Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2427. doi: 10.1107/S1600536811032867

4-(3,5-Dimethyl-1H-pyrazol-1-yl)benzene­sulfonamide

Abdullah M Asiri a,b, Hassan M Faidallah a, Abdulrahman O Al-Youbi a, Seik Weng Ng c,a,*
PMCID: PMC3200907  PMID: 22064356

Abstract

The two aromatic rings of the title compound, C11H13N3O2S, are inclined at an angle of 47.81 (4)°. The N atom of the amino unit is pyramidally coordinated; one H atom inter­acts with the sulfamyl O atom of an adjacent mol­ecule, forming a centrosymmetric hydrogen-bonded dimer. The dimers are linked by N—H⋯N hydrogen bonds, generating a three-dimensional network.

Related literature

For the synthesis and medicinal properties of the title compound, see: Grueneberg et al. (2002); Wright et al. (1964).graphic file with name e-67-o2427-scheme1.jpg

Experimental

Crystal data

  • C11H13N3O2S

  • M r = 251.30

  • Monoclinic, Inline graphic

  • a = 7.9649 (1) Å

  • b = 11.7827 (2) Å

  • c = 12.2720 (2) Å

  • β = 91.720 (1)°

  • V = 1151.18 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.47 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.02 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.525, T max = 0.952

  • 8510 measured reflections

  • 2312 independent reflections

  • 2215 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.083

  • S = 1.07

  • 2312 reflections

  • 164 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032867/bt5610sup1.cif

e-67-o2427-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032867/bt5610Isup2.hkl

e-67-o2427-Isup2.hkl (113.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032867/bt5610Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1i 0.87 (1) 2.13 (1) 2.966 (2) 160 (2)
N3—H1⋯N2ii 0.87 (1) 2.94 (2) 3.501 (2) 124 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The title compound (Scheme I) was first synthesized in order to examine its anti-diabetic activity (Wright et al., 1964). It has also been listed in a virtual screening of compound libraries in order to search for possible medicinal properties (Grueneberg et al., 2002). The two aromatic rings are inclined at 47.81 (4) °. The N atom of the amino unit is pyramidally coordinated (Fig. 1). One H atom interacts with the sulfamyl O atom of an adjacent molecule to form a centrosymmetric hydrogen-bonded dimer; the dimers are linked by an N–H···N hydrogen bond to generate a layer motif.

Experimental

2,4-Pentanedione (10 mmol) and 4-hydrazinobenzenesulfonamide hydrochloride (10 mmol) were heated in ethanol (50 ml) for 4 h; water was then added to precipitate the product. This was collected and recrystallized from ethanol to yield orange crystals; m.p. 516–517 K.

Refinement

Carbon bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fouier map and were refined with a distance restraint of N–H 0.88±0.01 Å; their displacement parameters were freely refined.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C11H13N3O2S at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C11H13N3O2S F(000) = 528
Mr = 251.30 Dx = 1.450 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 6177 reflections
a = 7.9649 (1) Å θ = 3.6–74.0°
b = 11.7827 (2) Å µ = 2.47 mm1
c = 12.2720 (2) Å T = 100 K
β = 91.720 (1)° Plate, orange
V = 1151.18 (3) Å3 0.30 × 0.20 × 0.02 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2312 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2215 reflections with I > 2σ(I)
Mirror Rint = 0.018
Detector resolution: 10.4041 pixels mm-1 θmax = 74.2°, θmin = 5.2°
ω scans h = −7→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −14→14
Tmin = 0.525, Tmax = 0.952 l = −15→15
8510 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.7227P] where P = (Fo2 + 2Fc2)/3
2312 reflections (Δ/σ)max = 0.001
164 parameters Δρmax = 0.35 e Å3
2 restraints Δρmin = −0.41 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.60099 (4) 0.32597 (3) 0.50334 (2) 0.01314 (12)
O1 0.44016 (12) 0.37270 (8) 0.52982 (8) 0.0170 (2)
O2 0.65114 (14) 0.21872 (9) 0.54890 (8) 0.0208 (2)
N1 0.61599 (14) 0.27786 (10) 0.02059 (9) 0.0136 (2)
N2 0.55511 (14) 0.18062 (10) −0.02758 (9) 0.0143 (2)
N3 0.74013 (15) 0.41830 (10) 0.54060 (9) 0.0152 (2)
C1 0.7815 (2) 0.45338 (13) −0.02125 (12) 0.0232 (3)
H1A 0.8510 0.4777 −0.0815 0.035*
H1B 0.8535 0.4386 0.0434 0.035*
H1C 0.7007 0.5132 −0.0049 0.035*
C2 0.68933 (17) 0.34759 (12) −0.05284 (11) 0.0161 (3)
C3 0.67052 (18) 0.29522 (12) −0.15234 (11) 0.0170 (3)
H3 0.7068 0.3228 −0.2205 0.020*
C4 0.58685 (17) 0.19256 (12) −0.13311 (11) 0.0147 (3)
C5 0.53563 (19) 0.10247 (13) −0.21321 (11) 0.0196 (3)
H5A 0.4668 0.0456 −0.1771 0.029*
H5B 0.6361 0.0660 −0.2413 0.029*
H5C 0.4705 0.1367 −0.2737 0.029*
C6 0.61070 (16) 0.28964 (12) 0.13566 (11) 0.0136 (3)
C7 0.55663 (18) 0.39093 (12) 0.18128 (11) 0.0183 (3)
H7 0.5220 0.4521 0.1355 0.022*
C8 0.55342 (18) 0.40237 (12) 0.29364 (11) 0.0179 (3)
H8 0.5176 0.4715 0.3253 0.021*
C9 0.60328 (17) 0.31154 (11) 0.35950 (11) 0.0137 (3)
C10 0.65597 (18) 0.21010 (12) 0.31423 (11) 0.0163 (3)
H10 0.6891 0.1485 0.3600 0.020*
C11 0.66000 (18) 0.19918 (12) 0.20165 (11) 0.0163 (3)
H11 0.6963 0.1302 0.1700 0.020*
H1 0.712 (2) 0.4870 (10) 0.5225 (15) 0.029 (5)*
H2 0.8410 (14) 0.3966 (16) 0.5246 (16) 0.029 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01682 (19) 0.01279 (19) 0.00991 (18) 0.00155 (11) 0.00214 (12) −0.00074 (11)
O1 0.0163 (5) 0.0191 (5) 0.0160 (5) 0.0001 (4) 0.0045 (4) −0.0025 (4)
O2 0.0332 (6) 0.0157 (5) 0.0138 (5) 0.0049 (4) 0.0028 (4) 0.0018 (4)
N1 0.0153 (6) 0.0143 (6) 0.0110 (5) −0.0028 (4) −0.0002 (4) −0.0017 (4)
N2 0.0142 (5) 0.0159 (6) 0.0128 (6) −0.0034 (4) 0.0002 (4) −0.0028 (4)
N3 0.0144 (6) 0.0161 (6) 0.0150 (6) 0.0024 (4) −0.0003 (4) −0.0027 (4)
C1 0.0300 (8) 0.0207 (7) 0.0187 (7) −0.0104 (6) −0.0052 (6) 0.0036 (6)
C2 0.0169 (6) 0.0165 (7) 0.0149 (6) −0.0024 (5) −0.0014 (5) 0.0036 (5)
C3 0.0194 (7) 0.0199 (7) 0.0117 (6) −0.0022 (5) −0.0005 (5) 0.0028 (5)
C4 0.0141 (6) 0.0183 (7) 0.0114 (6) 0.0002 (5) −0.0011 (5) −0.0011 (5)
C5 0.0248 (7) 0.0209 (7) 0.0130 (6) −0.0018 (6) −0.0006 (5) −0.0039 (5)
C6 0.0123 (6) 0.0173 (7) 0.0113 (6) −0.0025 (5) 0.0001 (5) −0.0018 (5)
C7 0.0222 (7) 0.0173 (7) 0.0151 (7) 0.0050 (5) −0.0033 (5) 0.0003 (5)
C8 0.0219 (7) 0.0160 (7) 0.0157 (7) 0.0048 (5) −0.0012 (5) −0.0033 (5)
C9 0.0136 (6) 0.0159 (6) 0.0117 (6) −0.0005 (5) 0.0012 (5) −0.0015 (5)
C10 0.0221 (7) 0.0130 (6) 0.0140 (6) 0.0014 (5) 0.0032 (5) 0.0016 (5)
C11 0.0213 (7) 0.0128 (6) 0.0148 (7) 0.0000 (5) 0.0039 (5) −0.0020 (5)

Geometric parameters (Å, °)

S1—O2 1.4338 (10) C3—H3 0.9500
S1—O1 1.4404 (10) C4—C5 1.4952 (19)
S1—N3 1.6094 (12) C5—H5A 0.9800
S1—C9 1.7741 (14) C5—H5B 0.9800
N1—C2 1.3638 (18) C5—H5C 0.9800
N1—N2 1.3713 (15) C6—C11 1.3881 (19)
N1—C6 1.4208 (17) C6—C7 1.392 (2)
N2—C4 1.3344 (18) C7—C8 1.3864 (19)
N3—H1 0.869 (9) C7—H7 0.9500
N3—H2 0.871 (9) C8—C9 1.3918 (19)
C1—C2 1.4920 (19) C8—H8 0.9500
C1—H1A 0.9800 C9—C10 1.3882 (19)
C1—H1B 0.9800 C10—C11 1.3889 (19)
C1—H1C 0.9800 C10—H10 0.9500
C2—C3 1.372 (2) C11—H11 0.9500
C3—C4 1.404 (2)
O2—S1—O1 119.22 (6) N2—C4—C5 120.48 (12)
O2—S1—N3 107.68 (6) C3—C4—C5 128.50 (13)
O1—S1—N3 106.68 (6) C4—C5—H5A 109.5
O2—S1—C9 107.00 (6) C4—C5—H5B 109.5
O1—S1—C9 107.27 (6) H5A—C5—H5B 109.5
N3—S1—C9 108.66 (6) C4—C5—H5C 109.5
C2—N1—N2 111.80 (11) H5A—C5—H5C 109.5
C2—N1—C6 128.61 (11) H5B—C5—H5C 109.5
N2—N1—C6 119.31 (11) C11—C6—C7 120.61 (12)
C4—N2—N1 104.80 (11) C11—C6—N1 119.24 (12)
S1—N3—H1 112.6 (13) C7—C6—N1 120.15 (12)
S1—N3—H2 111.7 (13) C8—C7—C6 119.90 (13)
H1—N3—H2 116.9 (18) C8—C7—H7 120.0
C2—C1—H1A 109.5 C6—C7—H7 120.0
C2—C1—H1B 109.5 C7—C8—C9 119.29 (13)
H1A—C1—H1B 109.5 C7—C8—H8 120.4
C2—C1—H1C 109.5 C9—C8—H8 120.4
H1A—C1—H1C 109.5 C10—C9—C8 120.94 (13)
H1B—C1—H1C 109.5 C10—C9—S1 119.54 (10)
N1—C2—C3 106.24 (12) C8—C9—S1 119.52 (10)
N1—C2—C1 123.29 (13) C9—C10—C11 119.61 (13)
C3—C2—C1 130.28 (13) C9—C10—H10 120.2
C2—C3—C4 106.11 (12) C11—C10—H10 120.2
C2—C3—H3 126.9 C6—C11—C10 119.64 (13)
C4—C3—H3 126.9 C6—C11—H11 120.2
N2—C4—C3 111.01 (12) C10—C11—H11 120.2
C2—N1—N2—C4 −1.97 (15) C11—C6—C7—C8 0.7 (2)
C6—N1—N2—C4 −176.38 (11) N1—C6—C7—C8 −179.31 (12)
N2—N1—C2—C3 1.89 (15) C6—C7—C8—C9 −0.5 (2)
C6—N1—C2—C3 175.64 (13) C7—C8—C9—C10 0.0 (2)
N2—N1—C2—C1 −173.51 (13) C7—C8—C9—S1 179.52 (11)
C6—N1—C2—C1 0.2 (2) O2—S1—C9—C10 −2.85 (13)
N1—C2—C3—C4 −1.01 (15) O1—S1—C9—C10 −131.88 (12)
C1—C2—C3—C4 173.95 (15) N3—S1—C9—C10 113.15 (12)
N1—N2—C4—C3 1.28 (15) O2—S1—C9—C8 177.63 (11)
N1—N2—C4—C5 −179.21 (12) O1—S1—C9—C8 48.60 (13)
C2—C3—C4—N2 −0.18 (16) N3—S1—C9—C8 −66.37 (13)
C2—C3—C4—C5 −179.65 (14) C8—C9—C10—C11 0.4 (2)
C2—N1—C6—C11 −128.45 (15) S1—C9—C10—C11 −179.13 (11)
N2—N1—C6—C11 44.90 (17) C7—C6—C11—C10 −0.3 (2)
C2—N1—C6—C7 51.5 (2) N1—C6—C11—C10 179.71 (12)
N2—N1—C6—C7 −135.12 (13) C9—C10—C11—C6 −0.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1···O1i 0.87 (1) 2.13 (1) 2.966 (2) 160 (2)
N3—H1···N2ii 0.87 (1) 2.94 (2) 3.501 (2) 124 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5610).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Grueneberg, S., Stubbs, M. T. & Klebe, G. (2002). J. Med. Chem. 45, 3588–3602. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  6. Wright, J. B., Dulin, W. E. & Markillie, J. H. (1964). J. Med. Chem. 7, 102–105. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032867/bt5610sup1.cif

e-67-o2427-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032867/bt5610Isup2.hkl

e-67-o2427-Isup2.hkl (113.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032867/bt5610Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES