −0.007 (2)
C2 0.079 (4) 0.046 (3) 0.063 (4) −0.033 (3) 0.004 (3) −0.003 (3)
C3 0.075 (4) 0.042 (3) 0.054 (3) −0.015 (3) −0.002 (3) 0.008 (3)
C4 0.052 (3) 0.047 (3) 0.035 (3) −0.012 (3) −0.001 (2) 0.003 (2)
C5 0.035 (2) 0.044 (3) 0.044 (3) −0.012 (2) 0.008 (2) −0.011 (2)
C6 0.072 (4) 0.068 (4) 0.048 (3) −0.021 (3) −0.008 (3) 0.007 (3)
C7 0.059 (3) 0.086 (5) 0.047 (3) −0.022 (3) −0.018 (3) −0.006 (3)
C8 0.039 (3) 0.067 (4) 0.044 (3) −0.019 (3) −0.004 (2) −0.019 (3)
C9 0.034 (2) 0.049 (3) 0.042 (3) −0.015 (2) 0.010 (2) −0.015 (2)
C10 0.055 (3) 0.081 (4) 0.058 (4) −0.033 (3) −0.001 (3) −0.032 (3)
C11 0.055 (3) 0.063 (4) 0.063 (4) −0.033 (3) 0.003 (3) −0.022 (3)
C12 0.056 (3) 0.051 (3) 0.053 (3) −0.030 (3) 0.006 (2) −0.019 (2)
C13 0.040 (2) 0.040 (3) 0.050 (3) −0.011 (2) 0.006 (2) −0.014 (2)
C14 0.040 (3) 0.052 (3) 0.062 (3) −0.009 (2) 0.007 (2) −0.023 (3)
C15 0.039 (3) 0.074 (4) 0.063 (4) −0.022 (3) 0.021 (3) −0.035 (3)
C16 0.043 (3) 0.060 (3) 0.050 (3) −0.025 (3) 0.012 (2) −0.019 (3)
C17 0.034 (2) 0.042 (3) 0.037 (2) −0.018 (2) 0.0058 (19) −0.014 (2)
C18 0.067 (4) 0.077 (4) 0.056 (4) −0.042 (4) 0.025 (3) −0.018 (3)
C19 0.075 (4) 0.065 (4) 0.047 (3) −0.044 (3) 0.017 (3) −0.007 (3)
C20 0.055 (3) 0.048 (3) 0.043 (3) −0.031 (3) −0.001 (2) −0.004 (2)
C21 0.041 (2) 0.042 (3) 0.036 (2) −0.022 (2) 0.002 (2) −0.010 (2)
C22 0.072 (4) 0.045 (3) 0.047 (3) −0.035 (3) −0.006 (3) −0.001 (2)
C23 0.060 (3) 0.030 (2) 0.058 (3) −0.014 (2) −0.007 (3) −0.011 (2)
C24 0.043 (3) 0.035 (3) 0.044 (3) −0.010 (2) −0.002 (2) −0.007 (2)
C25 0.050 (3) 0.041 (3) 0.048 (3) −0.016 (2) −0.002 (2) −0.020 (2)
C26 0.067 (4) 0.057 (3) 0.060 (4) −0.027 (3) −0.008 (3) −0.020 (3)
C27 0.065 (4) 0.064 (4) 0.073 (4) −0.039 (3) −0.008 (3) −0.011 (3)
C28 0.039 (3) 0.050 (3) 0.055 (3) −0.020 (2) −0.009 (2) 0.005 (2)
C29 0.036 (2) 0.034 (2) 0.046 (3) −0.016 (2) 0.003 (2) 0.000 (2)
C30 0.041 (3) 0.084 (4) 0.068 (4) −0.032 (3) −0.006 (3) 0.006 (3)
C31 0.031 (3) 0.078 (4) 0.064 (4) −0.014 (3) 0.003 (3) 0.008 (3)
C32 0.037 (2) 0.049 (3) 0.052 (3) −0.011 (2) 0.010 (2) 0.003 (2)
C33 0.037 (2) 0.035 (2) 0.046 (3) −0.013 (2) 0.008 (2) −0.003 (2)
C34 0.045 (3) 0.065 (4) 0.067 (4) −0.007 (3) 0.024 (3) −0.016 (3)
C35 0.063 (4) 0.066 (4) 0.059 (4) −0.018 (3) 0.028 (3) −0.028 (3)
C36 0.053 (3) 0.054 (3) 0.049 (3) −0.019 (3) 0.013 (2) −0.021 (3)

Geometric parameters (Å, °)

Fe1—O1 1.747 (4) C11—C12 1.388 (7)
Fe1—Cl1 2.2251 (16) C11—H11 0.9300
Fe1—Cl3 2.2350 (17) C12—H12 0.9300
Fe1—Cl2 2.2463 (19) C13—C14 1.402 (7)
Fe2—O1 1.753 (4) C13—H13 0.9300
Fe2—Cl6 2.206 (2) C14—C15 1.363 (8)
Fe2—Cl4 2.2424 (19) C14—H14 0.9300
Fe2—Cl5 2.247 (2) C15—C16 1.401 (8)
Fe3—N1 1.972 (4) C15—H15 0.9300
Fe3—N3 1.976 (4) C16—C17 1.405 (6)
Fe3—N6 1.981 (4) C16—C18 1.427 (8)
Fe3—N4 1.983 (4) C17—C21 1.421 (6)
Fe3—N2 1.985 (4) C18—C19 1.339 (8)
Fe3—N5 1.985 (4) C18—H18 0.9300
N1—C1 1.335 (6) C19—C20 1.434 (7)
N1—C5 1.367 (6) C19—H19 0.9300
N2—C12 1.334 (6) C20—C21 1.400 (6)
N2—C9 1.367 (6) C20—C22 1.401 (8)
N3—C13 1.324 (6) C22—C23 1.361 (7)
N3—C17 1.361 (6) C22—H22 0.9300
N4—C24 1.320 (6) C23—C24 1.403 (7)
N4—C21 1.357 (6) C23—H23 0.9300
N5—C25 1.322 (6) C24—H24 0.9300
N5—C29 1.370 (6) C25—C26 1.412 (7)
N6—C36 1.331 (6) C25—H25 0.9300
N6—C33 1.363 (6) C26—C27 1.346 (8)
C1—C2 1.407 (8) C26—H26 0.9300
C1—H1 0.9300 C27—C28 1.403 (8)
C2—C3 1.348 (8) C27—H27 0.9300
C2—H2 0.9300 C28—C29 1.405 (7)
C3—C4 1.407 (8) C28—C30 1.437 (8)
C3—H3 0.9300 C29—C33 1.414 (7)
C4—C5 1.373 (7) C30—C31 1.347 (9)
C4—C6 1.430 (8) C30—H30 0.9300
C5—C9 1.433 (7) C31—C32 1.427 (8)
C6—C7 1.339 (9) C31—H31 0.9300
C6—H6 0.9300 C32—C34 1.393 (8)
C7—C8 1.439 (8) C32—C33 1.410 (6)
C7—H7 0.9300 C34—C35 1.354 (9)
C8—C9 1.389 (7) C34—H34 0.9300
C8—C10 1.405 (8) C35—C36 1.407 (7)
C10—C11 1.363 (8) C35—H35 0.9300
C10—H10 0.9300 C36—H36 0.9300
O1—Fe1—Cl1 110.07 (16) C10—C11—H11 120.2
O1—Fe1—Cl3 110.06 (18) C12—C11—H11 120.2
Cl1—Fe1—Cl3 109.18 (7) N2—C12—C11 123.1 (5)
O1—Fe1—Cl2 112.02 (18) N2—C12—H12 118.5
Cl1—Fe1—Cl2 106.97 (7) C11—C12—H12 118.5
Cl3—Fe1—Cl2 108.45 (7) N3—C13—C14 123.0 (5)
O1—Fe2—Cl6 108.97 (16) N3—C13—H13 118.5
O1—Fe2—Cl4 109.22 (18) C14—C13—H13 118.5
Cl6—Fe2—Cl4 110.12 (10) C15—C14—C13 119.6 (5)
O1—Fe2—Cl5 111.14 (18) C15—C14—H14 120.2
Cl6—Fe2—Cl5 108.54 (12) C13—C14—H14 120.2
Cl4—Fe2—Cl5 108.85 (8) C14—C15—C16 119.5 (4)
N1—Fe3—N3 93.83 (16) C14—C15—H15 120.2
N1—Fe3—N6 90.17 (16) C16—C15—H15 120.2
N3—Fe3—N6 174.48 (16) C15—C16—C17 116.9 (5)
N1—Fe3—N4 172.55 (16) C15—C16—C18 124.9 (5)
N3—Fe3—N4 82.51 (15) C17—C16—C18 118.1 (5)
N6—Fe3—N4 93.94 (16) N3—C17—C16 123.7 (4)
N1—Fe3—N2 82.86 (16) N3—C17—C21 115.4 (4)
N3—Fe3—N2 91.56 (15) C16—C17—C21 120.8 (4)
N6—Fe3—N2 92.71 (15) C19—C18—C16 121.0 (5)
N4—Fe3—N2 90.73 (16) C19—C18—H18 119.5
N1—Fe3—N5 95.14 (16) C16—C18—H18 119.5
N3—Fe3—N5 93.20 (15) C18—C19—C20 122.1 (5)
N6—Fe3—N5 82.65 (16) C18—C19—H19 119.0
N4—Fe3—N5 91.54 (16) C20—C19—H19 119.0
N2—Fe3—N5 174.96 (15) C21—C20—C22 116.9 (5)
Fe1—O1—Fe2 158.4 (3) C21—C20—C19 118.1 (5)
C1—N1—C5 117.0 (4) C22—C20—C19 124.9 (5)
C1—N1—Fe3 129.7 (4) N4—C21—C20 123.8 (4)
C5—N1—Fe3 113.3 (3) N4—C21—C17 116.5 (4)
C12—N2—C9 117.1 (4) C20—C21—C17 119.8 (4)
C12—N2—Fe3 130.6 (4) C23—C22—C20 119.4 (5)
C9—N2—Fe3 112.3 (3) C23—C22—H22 120.3
C13—N3—C17 117.1 (4) C20—C22—H22 120.3
C13—N3—Fe3 129.8 (3) C22—C23—C24 119.7 (5)
C17—N3—Fe3 113.0 (3) C22—C23—H23 120.2
C24—N4—C21 117.4 (4) C24—C23—H23 120.2
C24—N4—Fe3 129.9 (3) N4—C24—C23 122.7 (5)
C21—N4—Fe3 112.3 (3) N4—C24—H24 118.6
C25—N5—C29 117.9 (4) C23—C24—H24 118.6
C25—N5—Fe3 129.9 (3) N5—C25—C26 122.2 (5)
C29—N5—Fe3 112.1 (3) N5—C25—H25 118.9
C36—N6—C33 117.4 (4) C26—C25—H25 118.9
C36—N6—Fe3 129.9 (3) C27—C26—C25 120.1 (5)
C33—N6—Fe3 112.6 (3) C27—C26—H26 119.9
N1—C1—C2 122.0 (5) C25—C26—H26 119.9
N1—C1—H1 119.0 C26—C27—C28 119.8 (5)
C2—C1—H1 119.0 C26—C27—H27 120.1
C3—C2—C1 119.9 (5) C28—C27—H27 120.1
C3—C2—H2 120.0 C27—C28—C29 117.1 (5)
C1—C2—H2 120.0 C27—C28—C30 125.6 (5)
C2—C3—C4 119.6 (5) C29—C28—C30 117.3 (5)
C2—C3—H3 120.2 N5—C29—C28 122.9 (5)
C4—C3—H3 120.2 N5—C29—C33 116.3 (4)
C5—C4—C3 117.2 (5) C28—C29—C33 120.8 (4)
C5—C4—C6 118.5 (5) C31—C30—C28 122.1 (5)
C3—C4—C6 124.3 (5) C31—C30—H30 118.9
N1—C5—C4 124.2 (5) C28—C30—H30 118.9
N1—C5—C9 115.2 (4) C30—C31—C32 121.3 (5)
C4—C5—C9 120.6 (5) C30—C31—H31 119.3
C7—C6—C4 121.2 (5) C32—C31—H31 119.3
C7—C6—H6 119.4 C34—C32—C33 117.5 (5)
C4—C6—H6 119.4 C34—C32—C31 124.7 (5)
C6—C7—C8 121.7 (5) C33—C32—C31 117.8 (5)
C6—C7—H7 119.2 N6—C33—C32 123.3 (5)
C8—C7—H7 119.2 N6—C33—C29 116.0 (4)
C9—C8—C10 117.5 (5) C32—C33—C29 120.6 (5)
C9—C8—C7 117.5 (5) C35—C34—C32 119.1 (5)
C10—C8—C7 124.9 (5) C35—C34—H34 120.5
N2—C9—C8 123.4 (5) C32—C34—H34 120.5
N2—C9—C5 116.2 (4) C34—C35—C36 120.7 (5)
C8—C9—C5 120.4 (5) C34—C35—H35 119.7
C11—C10—C8 119.3 (5) C36—C35—H35 119.7
C11—C10—H10 120.4 N6—C36—C35 122.0 (5)
C8—C10—H10 120.4 N6—C36—H36 119.0
C10—C11—C12 119.7 (5) C35—C36—H36 119.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···Cl6i 0.93 2.80 3.416 (7) 125.
C11—H11···Cl2 0.93 2.82 3.740 (7) 172.
C12—H12···N4 0.93 2.55 3.038 (7) 113.
C25—H25···N3 0.93 2.62 3.098 (7) 113.
C36—H36···N2 0.93 2.60 3.084 (8) 113.

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2417).

References

  1. Bullen, G. J., Howlin, B. J., Silver, J., Fitzsimmons, B. W., Sayer, I. & Larkworthy, L. F. (1986). J. Chem. Soc. Dalton Trans. pp. 1937–1940.
  2. Chandrasekhar, V., Thilagar, P., Steiner, A. & Bickley, J. F. (2006). Chem. Eur. J. 12, 8847–8861. [DOI] [PubMed]
  3. Davydov, R. M., Ménage, S., Fontecave, M., Gräslund, A. & Ehrenberg, A. (1997). J. Biol. Inorg. Chem. 2, 242–255.
  4. Drew, M. G. B., McKee, V. & Nelson, S. M. (1978). J. Chem. Soc. Dalton Trans. pp. 80–84.
  5. Gatteschi, D., Sessoli, R. & Cornia, A. (2000). Chem. Commun. pp. 725–732.
  6. Gorun, S. M. & Lippard, S. J. (1991). Inorg. Chem. 30, 1625–1630.
  7. Haselhorst, G., Wieghardt, K., Keller, S. & Schrader, B. (1993). Inorg. Chem. 32, 520–525.
  8. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  9. Ito, S., Okuno, T., Matsushima, H., Tokii, T. & Nishida, T. (1996). J. Chem. Soc. Dalton Trans. pp. 4479–4484.
  10. James, M., Kawaguchi, H. & Tatsumi, K. (1997). Polyhedron, 16, 4279–4282.
  11. Köhn, R. D., Seifert, G. & Kociok-Köhn, G. (1997). Angew. Chem. Int. Ed. Engl. 35, 2879–2881.
  12. Kurtz, D. M. Jr (1990). Chem. Rev. 90, 585–606.
  13. Li, Z.-X., Yu, M.-M., Zhang, Y.-N. & Wei, L.-H. (2008). Acta Cryst. E64, m1514. [DOI] [PMC free article] [PubMed]
  14. Mauerer, B., Crane, J., Schuler, J., Wieghardt, K. & Nuber, B. (1993). Angew. Chem. Int. Ed. Engl. 32, 289–291.
  15. Menage, S., Vincent, J. M., Lambeaux, C., Chottard, G., Grand, A. & Foantecave, M. (1993). Inorg. Chem. 32, 4766–4773.
  16. Okuno, T., Ito, S., Ohba, S. & Nishida, T. (1997). J. Chem. Soc. Dalton Trans. pp. 3547–3551.
  17. Ondrejkovicová, I., Lis, T., Mrozinski, J., Vancová, V. & Melník, M. (1998). Polyhedron, 17, 3181–3192.
  18. Pierre T. G. St, Chain, P., Banchspiess, K. R., Webb, J., Belleridge, S., Walton, S. & Dickson, D. P. E. (1996). Coord. Chem. Rev. 151, 125–143.
  19. Proul-Curry, P. M. & Chasteen, N. D. (1995). Coord. Chem. Rev. 144, 347–368.
  20. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  21. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Yan, B., Chen, Z. D. & Wang, S. X. (2000). J. Chin. Chem. Soc. (Taipei), 47, 1211–1214.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031783/bg2417sup1.cif

e-67-m1232-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031783/bg2417Isup2.hkl

e-67-m1232-Isup2.hkl (422KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES