Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2383. doi: 10.1107/S1600536811032934

1′-Methyl-4′-phenyldispiro­[indan-2,2′-pyrrolidine-3′,2′′-indan]-1,3,1′′-trione

Ang Chee Wei a, Mohamed Ashraf Ali a, Tan Soo Choon a, Ching Kheng Quah b,, Hoong-Kun Fun b,*,§
PMCID: PMC3200932  PMID: 22064935

Abstract

The conformation of the title compound, C27H21NO3, is stabilized by a weak intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif. The pyrrolidine ring adopts a half-chair conformation. Both of the other five-membered rings are in envelope conformations. No significant inter­molecular hydrogen bonds are observed.

Related literature

For general background to and the biological activity of the title compound, see: Amalraj et al. (2003); Karthikeyan et al. (2010); Chande et al. (2005); Sriram et al. (2009); Duncan & Barry (2004). For reference bond-length data, see: Allen et al. (1987). For related structures, see: Kumar et al. (2010); Wei et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-67-o2383-scheme1.jpg

Experimental

Crystal data

  • C27H21NO3

  • M r = 407.45

  • Monoclinic, Inline graphic

  • a = 8.4578 (7) Å

  • b = 11.6194 (9) Å

  • c = 22.6360 (16) Å

  • β = 109.693 (2)°

  • V = 2094.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.34 × 0.26 × 0.15 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.972, T max = 0.988

  • 23854 measured reflections

  • 6084 independent reflections

  • 3982 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.163

  • S = 1.03

  • 6084 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032934/wn2448sup1.cif

e-67-o2383-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032934/wn2448Isup2.hkl

e-67-o2383-Isup2.hkl (297.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27A⋯O2 0.97 2.42 3.069 (2) 124

Acknowledgments

The authors thank Universiti Sains Malaysia (USM), Penang, Malaysia for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Heterocyclic compounds, especially those with five- and six-membered rings have received considerable attention as a result of their diverse biological activities (Amalraj et al., 2003). Substituted pyrrolidine analogues have high potential in the treatment of tuberculosis (TB) (Karthikeyan et al., 2010). Tuberculosis, an illness caused by Mycobacterium tuberculosis, is the leading cause of worldwide death from infectious diseases (Chande et al., 2005). Problems arise when patients develop bacterial resistance to the first-line drugs and the second-line drugs are too toxic and cannot be employed simultaneously (Sriram et al., 2009). Therefore, there is an impetus for the development of new antitubercular agents to shorten the treatment regime and which are effective against drug-resistant strains of M. tuberculosis (Duncan & Barry, 2004).

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those in related crystal structures (Kumar et al., 2010; Wei et al., 2011).

The pyrrolidine ring (N1/C7/C8/C10/C19) is twisted about the C10—C19 bond, with puckering parameters (Cremer & Pople, 1975) Q = 0.4335 (17) Å and φ = 126.7 (2)°, thereby adopting a half-chair conformation. The two five-membered carbocyclic rings, C10-C12/C17/C18 and C19-C21/C26/C27, are in envelope conformations: puckering parameters Q = 0.1992 (17) Å and φ = 179.8 (5)° with atom C10 at the flap; and Q = 0.1879 (16) Å and φ = 355.8 (5)° with atom C19 at the flap, respectively.

If the three benzene rings C1–C6, C12–C17 and C21–C26 are denoted by R4, R5, R6 then the dihedral angles for R4^R5, R5^R6 and R4^R6 are 79.88 (11), 34.21 (9) and 82.39 (12)°, respectively.

The molecular structure is stabilized by an intramolecular C27–H27A···O2 hydrogen bond (Table 1), which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995). No significant intermolecular hydrogen bond is observed. There is a short contact of 1.94 Å between H5A and H8B.

Experimental

A mixture of (E)-(2-benzylidene)-2,3-dihydro-IH-indene-1-one (0.001 mmol), ninhydrin (0.001 mmol) and sarcosine (0.002 mmol) (1:1:2) was dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered, washed with water and recrystallised from a pet. ether - ethyl acetate mixture (1:1) to yield the title compound as yellow crystals.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.

Crystal data

C27H21NO3 F(000) = 856
Mr = 407.45 Dx = 1.292 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5963 reflections
a = 8.4578 (7) Å θ = 2.6–28.2°
b = 11.6194 (9) Å µ = 0.08 mm1
c = 22.6360 (16) Å T = 296 K
β = 109.693 (2)° Block, yellow
V = 2094.4 (3) Å3 0.34 × 0.26 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 6084 independent reflections
Radiation source: fine-focus sealed tube 3982 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.972, Tmax = 0.988 k = −15→16
23854 measured reflections l = −31→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.4081P] where P = (Fo2 + 2Fc2)/3
6084 reflections (Δ/σ)max = 0.001
281 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.34827 (16) 0.31094 (11) 0.95641 (6) 0.0717 (4)
O2 1.00814 (19) 0.39487 (11) 0.75292 (5) 0.0679 (4)
O3 0.98637 (17) 0.36481 (11) 0.97255 (5) 0.0622 (3)
N1 1.15973 (17) 0.19994 (11) 0.83324 (7) 0.0517 (3)
C1 0.7927 (4) 0.0968 (2) 0.94738 (12) 0.0926 (8)
H1A 0.8054 0.1696 0.9654 0.111*
C2 0.6731 (4) 0.0227 (2) 0.95567 (14) 0.1032 (9)
H2A 0.6047 0.0476 0.9778 0.124*
C3 0.6549 (3) −0.0845 (2) 0.93209 (12) 0.0863 (7)
H3A 0.5778 −0.1352 0.9390 0.104*
C4 0.7512 (4) −0.1166 (2) 0.89819 (17) 0.1153 (10)
H4A 0.7393 −0.1902 0.8812 0.138*
C5 0.8678 (3) −0.04216 (18) 0.88813 (14) 0.0938 (8)
H5A 0.9306 −0.0661 0.8637 0.113*
C6 0.89185 (19) 0.06577 (13) 0.91353 (7) 0.0457 (3)
C7 1.02348 (18) 0.14830 (12) 0.90680 (7) 0.0415 (3)
H7A 1.0976 0.1668 0.9494 0.050*
C8 1.1369 (2) 0.10356 (15) 0.87084 (10) 0.0607 (5)
H8A 1.2442 0.0783 0.8999 0.073*
H8B 1.0839 0.0394 0.8441 0.073*
C9 1.3153 (3) 0.2003 (2) 0.81922 (12) 0.0852 (7)
H9A 1.3127 0.2618 0.7906 0.128*
H9B 1.3275 0.1282 0.8005 0.128*
H9C 1.4084 0.2112 0.8573 0.128*
C10 1.11262 (17) 0.30515 (12) 0.85686 (7) 0.0414 (3)
C11 1.24588 (18) 0.36203 (13) 0.91420 (7) 0.0466 (3)
C12 1.22771 (17) 0.48842 (13) 0.90556 (7) 0.0424 (3)
C13 1.2992 (2) 0.57672 (14) 0.94769 (8) 0.0504 (4)
H13A 1.3671 0.5608 0.9886 0.060*
C14 1.2661 (2) 0.68821 (15) 0.92684 (9) 0.0575 (4)
H14A 1.3126 0.7485 0.9542 0.069*
C15 1.1648 (2) 0.71263 (15) 0.86571 (9) 0.0599 (4)
H15A 1.1453 0.7889 0.8529 0.072*
C16 1.0922 (2) 0.62575 (14) 0.82347 (8) 0.0523 (4)
H16A 1.0239 0.6422 0.7826 0.063*
C17 1.12528 (18) 0.51301 (13) 0.84439 (7) 0.0428 (3)
C18 1.07040 (19) 0.40499 (14) 0.80921 (7) 0.0461 (3)
C19 0.95609 (16) 0.26431 (12) 0.87430 (6) 0.0378 (3)
C20 0.91217 (19) 0.35346 (12) 0.91692 (7) 0.0428 (3)
C21 0.76765 (19) 0.42024 (13) 0.87730 (8) 0.0477 (4)
C22 0.7002 (3) 0.52158 (15) 0.89235 (11) 0.0663 (5)
H22A 0.7461 0.5559 0.9316 0.080*
C23 0.5639 (3) 0.5683 (2) 0.84708 (15) 0.0856 (7)
H23A 0.5155 0.6354 0.8555 0.103*
C24 0.4974 (3) 0.5161 (2) 0.78866 (14) 0.0898 (8)
H24A 0.4044 0.5491 0.7588 0.108*
C25 0.5656 (2) 0.41625 (19) 0.77349 (10) 0.0710 (6)
H25A 0.5206 0.3829 0.7340 0.085*
C26 0.70320 (18) 0.36772 (13) 0.81919 (8) 0.0477 (4)
C27 0.79686 (18) 0.25889 (13) 0.81565 (7) 0.0456 (3)
H27A 0.8256 0.2571 0.7776 0.055*
H27B 0.7304 0.1914 0.8167 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0569 (7) 0.0572 (7) 0.0736 (8) −0.0085 (6) −0.0143 (6) 0.0166 (6)
O2 0.0945 (10) 0.0639 (8) 0.0383 (6) −0.0176 (7) 0.0131 (6) 0.0000 (5)
O3 0.0805 (8) 0.0580 (7) 0.0440 (7) −0.0050 (6) 0.0155 (6) −0.0125 (5)
N1 0.0550 (7) 0.0446 (7) 0.0638 (9) −0.0008 (6) 0.0309 (7) −0.0027 (6)
C1 0.128 (2) 0.0670 (13) 0.119 (2) −0.0339 (13) 0.0878 (18) −0.0193 (13)
C2 0.122 (2) 0.0954 (19) 0.125 (2) −0.0344 (16) 0.0859 (18) −0.0022 (16)
C3 0.0723 (13) 0.0836 (16) 0.0965 (17) −0.0276 (12) 0.0200 (12) 0.0272 (13)
C4 0.119 (2) 0.0597 (14) 0.181 (3) −0.0419 (14) 0.069 (2) −0.0216 (17)
C5 0.0971 (16) 0.0507 (11) 0.155 (2) −0.0228 (11) 0.0698 (17) −0.0251 (13)
C6 0.0477 (7) 0.0391 (7) 0.0461 (8) −0.0035 (6) 0.0103 (6) 0.0053 (6)
C7 0.0449 (7) 0.0352 (7) 0.0431 (8) −0.0017 (5) 0.0130 (6) 0.0005 (6)
C8 0.0684 (11) 0.0437 (9) 0.0810 (13) 0.0068 (8) 0.0396 (10) 0.0044 (8)
C9 0.0804 (14) 0.0779 (14) 0.122 (2) 0.0045 (11) 0.0670 (14) 0.0036 (13)
C10 0.0420 (7) 0.0378 (7) 0.0428 (8) −0.0054 (5) 0.0120 (6) −0.0010 (6)
C11 0.0398 (7) 0.0463 (8) 0.0475 (8) −0.0071 (6) 0.0064 (6) 0.0056 (7)
C12 0.0391 (6) 0.0417 (7) 0.0457 (8) −0.0060 (6) 0.0131 (6) 0.0017 (6)
C13 0.0497 (8) 0.0520 (9) 0.0476 (8) −0.0098 (7) 0.0139 (7) −0.0029 (7)
C14 0.0677 (10) 0.0469 (9) 0.0613 (11) −0.0081 (8) 0.0260 (9) −0.0119 (8)
C15 0.0736 (11) 0.0420 (9) 0.0670 (11) 0.0037 (8) 0.0275 (9) 0.0034 (8)
C16 0.0571 (9) 0.0498 (9) 0.0498 (9) 0.0016 (7) 0.0176 (7) 0.0083 (7)
C17 0.0429 (7) 0.0429 (8) 0.0426 (8) −0.0046 (6) 0.0146 (6) 0.0033 (6)
C18 0.0485 (8) 0.0489 (8) 0.0396 (8) −0.0080 (6) 0.0132 (6) 0.0010 (6)
C19 0.0380 (6) 0.0349 (7) 0.0383 (7) −0.0038 (5) 0.0098 (5) −0.0032 (5)
C20 0.0477 (7) 0.0362 (7) 0.0453 (8) −0.0065 (6) 0.0170 (6) −0.0035 (6)
C21 0.0480 (8) 0.0405 (8) 0.0611 (10) 0.0006 (6) 0.0267 (7) 0.0062 (7)
C22 0.0780 (12) 0.0463 (9) 0.0926 (14) 0.0087 (8) 0.0524 (11) 0.0089 (9)
C23 0.0805 (14) 0.0618 (13) 0.134 (2) 0.0262 (11) 0.0619 (16) 0.0306 (14)
C24 0.0582 (11) 0.0838 (16) 0.129 (2) 0.0260 (11) 0.0339 (13) 0.0571 (16)
C25 0.0481 (9) 0.0771 (13) 0.0796 (13) 0.0005 (9) 0.0108 (9) 0.0307 (11)
C26 0.0370 (7) 0.0469 (8) 0.0578 (9) −0.0028 (6) 0.0141 (6) 0.0135 (7)
C27 0.0434 (7) 0.0443 (8) 0.0428 (8) −0.0079 (6) 0.0064 (6) −0.0026 (6)

Geometric parameters (Å, °)

O1—C11 1.2073 (18) C11—C12 1.483 (2)
O2—C18 1.2092 (18) C12—C13 1.393 (2)
O3—C20 1.2102 (18) C12—C17 1.393 (2)
N1—C10 1.4432 (19) C13—C14 1.375 (2)
N1—C9 1.454 (2) C13—H13A 0.9300
N1—C8 1.459 (2) C14—C15 1.389 (3)
C1—C6 1.362 (3) C14—H14A 0.9300
C1—C2 1.388 (3) C15—C16 1.384 (2)
C1—H1A 0.9300 C15—H15A 0.9300
C2—C3 1.344 (4) C16—C17 1.389 (2)
C2—H2A 0.9300 C16—H16A 0.9300
C3—C4 1.346 (4) C17—C18 1.475 (2)
C3—H3A 0.9300 C19—C27 1.5411 (19)
C4—C5 1.387 (3) C19—C20 1.5438 (19)
C4—H4A 0.9300 C20—C21 1.470 (2)
C5—C6 1.366 (3) C21—C26 1.384 (2)
C5—H5A 0.9300 C21—C22 1.400 (2)
C6—C7 1.515 (2) C22—C23 1.370 (3)
C7—C8 1.542 (2) C22—H22A 0.9300
C7—C19 1.549 (2) C23—C24 1.390 (4)
C7—H7A 0.9800 C23—H23A 0.9300
C8—H8A 0.9700 C24—C25 1.390 (3)
C8—H8B 0.9700 C24—H24A 0.9300
C9—H9A 0.9600 C25—C26 1.389 (2)
C9—H9B 0.9600 C25—H25A 0.9300
C9—H9C 0.9600 C26—C27 1.508 (2)
C10—C18 1.542 (2) C27—H27A 0.9700
C10—C11 1.551 (2) C27—H27B 0.9700
C10—C19 1.5766 (19)
C10—N1—C9 117.49 (14) C14—C13—C12 117.91 (16)
C10—N1—C8 109.06 (12) C14—C13—H13A 121.0
C9—N1—C8 115.95 (15) C12—C13—H13A 121.0
C6—C1—C2 121.8 (2) C13—C14—C15 121.34 (16)
C6—C1—H1A 119.1 C13—C14—H14A 119.3
C2—C1—H1A 119.1 C15—C14—H14A 119.3
C3—C2—C1 120.8 (2) C16—C15—C14 121.36 (16)
C3—C2—H2A 119.6 C16—C15—H15A 119.3
C1—C2—H2A 119.6 C14—C15—H15A 119.3
C2—C3—C4 118.2 (2) C15—C16—C17 117.45 (15)
C2—C3—H3A 120.9 C15—C16—H16A 121.3
C4—C3—H3A 120.9 C17—C16—H16A 121.3
C3—C4—C5 121.4 (2) C16—C17—C12 121.24 (14)
C3—C4—H4A 119.3 C16—C17—C18 128.89 (14)
C5—C4—H4A 119.3 C12—C17—C18 109.83 (13)
C6—C5—C4 121.1 (2) O2—C18—C17 126.70 (14)
C6—C5—H5A 119.4 O2—C18—C10 125.44 (14)
C4—C5—H5A 119.4 C17—C18—C10 107.82 (12)
C1—C6—C5 116.57 (17) C27—C19—C20 103.96 (11)
C1—C6—C7 120.11 (15) C27—C19—C7 116.64 (11)
C5—C6—C7 123.30 (16) C20—C19—C7 114.48 (12)
C6—C7—C8 116.63 (13) C27—C19—C10 111.13 (11)
C6—C7—C19 115.67 (12) C20—C19—C10 110.71 (11)
C8—C7—C19 103.73 (12) C7—C19—C10 100.09 (11)
C6—C7—H7A 106.7 O3—C20—C21 127.61 (14)
C8—C7—H7A 106.7 O3—C20—C19 125.02 (14)
C19—C7—H7A 106.7 C21—C20—C19 107.37 (12)
N1—C8—C7 106.11 (12) C26—C21—C22 122.67 (16)
N1—C8—H8A 110.5 C26—C21—C20 109.10 (13)
C7—C8—H8A 110.5 C22—C21—C20 128.23 (17)
N1—C8—H8B 110.5 C23—C22—C21 117.4 (2)
C7—C8—H8B 110.5 C23—C22—H22A 121.3
H8A—C8—H8B 108.7 C21—C22—H22A 121.3
N1—C9—H9A 109.5 C22—C23—C24 120.5 (2)
N1—C9—H9B 109.5 C22—C23—H23A 119.7
H9A—C9—H9B 109.5 C24—C23—H23A 119.7
N1—C9—H9C 109.5 C23—C24—C25 122.1 (2)
H9A—C9—H9C 109.5 C23—C24—H24A 119.0
H9B—C9—H9C 109.5 C25—C24—H24A 119.0
N1—C10—C18 113.94 (12) C26—C25—C24 117.9 (2)
N1—C10—C11 117.22 (13) C26—C25—H25A 121.0
C18—C10—C11 101.33 (11) C24—C25—H25A 121.0
N1—C10—C19 101.41 (11) C21—C26—C25 119.43 (17)
C18—C10—C19 112.68 (12) C21—C26—C27 111.98 (13)
C11—C10—C19 110.70 (11) C25—C26—C27 128.58 (17)
O1—C11—C12 127.32 (14) C26—C27—C19 104.01 (12)
O1—C11—C10 125.30 (15) C26—C27—H27A 111.0
C12—C11—C10 107.33 (12) C19—C27—H27A 111.0
C13—C12—C17 120.70 (14) C26—C27—H27B 111.0
C13—C12—C11 129.62 (14) C19—C27—H27B 111.0
C17—C12—C11 109.66 (13) H27A—C27—H27B 109.0
C6—C1—C2—C3 2.3 (5) N1—C10—C18—O2 32.0 (2)
C1—C2—C3—C4 −2.5 (5) C11—C10—C18—O2 158.81 (16)
C2—C3—C4—C5 0.7 (5) C19—C10—C18—O2 −82.9 (2)
C3—C4—C5—C6 1.5 (5) N1—C10—C18—C17 −145.92 (13)
C2—C1—C6—C5 0.0 (4) C11—C10—C18—C17 −19.09 (15)
C2—C1—C6—C7 −178.7 (2) C19—C10—C18—C17 99.24 (14)
C4—C5—C6—C1 −1.8 (4) C6—C7—C19—C27 −42.73 (18)
C4—C5—C6—C7 176.8 (2) C8—C7—C19—C27 86.27 (15)
C1—C6—C7—C8 176.65 (19) C6—C7—C19—C20 78.95 (15)
C5—C6—C7—C8 −1.9 (3) C8—C7—C19—C20 −152.06 (13)
C1—C6—C7—C19 −61.0 (2) C6—C7—C19—C10 −162.65 (12)
C5—C6—C7—C19 120.5 (2) C8—C7—C19—C10 −33.65 (14)
C10—N1—C8—C7 16.59 (18) N1—C10—C19—C27 −80.25 (14)
C9—N1—C8—C7 151.92 (17) C18—C10—C19—C27 41.96 (16)
C6—C7—C8—N1 140.91 (14) C11—C10—C19—C27 154.64 (12)
C19—C7—C8—N1 12.50 (17) N1—C10—C19—C20 164.75 (12)
C9—N1—C10—C18 66.1 (2) C18—C10—C19—C20 −73.04 (15)
C8—N1—C10—C18 −159.39 (14) C11—C10—C19—C20 39.63 (16)
C9—N1—C10—C11 −52.0 (2) N1—C10—C19—C7 43.60 (13)
C8—N1—C10—C11 82.57 (16) C18—C10—C19—C7 165.81 (12)
C9—N1—C10—C19 −172.61 (16) C11—C10—C19—C7 −81.52 (13)
C8—N1—C10—C19 −38.06 (16) C27—C19—C20—O3 162.64 (14)
N1—C10—C11—O1 −34.0 (2) C7—C19—C20—O3 34.26 (19)
C18—C10—C11—O1 −158.66 (17) C10—C19—C20—O3 −77.95 (18)
C19—C10—C11—O1 81.6 (2) C27—C19—C20—C21 −17.88 (14)
N1—C10—C11—C12 143.58 (13) C7—C19—C20—C21 −146.26 (12)
C18—C10—C11—C12 18.94 (15) C10—C19—C20—C21 101.54 (13)
C19—C10—C11—C12 −100.80 (14) O3—C20—C21—C26 −169.99 (15)
O1—C11—C12—C13 −13.2 (3) C19—C20—C21—C26 10.55 (16)
C10—C11—C12—C13 169.23 (15) O3—C20—C21—C22 10.7 (3)
O1—C11—C12—C17 165.01 (17) C19—C20—C21—C22 −168.81 (15)
C10—C11—C12—C17 −12.52 (16) C26—C21—C22—C23 0.6 (2)
C17—C12—C13—C14 −0.4 (2) C20—C21—C22—C23 179.92 (17)
C11—C12—C13—C14 177.69 (16) C21—C22—C23—C24 −0.3 (3)
C12—C13—C14—C15 0.0 (2) C22—C23—C24—C25 −0.5 (3)
C13—C14—C15—C16 0.4 (3) C23—C24—C25—C26 0.9 (3)
C14—C15—C16—C17 −0.3 (3) C22—C21—C26—C25 −0.2 (2)
C15—C16—C17—C12 0.0 (2) C20—C21—C26—C25 −179.63 (14)
C15—C16—C17—C18 −177.50 (16) C22—C21—C26—C27 −179.01 (14)
C13—C12—C17—C16 0.4 (2) C20—C21—C26—C27 1.59 (17)
C11—C12—C17—C16 −178.01 (14) C24—C25—C26—C21 −0.5 (3)
C13—C12—C17—C18 178.31 (13) C24—C25—C26—C27 178.03 (16)
C11—C12—C17—C18 −0.12 (17) C21—C26—C27—C19 −12.89 (16)
C16—C17—C18—O2 12.6 (3) C25—C26—C27—C19 168.47 (16)
C12—C17—C18—O2 −165.04 (16) C20—C19—C27—C26 18.05 (14)
C16—C17—C18—C10 −169.50 (15) C7—C19—C27—C26 145.09 (12)
C12—C17—C18—C10 12.82 (16) C10—C19—C27—C26 −101.08 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C27—H27A···O2 0.97 2.42 3.069 (2) 124

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2448).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Amalraj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143–1148. [DOI] [PubMed]
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Duncan, K. & Barry, C. E. (2004). Curr Opin Microbiol. 7, 460–465. [DOI] [PubMed]
  8. Karthikeyan, S. V., Devi Bala, B., Alex Raja, V. P., Perumal, S., Yogeeswari, P. & Sriram, D. (2010). Bioorg. Med. Chem. Lett. 20, 350–353. [DOI] [PubMed]
  9. Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540–o1541. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Sriram, D., Yogeeswari, P. & Priya, D. Y. (2009). Biomed. Pharmacother. 63, 36–39. [DOI] [PubMed]
  13. Wei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2381–o2382. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032934/wn2448sup1.cif

e-67-o2383-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032934/wn2448Isup2.hkl

e-67-o2383-Isup2.hkl (297.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES