Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2494. doi: 10.1107/S1600536811034660

3-(9H-Carbazol-9-yl)-2H-chromen-2-one

Julien Letessier a, Dieter Schollmeyer a, Heiner Detert a,*
PMCID: PMC3200909  PMID: 22059044

Abstract

The title compound, C21H13NO2, was prepared as an example of a new synthesis of carbazoles from a cyclic dibenzo-iodo­lium salt via a twofold Pd-catalysed aryl­ation of a primary amine. The two essentially planar π-subsystems [maximum deviations from the mean square plane of 0.038 (2) Å in the carbazole and 0.059 (2) Å in the coumarine unit] open a dihedral angle of 63.05 (4)°. Two mol­ecules form a centrosymmetrical pair connected via π–π inter­actions between the pyrrole and pyrone rings [centroid–centroid distance = 3.882 (1) Å] and one benzene of the carbazole and the pyrone unit [centroid–centroid distance 3.824 (1) Å]. The lattice is stabilized by C—H⋯O bridging to both coumarin O atoms.

Related literature

For alkaloids based on the carbazole core, see: Kapil (1971). For information on carbazoles used as electron-rich and rigid units in functional materials for photoconducting, sensing and luminescence purposes, see: Wakim et al. (2004); Schmitt et al. (2008). For carbazoles and δ-carbolines using the iodo­lium salt route, see Letessier (2011); Letessier et al. (2011). For the construction of carbazoles and their heteroanalogous derivatives, see: Nissen & Detert (2011); Dassonneville et al. (2011); Letessier et al. (2011). For the synthesis of annulated heterocycles, see: Nemkovich et al. (2009); Preis et al. (2011).graphic file with name e-67-o2494-scheme1.jpg

Experimental

Crystal data

  • C21H13NO2

  • M r = 311.32

  • Monoclinic, Inline graphic

  • a = 8.9451 (12) Å

  • b = 11.5412 (7) Å

  • c = 15.0477 (17) Å

  • β = 105.871 (12)°

  • V = 1494.3 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.72 mm−1

  • T = 193 K

  • 0.50 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) T min = 0.716, T max = 0.932

  • 2826 measured reflections

  • 2826 independent reflections

  • 2171 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.142

  • S = 1.04

  • 2826 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811034660/bt5627sup1.cif

e-67-o2494-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034660/bt5627Isup2.hkl

e-67-o2494-Isup2.hkl (138.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034660/bt5627Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O24i 0.95 2.43 3.366 (2) 169
C11—H11⋯O22ii 0.95 2.58 3.522 (2) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to Heinz Kolshorn for invaluable discussions and the NMR spectra.

supplementary crystallographic information

Comment

The title compound was prepared as a part of a project focused on the synthesis of annulated heterocycles, see: Nemkovich et al. (2009); Preis et al. (2011). The Pd-catalyzed transformation of dibenzoiodolium salts to carbazoles constitutes a new access to carbazoles, especially 9-substituted carbazoles see: Letessier (2011). This method complements our toolbox for the construction of carbazoles and its heteroanalogous derivatives, see Nissen & Detert (2011); Dassonneville et al. (2011) and Letessier et al. (2011). Carbazole and coumarine units are essentially planar with maximum deviations from the mean square plane of 0.04Å in the carbazole and 0.06 Å in the coumarine unit. The dihedral angle between the mean planes is 63.1°. Two molecules form a centrosymmetric pair, they are connected viaπ-π interactions between carbazole and coumarin as indicated by the short distances of the centroids of pyrrole and pyrone of 3.88Å and of one benzene of the carbazole and the pyrone of 3.82 Å. The lattice is stabilized by hydrogen bridging to both coumarin oxgen atoms, C11—H11···O22 (2.58 Å) and C15—H15···O24 (2.43 Å).

Experimental

Dibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (471 mg, 1.10 mmol) (Letessier (2011)), Pd2(dba)3 (40 mg, 0.044 mmol), Xantphos (76 mg, 0.13 mmol) and Cs2CO3 (1.07 g, 3.30 mmol) were dissolved in freshly distilled toluene (12 ml) in a sealed tube under argon atmosphere and stirred for 5 min at room temperature. 3-Amino-2H-chromen-2-one (213 mg, 1.32 mmol) was added and the mixture was stirred overnight at 373 K. The mixture was cooled to room temperature, filtered trough Celite and concentrated. Purification by silica gel chromatography (petrolether:EtOAc=4:1(v:v)) afforded pure 3-(9H-carbazol-9-yl)-2H-chromen-2-one as a white crystalline solid (51 mg, 0.17 mmol, 14%).

Refinement

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

View of compound I. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C21H13NO2 F(000) = 648
Mr = 311.32 Dx = 1.384 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.9451 (12) Å θ = 45–50°
b = 11.5412 (7) Å µ = 0.72 mm1
c = 15.0477 (17) Å T = 193 K
β = 105.871 (12)° Block, colourless
V = 1494.3 (3) Å3 0.50 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2171 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.000
graphite θmax = 69.9°, θmin = 4.9°
ω/2θ scans h = 0→10
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) k = 0→14
Tmin = 0.716, Tmax = 0.932 l = −18→17
2826 measured reflections 3 standard reflections every 60 min
2826 independent reflections intensity decay: 5%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.1404P] where P = (Fo2 + 2Fc2)/3
2826 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. 1H-NMR (400 MHz, CDCl3): δ = 8.12 (d, J=8.3Hz, 2H), 8.04 (s, 1H), 7.66 (m, 1H), 7.60 (dd, J=7.8Hz, J=1.5Hz, 1H), 7.51 (d, J=8.3Hz, 1H), 7.43 (m, 3H), 7.31 (m, 4H).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.35522 (19) 0.44252 (14) 0.28217 (10) 0.0344 (4)
C2 0.2569 (2) 0.34605 (16) 0.26142 (12) 0.0326 (4)
C3 0.2417 (2) 0.26376 (18) 0.19169 (13) 0.0389 (5)
H3 0.3027 0.2677 0.1491 0.047*
C4 0.1339 (2) 0.17589 (19) 0.18704 (14) 0.0434 (5)
H4 0.1218 0.1181 0.1407 0.052*
C5 0.0427 (2) 0.17044 (19) 0.24880 (14) 0.0431 (5)
H5 −0.0308 0.1096 0.2435 0.052*
C6 0.0580 (2) 0.25207 (18) 0.31729 (13) 0.0384 (5)
H6 −0.0048 0.2484 0.3589 0.046*
C7 0.1674 (2) 0.34055 (16) 0.32474 (12) 0.0314 (4)
C8 0.2154 (2) 0.43659 (17) 0.38781 (12) 0.0324 (4)
C9 0.1733 (2) 0.47311 (19) 0.46582 (13) 0.0410 (5)
H9 0.0967 0.4321 0.4862 0.049*
C10 0.2444 (2) 0.5697 (2) 0.51302 (14) 0.0454 (5)
H10 0.2155 0.5958 0.5659 0.054*
C11 0.3578 (3) 0.62901 (19) 0.48398 (14) 0.0439 (5)
H11 0.4059 0.6947 0.5180 0.053*
C12 0.4028 (2) 0.59507 (17) 0.40682 (14) 0.0394 (5)
H12 0.4800 0.6363 0.3872 0.047*
C13 0.3298 (2) 0.49793 (16) 0.35928 (12) 0.0328 (4)
C14 0.4510 (2) 0.48169 (16) 0.22789 (12) 0.0319 (4)
C15 0.5679 (2) 0.41781 (16) 0.21408 (13) 0.0338 (4)
H15 0.5963 0.3477 0.2476 0.041*
C16 0.6506 (2) 0.45360 (17) 0.14968 (12) 0.0335 (4)
C17 0.7664 (2) 0.38761 (19) 0.12769 (15) 0.0421 (5)
H17 0.7984 0.3165 0.1588 0.051*
C18 0.8348 (2) 0.4251 (2) 0.06098 (16) 0.0497 (6)
H18 0.9123 0.3793 0.0456 0.060*
C19 0.7902 (2) 0.5300 (2) 0.01643 (15) 0.0477 (6)
H19 0.8376 0.5552 −0.0295 0.057*
C20 0.6781 (2) 0.5980 (2) 0.03778 (14) 0.0408 (5)
H20 0.6483 0.6699 0.0074 0.049*
C21 0.6100 (2) 0.55910 (17) 0.10453 (12) 0.0329 (4)
O22 0.49743 (15) 0.62816 (11) 0.12387 (9) 0.0355 (3)
C23 0.4108 (2) 0.59401 (16) 0.18148 (12) 0.0329 (4)
O24 0.30993 (17) 0.65883 (13) 0.19049 (10) 0.0444 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0407 (9) 0.0321 (8) 0.0342 (8) −0.0038 (7) 0.0168 (7) −0.0014 (6)
C2 0.0344 (9) 0.0291 (9) 0.0332 (9) 0.0008 (7) 0.0075 (7) 0.0032 (7)
C3 0.0452 (11) 0.0376 (11) 0.0344 (10) 0.0005 (9) 0.0116 (8) −0.0011 (8)
C4 0.0493 (12) 0.0377 (11) 0.0387 (10) −0.0030 (9) 0.0044 (9) −0.0039 (8)
C5 0.0384 (11) 0.0419 (12) 0.0434 (11) −0.0079 (9) 0.0015 (9) 0.0026 (9)
C6 0.0319 (9) 0.0435 (11) 0.0385 (10) −0.0030 (8) 0.0077 (8) 0.0074 (8)
C7 0.0300 (9) 0.0327 (10) 0.0300 (9) 0.0036 (7) 0.0056 (7) 0.0043 (7)
C8 0.0300 (9) 0.0353 (10) 0.0311 (9) 0.0040 (7) 0.0071 (7) 0.0048 (7)
C9 0.0391 (10) 0.0509 (12) 0.0352 (10) 0.0038 (9) 0.0136 (8) 0.0017 (9)
C10 0.0487 (12) 0.0541 (13) 0.0355 (10) 0.0092 (10) 0.0153 (9) −0.0059 (9)
C11 0.0516 (12) 0.0377 (11) 0.0390 (11) 0.0013 (10) 0.0067 (9) −0.0070 (9)
C12 0.0440 (11) 0.0347 (11) 0.0400 (10) −0.0018 (8) 0.0121 (9) −0.0008 (8)
C13 0.0350 (9) 0.0319 (10) 0.0312 (9) 0.0035 (8) 0.0089 (7) 0.0010 (7)
C14 0.0360 (9) 0.0301 (10) 0.0311 (9) −0.0027 (8) 0.0116 (7) 0.0007 (7)
C15 0.0348 (10) 0.0307 (10) 0.0351 (9) −0.0001 (8) 0.0081 (7) 0.0023 (7)
C16 0.0279 (9) 0.0373 (10) 0.0342 (9) −0.0026 (8) 0.0065 (7) −0.0036 (8)
C17 0.0332 (10) 0.0436 (12) 0.0483 (12) 0.0012 (9) 0.0088 (9) −0.0051 (9)
C18 0.0327 (10) 0.0636 (15) 0.0574 (13) −0.0040 (10) 0.0199 (10) −0.0120 (11)
C19 0.0363 (10) 0.0658 (15) 0.0451 (11) −0.0154 (10) 0.0183 (9) −0.0081 (10)
C20 0.0367 (10) 0.0480 (12) 0.0375 (10) −0.0120 (9) 0.0097 (8) −0.0006 (9)
C21 0.0284 (9) 0.0375 (10) 0.0324 (9) −0.0051 (8) 0.0074 (7) −0.0032 (7)
O22 0.0365 (7) 0.0329 (7) 0.0384 (7) 0.0004 (6) 0.0125 (6) 0.0054 (5)
C23 0.0341 (9) 0.0320 (10) 0.0333 (9) −0.0012 (8) 0.0106 (7) −0.0002 (7)
O24 0.0466 (8) 0.0391 (8) 0.0512 (8) 0.0094 (6) 0.0197 (7) 0.0023 (6)

Geometric parameters (Å, °)

N1—C13 1.397 (2) C11—H11 0.9500
N1—C2 1.400 (2) C12—C13 1.392 (3)
N1—C14 1.410 (2) C12—H12 0.9500
C2—C3 1.394 (3) C14—C15 1.342 (3)
C2—C7 1.404 (3) C14—C23 1.470 (3)
C3—C4 1.388 (3) C15—C16 1.431 (3)
C3—H3 0.9500 C15—H15 0.9500
C4—C5 1.395 (3) C16—C21 1.393 (3)
C4—H4 0.9500 C16—C17 1.397 (3)
C5—C6 1.375 (3) C17—C18 1.380 (3)
C5—H5 0.9500 C17—H17 0.9500
C6—C7 1.397 (3) C18—C19 1.388 (3)
C6—H6 0.9500 C18—H18 0.9500
C7—C8 1.446 (3) C19—C20 1.379 (3)
C8—C9 1.393 (3) C19—H19 0.9500
C8—C13 1.405 (3) C20—C21 1.384 (3)
C9—C10 1.380 (3) C20—H20 0.9500
C9—H9 0.9500 C21—O22 1.376 (2)
C10—C11 1.390 (3) O22—C23 1.369 (2)
C10—H10 0.9500 C23—O24 1.208 (2)
C11—C12 1.385 (3)
C13—N1—C2 108.33 (15) C11—C12—H12 121.4
C13—N1—C14 126.66 (16) C13—C12—H12 121.4
C2—N1—C14 124.73 (15) C12—C13—N1 129.46 (18)
C3—C2—N1 129.48 (18) C12—C13—C8 121.80 (17)
C3—C2—C7 121.57 (18) N1—C13—C8 108.71 (16)
N1—C2—C7 108.95 (16) C15—C14—N1 122.45 (17)
C4—C3—C2 117.34 (19) C15—C14—C23 120.71 (16)
C4—C3—H3 121.3 N1—C14—C23 116.74 (16)
C2—C3—H3 121.3 C14—C15—C16 121.02 (17)
C3—C4—C5 121.60 (19) C14—C15—H15 119.5
C3—C4—H4 119.2 C16—C15—H15 119.5
C5—C4—H4 119.2 C21—C16—C17 118.19 (18)
C6—C5—C4 120.78 (19) C21—C16—C15 117.93 (17)
C6—C5—H5 119.6 C17—C16—C15 123.86 (19)
C4—C5—H5 119.6 C18—C17—C16 120.4 (2)
C5—C6—C7 118.99 (19) C18—C17—H17 119.8
C5—C6—H6 120.5 C16—C17—H17 119.8
C7—C6—H6 120.5 C17—C18—C19 119.9 (2)
C6—C7—C2 119.70 (18) C17—C18—H18 120.0
C6—C7—C8 133.52 (18) C19—C18—H18 120.0
C2—C7—C8 106.77 (16) C20—C19—C18 121.03 (19)
C9—C8—C13 119.51 (18) C20—C19—H19 119.5
C9—C8—C7 133.24 (18) C18—C19—H19 119.5
C13—C8—C7 107.23 (16) C19—C20—C21 118.5 (2)
C10—C9—C8 119.06 (19) C19—C20—H20 120.8
C10—C9—H9 120.5 C21—C20—H20 120.8
C8—C9—H9 120.5 O22—C21—C20 117.27 (18)
C9—C10—C11 120.62 (18) O22—C21—C16 120.75 (16)
C9—C10—H10 119.7 C20—C21—C16 121.97 (18)
C11—C10—H10 119.7 C23—O22—C21 122.72 (14)
C12—C11—C10 121.9 (2) O24—C23—O22 117.53 (17)
C12—C11—H11 119.1 O24—C23—C14 125.86 (17)
C10—C11—H11 119.1 O22—C23—C14 116.60 (16)
C11—C12—C13 117.11 (19)
C13—N1—C2—C3 −179.12 (19) C7—C8—C13—C12 −178.87 (17)
C14—N1—C2—C3 6.6 (3) C9—C8—C13—N1 177.92 (16)
C13—N1—C2—C7 0.6 (2) C7—C8—C13—N1 −0.8 (2)
C14—N1—C2—C7 −173.62 (16) C13—N1—C14—C15 123.2 (2)
N1—C2—C3—C4 179.88 (18) C2—N1—C14—C15 −63.6 (3)
C7—C2—C3—C4 0.1 (3) C13—N1—C14—C23 −60.6 (2)
C2—C3—C4—C5 0.7 (3) C2—N1—C14—C23 112.6 (2)
C3—C4—C5—C6 −0.6 (3) N1—C14—C15—C16 172.20 (16)
C4—C5—C6—C7 −0.5 (3) C23—C14—C15—C16 −3.9 (3)
C5—C6—C7—C2 1.3 (3) C14—C15—C16—C21 2.5 (3)
C5—C6—C7—C8 −178.49 (19) C14—C15—C16—C17 −175.69 (18)
C3—C2—C7—C6 −1.2 (3) C21—C16—C17—C18 −1.9 (3)
N1—C2—C7—C6 179.02 (16) C15—C16—C17—C18 176.35 (18)
C3—C2—C7—C8 178.68 (17) C16—C17—C18—C19 1.0 (3)
N1—C2—C7—C8 −1.1 (2) C17—C18—C19—C20 0.1 (3)
C6—C7—C8—C9 2.6 (4) C18—C19—C20—C21 −0.4 (3)
C2—C7—C8—C9 −177.3 (2) C19—C20—C21—O22 −179.40 (16)
C6—C7—C8—C13 −179.0 (2) C19—C20—C21—C16 −0.5 (3)
C2—C7—C8—C13 1.2 (2) C17—C16—C21—O22 −179.53 (16)
C13—C8—C9—C10 0.5 (3) C15—C16—C21—O22 2.1 (3)
C7—C8—C9—C10 178.82 (19) C17—C16—C21—C20 1.6 (3)
C8—C9—C10—C11 −0.8 (3) C15—C16—C21—C20 −176.71 (17)
C9—C10—C11—C12 0.7 (3) C20—C21—O22—C23 173.28 (16)
C10—C11—C12—C13 −0.3 (3) C16—C21—O22—C23 −5.6 (3)
C11—C12—C13—N1 −177.60 (19) C21—O22—C23—O24 −176.57 (16)
C11—C12—C13—C8 0.1 (3) C21—O22—C23—C14 4.2 (2)
C2—N1—C13—C12 178.00 (19) C15—C14—C23—O24 −178.58 (19)
C14—N1—C13—C12 −7.9 (3) N1—C14—C23—O24 5.1 (3)
C2—N1—C13—C8 0.1 (2) C15—C14—C23—O22 0.6 (3)
C14—N1—C13—C8 174.22 (16) N1—C14—C23—O22 −175.71 (15)
C9—C8—C13—C12 −0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15···O24i 0.95 2.43 3.366 (2) 169
C11—H11···O22ii 0.95 2.58 3.522 (2) 170

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5627).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.
  3. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.
  4. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  5. Kapil, R. S. (1971). The Alkaloids, Vol. 13, pp. 273–302. New York: Academic Press.
  6. Letessier, J. (2011). PhD thesis. University of Mainz, Germany.
  7. Letessier, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o2341. [DOI] [PMC free article] [PubMed]
  8. Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc 107, 275–281.
  9. Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2853.
  10. Preis, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o987. [DOI] [PMC free article] [PubMed]
  11. Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett 6, 1–7.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Wakim, S., Bouichard, J., Simard, M., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4386–4388.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811034660/bt5627sup1.cif

e-67-o2494-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034660/bt5627Isup2.hkl

e-67-o2494-Isup2.hkl (138.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034660/bt5627Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES