Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2438. doi: 10.1107/S1600536811033563

3-Amino-1-(2H-1,3-benzodioxol-5-yl)-9,10-dihydro­phenanthrene-2,4-dicarbonitrile

Abdullah M Asiri a,b,, Abdulrahman O Al-Youbi a, Hassan M Faidallah a, Seik Weng Ng c, Edward R T Tiekink c,*
PMCID: PMC3200934  PMID: 22059011

Abstract

In the title compound, C23H15N3O2, significant deviations from planarity are evidenced in the values of the dihedral angles formed between the amino-benzene ring and the benzene rings of the 1,3-benzodioxole [65.38 (12)°] and 1,2-dihydro­naphthalene [26.27 (14)°] residues; the dioxole ring has an envelope conformation with the methyl­ene-C being the flap atom. The amino-H atoms form hydrogen bonds to one of the dioxole-O atoms and to one of the cyano-N atoms to generate a two-dimensional array with a zigzag topology that stacks along the (Inline graphic 0 2) plane.

Related literature

For background to the biological activity of related compounds, see: Aly et al. (1991); Al-Saadi et al. (2005); Rostom et al. (2011). For ring conformational analysis, see: Cremer & Pople (1975).graphic file with name e-67-o2438-scheme1.jpg

Experimental

Crystal data

  • C23H15N3O2

  • M r = 365.38

  • Monoclinic, Inline graphic

  • a = 8.9280 (6) Å

  • b = 22.4518 (13) Å

  • c = 8.9473 (6) Å

  • β = 109.058 (7)°

  • V = 1695.18 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

Data collection

  • Agilent Technologies SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.776, T max = 1.000

  • 9604 measured reflections

  • 3775 independent reflections

  • 2570 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.167

  • S = 1.02

  • 3775 reflections

  • 261 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033563/om2463sup1.cif

e-67-o2438-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033563/om2463Isup2.hkl

e-67-o2438-Isup2.hkl (185.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033563/om2463Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.88 (1) 2.40 (2) 3.231 (3) 157 (3)
N2—H2⋯N1ii 0.88 (1) 2.37 (2) 3.188 (3) 156 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The study of the title compound (I) was motivated by recent reports of the biological activity of related compounds (Aly et al., 1991; Al-Saadi et al., 2005; Rostom et al., 2011).

With respect to the amino-benzene ring, the benzene rings of the 1,3-benzodioxole and 1,2-dihydronaphthalene residues form dihedral angles of 65.38 (12) and 26.27 (14) °, respectively, indicating non-planarity in the molecule. The five-membered dioxole ring has an envelope conformation with the methylene-C23 atom being the flap atom. The Cremer & Pople (1975) parameters defining the five-membered ring are q2 = 0.182 (3) Å and φ2 = 324.8 (9) Å. In the 1,2-dihydronaphthalene residue, the cyclohexa-1,3-diene ring has a distorted half-chair conformation as defined by the following parameters (Cremer & Pople, 1975): q2 = 0.503 (3) Å, φ2 = 265.5 (3) °, q3 = -0.189 (3) Å, and puckering amplitude Q = 0.537 (3) Å.

In the crystal structure, supramolecular arrays with zigzag topology and running parallel to the (1 0 2) plane are formed through N—H···O(dioxole) and NH···N(cyano) hydrogen bonding Table 1 and Fig. 2.

Experimental

A mixture of the piperonaldehyde (1.5 g,10 mmol), 1-tetralone (1.46 g, 10 mmol), ethyl cyanoacetate (1.1 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool and the precipitate that formed was filtered, washed with water, dried and recrystallized from DMF; M.pt.: 549–551 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The amino-H atoms were located in a difference Fourier map, and subsequently refined freely. The maximum and minimum residual electron density peaks of 0.65 and 0.30 e Å-3, respectively, were located 0.92 Å and 0.65 Å from the H19 and C23 atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Supramolecular array in (I) viewed towards the (1 0 2) plane. The N—H···O and N—H···.N hydrogen bonds are shown as orange and blue dashed lines, respectively.

Crystal data

C23H15N3O2 F(000) = 760
Mr = 365.38 Dx = 1.432 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2779 reflections
a = 8.9280 (6) Å θ = 2.4–29.3°
b = 22.4518 (13) Å µ = 0.09 mm1
c = 8.9473 (6) Å T = 100 K
β = 109.058 (7)° Plate, orange
V = 1695.18 (19) Å3 0.25 × 0.25 × 0.05 mm
Z = 4

Data collection

Agilent Technologies SuperNova Dual diffractometer with Atlas detector 3775 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2570 reflections with I > 2σ(I)
mirror Rint = 0.042
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.6°
ω scan h = −9→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −29→24
Tmin = 0.776, Tmax = 1.000 l = −11→11
9604 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0527P)2 + 2.2435P] where P = (Fo2 + 2Fc2)/3
3775 reflections (Δ/σ)max < 0.001
261 parameters Δρmax = 0.65 e Å3
2 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4763 (2) 0.18869 (9) 0.8357 (2) 0.0314 (5)
O2 0.4316 (2) 0.28084 (9) 0.9262 (2) 0.0331 (5)
N1 1.3481 (3) 0.53871 (11) 0.9128 (3) 0.0338 (6)
N2 1.3145 (3) 0.40625 (12) 1.0585 (3) 0.0336 (6)
H1 1.344 (4) 0.3728 (9) 1.112 (4) 0.052 (11)*
H2 1.389 (3) 0.4315 (12) 1.058 (4) 0.046 (10)*
N3 1.1365 (3) 0.27041 (11) 1.0990 (3) 0.0334 (6)
C1 0.8958 (3) 0.37338 (12) 0.8347 (3) 0.0258 (6)
C2 0.8496 (3) 0.42563 (13) 0.7482 (3) 0.0272 (6)
C3 0.6849 (3) 0.43271 (14) 0.6300 (4) 0.0342 (7)
H3A 0.6205 0.4587 0.6746 0.041*
H3B 0.6323 0.3934 0.6065 0.041*
C4 0.6975 (3) 0.46015 (13) 0.4790 (3) 0.0306 (7)
H4A 0.7561 0.4329 0.4310 0.037*
H4B 0.5902 0.4663 0.4021 0.037*
C5 0.7827 (3) 0.51885 (12) 0.5167 (3) 0.0270 (6)
C6 0.7385 (3) 0.56661 (13) 0.4116 (4) 0.0297 (6)
H6 0.6541 0.5618 0.3148 0.036*
C7 0.8153 (3) 0.62062 (13) 0.4460 (4) 0.0343 (7)
H7 0.7874 0.6523 0.3717 0.041*
C8 0.9328 (4) 0.62819 (13) 0.5890 (4) 0.0360 (7)
H8 0.9838 0.6657 0.6145 0.043*
C9 0.9777 (3) 0.58157 (13) 0.6968 (4) 0.0312 (7)
H9 1.0571 0.5879 0.7962 0.037*
C10 0.9068 (3) 0.52541 (12) 0.6600 (3) 0.0263 (6)
C11 0.9590 (3) 0.47229 (12) 0.7635 (3) 0.0261 (6)
C12 1.1138 (3) 0.46557 (12) 0.8686 (3) 0.0240 (6)
C13 1.1643 (3) 0.41274 (12) 0.9576 (3) 0.0259 (6)
C14 1.0515 (3) 0.36702 (12) 0.9370 (3) 0.0243 (6)
C15 1.2379 (3) 0.50862 (12) 0.8885 (3) 0.0268 (6)
C16 1.0980 (3) 0.31309 (13) 1.0264 (3) 0.0271 (6)
C17 0.7828 (3) 0.32335 (13) 0.8240 (3) 0.0260 (6)
C18 0.8070 (3) 0.26822 (13) 0.7666 (3) 0.0304 (6)
H18 0.8925 0.2635 0.7265 0.037*
C19 0.7098 (3) 0.21922 (14) 0.7657 (3) 0.0315 (7)
H19 0.7270 0.1814 0.7264 0.038*
C20 0.5905 (3) 0.22874 (13) 0.8238 (3) 0.0274 (6)
C21 0.5615 (3) 0.28346 (13) 0.8782 (3) 0.0273 (6)
C22 0.6548 (3) 0.33250 (13) 0.8791 (3) 0.0278 (6)
H22 0.6335 0.3703 0.9151 0.033*
C23 0.3996 (4) 0.21835 (13) 0.9305 (4) 0.0326 (7)
H23A 0.4403 0.2035 1.0405 0.039*
H23B 0.2840 0.2110 0.8889 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0306 (11) 0.0281 (11) 0.0333 (11) −0.0128 (9) 0.0074 (8) −0.0032 (9)
O2 0.0300 (11) 0.0322 (12) 0.0402 (12) −0.0058 (9) 0.0157 (9) −0.0018 (9)
N1 0.0301 (13) 0.0236 (13) 0.0451 (15) −0.0017 (11) 0.0086 (11) 0.0032 (11)
N2 0.0231 (12) 0.0274 (15) 0.0453 (15) −0.0042 (11) 0.0046 (11) 0.0105 (12)
N3 0.0318 (13) 0.0273 (14) 0.0369 (14) −0.0058 (11) 0.0051 (11) 0.0039 (12)
C1 0.0254 (14) 0.0258 (15) 0.0292 (14) −0.0026 (11) 0.0131 (11) 0.0030 (12)
C2 0.0226 (13) 0.0283 (16) 0.0325 (15) −0.0007 (11) 0.0115 (11) 0.0044 (12)
C3 0.0238 (14) 0.0345 (18) 0.0443 (18) −0.0021 (13) 0.0112 (13) 0.0090 (14)
C4 0.0269 (14) 0.0267 (16) 0.0378 (16) −0.0010 (12) 0.0100 (12) 0.0064 (13)
C5 0.0237 (14) 0.0248 (15) 0.0378 (16) 0.0040 (11) 0.0171 (12) 0.0048 (12)
C6 0.0289 (15) 0.0259 (16) 0.0384 (16) 0.0069 (12) 0.0166 (12) 0.0063 (13)
C7 0.0349 (16) 0.0234 (16) 0.0483 (19) 0.0092 (13) 0.0187 (14) 0.0068 (14)
C8 0.0350 (16) 0.0185 (15) 0.057 (2) 0.0030 (12) 0.0178 (15) 0.0002 (14)
C9 0.0273 (14) 0.0246 (16) 0.0434 (17) 0.0053 (12) 0.0141 (13) 0.0003 (13)
C10 0.0219 (13) 0.0221 (15) 0.0397 (16) 0.0035 (11) 0.0165 (12) 0.0021 (12)
C11 0.0257 (14) 0.0245 (15) 0.0313 (15) 0.0018 (11) 0.0134 (11) 0.0017 (12)
C12 0.0232 (13) 0.0193 (14) 0.0339 (15) −0.0005 (11) 0.0151 (11) −0.0012 (12)
C13 0.0256 (14) 0.0218 (15) 0.0317 (15) −0.0014 (11) 0.0112 (11) 0.0008 (12)
C14 0.0252 (14) 0.0209 (14) 0.0288 (14) −0.0014 (11) 0.0114 (11) 0.0024 (11)
C15 0.0271 (14) 0.0217 (15) 0.0317 (15) 0.0023 (12) 0.0096 (11) 0.0023 (12)
C16 0.0211 (13) 0.0292 (16) 0.0306 (15) −0.0066 (12) 0.0081 (11) −0.0009 (13)
C17 0.0257 (14) 0.0275 (15) 0.0240 (14) −0.0042 (12) 0.0071 (11) 0.0043 (12)
C18 0.0275 (14) 0.0352 (17) 0.0271 (15) −0.0003 (13) 0.0070 (11) 0.0019 (13)
C19 0.0290 (15) 0.0331 (17) 0.0272 (15) 0.0010 (13) 0.0022 (12) −0.0021 (13)
C20 0.0294 (14) 0.0259 (15) 0.0210 (13) −0.0054 (12) 0.0002 (11) 0.0015 (11)
C21 0.0251 (14) 0.0363 (17) 0.0213 (13) −0.0030 (12) 0.0088 (11) 0.0035 (12)
C22 0.0315 (15) 0.0250 (15) 0.0279 (14) −0.0057 (12) 0.0109 (11) −0.0025 (12)
C23 0.0349 (16) 0.0278 (17) 0.0344 (16) −0.0083 (13) 0.0104 (13) 0.0011 (13)

Geometric parameters (Å, °)

O1—C20 1.389 (3) C7—C8 1.374 (4)
O1—C23 1.418 (3) C7—H7 0.9500
O2—C21 1.364 (3) C8—C9 1.391 (4)
O2—C23 1.435 (3) C8—H8 0.9500
N1—C15 1.154 (4) C9—C10 1.401 (4)
N2—C13 1.358 (4) C9—H9 0.9500
N2—H1 0.883 (10) C10—C11 1.488 (4)
N2—H2 0.877 (10) C11—C12 1.403 (4)
N3—C16 1.145 (4) C12—C13 1.418 (4)
C1—C2 1.392 (4) C12—C15 1.437 (4)
C1—C14 1.400 (4) C13—C14 1.407 (4)
C1—C17 1.492 (4) C14—C16 1.436 (4)
C2—C11 1.409 (4) C17—C18 1.384 (4)
C2—C3 1.513 (4) C17—C22 1.399 (4)
C3—C4 1.522 (4) C18—C19 1.400 (4)
C3—H3A 0.9900 C18—H18 0.9500
C3—H3B 0.9900 C19—C20 1.346 (4)
C4—C5 1.504 (4) C19—H19 0.9500
C4—H4A 0.9900 C20—C21 1.376 (4)
C4—H4B 0.9900 C21—C22 1.379 (4)
C5—C6 1.396 (4) C22—H22 0.9500
C5—C10 1.402 (4) C23—H23A 0.9900
C6—C7 1.378 (4) C23—H23B 0.9900
C6—H6 0.9500
C20—O1—C23 104.5 (2) C5—C10—C11 118.6 (2)
C21—O2—C23 104.3 (2) C12—C11—C2 119.0 (2)
C13—N2—H1 120 (2) C12—C11—C10 122.9 (2)
C13—N2—H2 121 (2) C2—C11—C10 118.0 (2)
H1—N2—H2 117 (3) C11—C12—C13 122.0 (2)
C2—C1—C14 120.1 (2) C11—C12—C15 124.2 (2)
C2—C1—C17 121.8 (2) C13—C12—C15 113.7 (2)
C14—C1—C17 118.1 (2) N2—C13—C14 121.2 (3)
C1—C2—C11 120.2 (3) N2—C13—C12 121.8 (2)
C1—C2—C3 121.4 (2) C14—C13—C12 117.0 (2)
C11—C2—C3 118.3 (2) C1—C14—C13 121.8 (3)
C2—C3—C4 109.1 (2) C1—C14—C16 119.7 (2)
C2—C3—H3A 109.9 C13—C14—C16 118.5 (2)
C4—C3—H3A 109.9 N1—C15—C12 173.0 (3)
C2—C3—H3B 109.9 N3—C16—C14 179.2 (3)
C4—C3—H3B 109.9 C18—C17—C22 120.4 (3)
H3A—C3—H3B 108.3 C18—C17—C1 120.9 (2)
C5—C4—C3 109.5 (2) C22—C17—C1 118.7 (3)
C5—C4—H4A 109.8 C17—C18—C19 122.3 (3)
C3—C4—H4A 109.8 C17—C18—H18 118.9
C5—C4—H4B 109.8 C19—C18—H18 118.9
C3—C4—H4B 109.8 C20—C19—C18 116.1 (3)
H4A—C4—H4B 108.2 C20—C19—H19 121.9
C6—C5—C10 120.1 (3) C18—C19—H19 121.9
C6—C5—C4 120.7 (3) C19—C20—C21 122.8 (3)
C10—C5—C4 119.2 (2) C19—C20—O1 128.3 (3)
C7—C6—C5 121.0 (3) C21—C20—O1 108.9 (2)
C7—C6—H6 119.5 O2—C21—C20 110.5 (2)
C5—C6—H6 119.5 O2—C21—C22 127.4 (3)
C8—C7—C6 119.3 (3) C20—C21—C22 122.1 (2)
C8—C7—H7 120.3 C21—C22—C17 116.2 (3)
C6—C7—H7 120.3 C21—C22—H22 121.9
C7—C8—C9 120.8 (3) C17—C22—H22 121.9
C7—C8—H8 119.6 O1—C23—O2 107.7 (2)
C9—C8—H8 119.6 O1—C23—H23A 110.2
C8—C9—C10 120.6 (3) O2—C23—H23A 110.2
C8—C9—H9 119.7 O1—C23—H23B 110.2
C10—C9—H9 119.7 O2—C23—H23B 110.2
C9—C10—C5 118.1 (3) H23A—C23—H23B 108.5
C9—C10—C11 123.3 (3)
C14—C1—C2—C11 −0.1 (4) C11—C12—C13—C14 −0.5 (4)
C17—C1—C2—C11 178.9 (2) C15—C12—C13—C14 −176.4 (2)
C14—C1—C2—C3 176.7 (3) C2—C1—C14—C13 0.9 (4)
C17—C1—C2—C3 −4.3 (4) C17—C1—C14—C13 −178.1 (2)
C1—C2—C3—C4 −135.0 (3) C2—C1—C14—C16 179.7 (3)
C11—C2—C3—C4 41.8 (4) C17—C1—C14—C16 0.7 (4)
C2—C3—C4—C5 −57.5 (3) N2—C13—C14—C1 179.3 (3)
C3—C4—C5—C6 −143.6 (3) C12—C13—C14—C1 −0.6 (4)
C3—C4—C5—C10 35.8 (3) N2—C13—C14—C16 0.5 (4)
C10—C5—C6—C7 0.1 (4) C12—C13—C14—C16 −179.4 (2)
C4—C5—C6—C7 179.5 (2) C2—C1—C17—C18 117.0 (3)
C5—C6—C7—C8 −2.8 (4) C14—C1—C17—C18 −64.0 (4)
C6—C7—C8—C9 1.9 (4) C2—C1—C17—C22 −65.5 (4)
C7—C8—C9—C10 1.7 (4) C14—C1—C17—C22 113.5 (3)
C8—C9—C10—C5 −4.2 (4) C22—C17—C18—C19 −2.1 (4)
C8—C9—C10—C11 174.4 (3) C1—C17—C18—C19 175.3 (3)
C6—C5—C10—C9 3.4 (4) C17—C18—C19—C20 0.1 (4)
C4—C5—C10—C9 −176.1 (2) C18—C19—C20—C21 1.5 (4)
C6—C5—C10—C11 −175.3 (2) C18—C19—C20—O1 179.3 (2)
C4—C5—C10—C11 5.2 (4) C23—O1—C20—C19 169.6 (3)
C1—C2—C11—C12 −1.0 (4) C23—O1—C20—C21 −12.3 (3)
C3—C2—C11—C12 −177.8 (3) C23—O2—C21—C20 11.9 (3)
C1—C2—C11—C10 175.7 (2) C23—O2—C21—C22 −168.8 (3)
C3—C2—C11—C10 −1.1 (4) C19—C20—C21—O2 178.4 (2)
C9—C10—C11—C12 −26.2 (4) O1—C20—C21—O2 0.2 (3)
C5—C10—C11—C12 152.4 (3) C19—C20—C21—C22 −1.0 (4)
C9—C10—C11—C2 157.2 (3) O1—C20—C21—C22 −179.2 (2)
C5—C10—C11—C2 −24.2 (4) O2—C21—C22—C17 179.7 (3)
C2—C11—C12—C13 1.3 (4) C20—C21—C22—C17 −1.0 (4)
C10—C11—C12—C13 −175.2 (2) C18—C17—C22—C21 2.5 (4)
C2—C11—C12—C15 176.7 (3) C1—C17—C22—C21 −174.9 (2)
C10—C11—C12—C15 0.2 (4) C20—O1—C23—O2 19.6 (3)
C11—C12—C13—N2 179.6 (3) C21—O2—C23—O1 −19.5 (3)
C15—C12—C13—N2 3.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1···O1i 0.88 (1) 2.40 (2) 3.231 (3) 157 (3)
N2—H2···N1ii 0.88 (1) 2.37 (2) 3.188 (3) 156 (3)

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) −x+3, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2463).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Al-Saadi, S. M., Rostom, S. A. F. & Faid Allah, H. M. (2005). Alexandria J. Pharm. Sci. 19, 15–21.
  3. Aly, A. S., El-Ezabawy, S. R. & Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827–834.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res DOI: 10.1007/s00044-010-9469-0.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033563/om2463sup1.cif

e-67-o2438-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033563/om2463Isup2.hkl

e-67-o2438-Isup2.hkl (185.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033563/om2463Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES