Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2414. doi: 10.1107/S1600536811033964

2-[5-Methyl-2-(propan-2-yl)phen­oxy]-N′-{2-[5-methyl-2-(propan-2-yl)phen­oxy]acet­yl}acetohydrazide

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3200946  PMID: 22059000

Abstract

The complete mol­ecule of the title compound, C24H32N2O4, is generated by a crystallographic inversion center. The 1,2-diethyl­hydrazine moiety is nearly planar, with a maximum deviation of 0.024 (1) Å, and is inclined at a dihedral angle of 54.20 (4)° with the phenyl ring. In the crystal, [001] chains are formed, with adjacent mol­ecules in the chain linked by pair of inter­molecular N—H⋯O hydrogen bonds, generating R 2 2(10) ring motifs. Inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions are also observed.

Related literature

For general background to and the biological activity of hydrazides, see: Bedia et al. (2006); Rollas et al. (2002); Terzioglu & Gürsoy (2003); Bratenko et al. (1999); Rai et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o2414-scheme1.jpg

Experimental

Crystal data

  • C24H32N2O4

  • M r = 412.52

  • Orthorhombic, Inline graphic

  • a = 23.6018 (8) Å

  • b = 11.2077 (4) Å

  • c = 8.6653 (3) Å

  • V = 2292.16 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.98 × 0.23 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.914, T max = 0.986

  • 38738 measured reflections

  • 3337 independent reflections

  • 2946 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.111

  • S = 1.04

  • 3337 reflections

  • 143 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033964/hb6377sup1.cif

e-67-o2414-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033964/hb6377Isup2.hkl

e-67-o2414-Isup2.hkl (163.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033964/hb6377Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.902 (16) 1.916 (15) 2.7759 (11) 158.8 (13)
C11—H11A⋯O2ii 0.96 2.58 3.4830 (14) 157
C7—H7BCg1iii 0.97 2.68 3.3706 (10) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Hydrazides have been demonstrated to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gürsoy, 2003). These are key intermediates in the preparation of hydrazones. Hydrazones are versatile intermediates and important building blocks. Hydrazones of aliphatic and aromatic methyl ketones yield pyrazole-4-carboxaldehyde on formylation with Vilsmeier reagent (Bratenko et al., 1999). Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Rai et al., 2008). The condensation of ethyl [5-methyl-2-(propan-2-yl)phenoxy]acetate with hydrazides of corresponding ester in presence of a catalytic amount of sodium acetate yielded the titled compound. The hydrazides are in turn obtained by refluxing ester with hydrazine hydrate in presence of ethanol .

The title molecule, Fig. 1, is lying across a crystallographic inversion center (symmetry code: -x+1, -y+1, -z). The 1,2-diethylhydrazine moeity (O2/O2A/N1/N1A/C7/C7A/C8/C8A) is nearly planar, with a maximum deviation of 0.024 (1) Å at atoms N1 and N1A, and is inclined at an angle of 54.20 (4)° with the phenyl ring (C1-C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing, the molecules are linked via a pair of intermolecular N1–H1N1···O2 hydrogen bonds (Table 1), generating R22 (10) ring motifs (Bernstein et al., 1995). The molecules are further linked into one-dimensional chains along [001] via adjacent ring motifs and intermolecular C11–H11A···O2 hydrogen bonds (Table 1). The crystal structure is further stabilized by C7—H7B···Cg1 (Table 1) interactions, where Cg1 is the centroid of the C1-C6 phenyl ring.

Experimental

2-[5-Methyl-2-(propan-2-yl)phenoxy]acethydrazide (0.01 mol) and ethyl [5-methyl-2-(propan-2-yl)phenoxy]acetate (0.01 mol) in ethanol and a catalytic amount of anhydrous sodium acetate was refluxed for 2-3 h. The excess of ethanol was removed by distillation and the reaction mixture was kept overnight. The solid product separated was filtered. It was then recrystallized from ethanol. Colourless needles were obtained from ethanol by slow evaporation.

Refinement

Atom H1N1 was located from the difference Fourier map and refined freely [N1–H1N1 = 0.902 (15) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C24H32N2O4 F(000) = 888
Mr = 412.52 Dx = 1.195 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 9950 reflections
a = 23.6018 (8) Å θ = 3.1–33.9°
b = 11.2077 (4) Å µ = 0.08 mm1
c = 8.6653 (3) Å T = 100 K
V = 2292.16 (14) Å3 Needle, colourless
Z = 4 0.98 × 0.23 × 0.18 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3337 independent reflections
Radiation source: fine-focus sealed tube 2946 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −33→33
Tmin = 0.914, Tmax = 0.986 k = −15→15
38738 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.8669P] where P = (Fo2 + 2Fc2)/3
3337 reflections (Δ/σ)max = 0.001
143 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.60698 (3) 0.34104 (6) 0.17205 (7) 0.01862 (15)
O2 0.56593 (3) 0.42523 (7) −0.18634 (8) 0.02124 (16)
N1 0.52505 (3) 0.48416 (8) 0.03709 (9) 0.01797 (17)
C1 0.62322 (4) 0.26903 (8) 0.42242 (10) 0.01853 (18)
C2 0.65864 (5) 0.26034 (9) 0.55037 (12) 0.0247 (2)
H2A 0.6462 0.2184 0.6366 0.030*
C3 0.71232 (5) 0.31277 (10) 0.55309 (12) 0.0268 (2)
H3A 0.7350 0.3050 0.6403 0.032*
C4 0.73205 (4) 0.37621 (9) 0.42683 (12) 0.0239 (2)
C5 0.69717 (4) 0.38699 (9) 0.29676 (11) 0.02033 (19)
H5A 0.7098 0.4294 0.2111 0.024*
C6 0.64369 (4) 0.33435 (8) 0.29522 (10) 0.01671 (18)
C7 0.62177 (4) 0.41673 (8) 0.04618 (10) 0.01788 (18)
H7A 0.6498 0.3780 −0.0186 0.021*
H7B 0.6377 0.4909 0.0843 0.021*
C8 0.56832 (4) 0.44162 (8) −0.04601 (10) 0.01595 (17)
C9 0.56630 (4) 0.20691 (9) 0.41279 (11) 0.02125 (19)
H9A 0.5411 0.2573 0.3507 0.026*
C10 0.57351 (5) 0.08855 (11) 0.32753 (16) 0.0363 (3)
H10A 0.5876 0.1034 0.2254 0.054*
H10B 0.5376 0.0487 0.3211 0.054*
H10C 0.5999 0.0391 0.3825 0.054*
C11 0.53764 (6) 0.18644 (10) 0.56823 (13) 0.0320 (2)
H11A 0.5353 0.2607 0.6232 0.048*
H11C 0.5594 0.1303 0.6274 0.048*
H11B 0.5002 0.1554 0.5520 0.048*
C12 0.78972 (5) 0.43480 (12) 0.42762 (15) 0.0352 (3)
H12A 0.8130 0.3984 0.5054 0.053*
H12B 0.7856 0.5183 0.4496 0.053*
H12C 0.8072 0.4249 0.3284 0.053*
H1N1 0.5294 (6) 0.5096 (13) 0.1351 (18) 0.032 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0197 (3) 0.0228 (3) 0.0134 (3) −0.0028 (2) −0.0038 (2) 0.0055 (2)
O2 0.0235 (3) 0.0287 (4) 0.0115 (3) 0.0021 (3) −0.0007 (2) −0.0008 (3)
N1 0.0171 (3) 0.0263 (4) 0.0106 (3) 0.0022 (3) −0.0028 (3) −0.0007 (3)
C1 0.0237 (4) 0.0160 (4) 0.0159 (4) 0.0038 (3) −0.0018 (3) 0.0012 (3)
C2 0.0354 (5) 0.0215 (4) 0.0173 (4) 0.0048 (4) −0.0064 (4) 0.0033 (4)
C3 0.0312 (5) 0.0261 (5) 0.0231 (5) 0.0085 (4) −0.0128 (4) −0.0026 (4)
C4 0.0205 (4) 0.0257 (5) 0.0256 (5) 0.0057 (4) −0.0065 (3) −0.0069 (4)
C5 0.0184 (4) 0.0234 (4) 0.0192 (4) 0.0015 (3) −0.0014 (3) −0.0018 (4)
C6 0.0190 (4) 0.0176 (4) 0.0135 (4) 0.0035 (3) −0.0033 (3) −0.0006 (3)
C7 0.0180 (4) 0.0227 (4) 0.0130 (4) −0.0008 (3) −0.0005 (3) 0.0038 (3)
C8 0.0185 (4) 0.0165 (4) 0.0128 (4) −0.0018 (3) −0.0006 (3) 0.0019 (3)
C9 0.0239 (4) 0.0211 (4) 0.0187 (4) 0.0008 (3) 0.0007 (3) 0.0036 (3)
C10 0.0315 (6) 0.0348 (6) 0.0426 (7) −0.0078 (5) 0.0047 (5) −0.0164 (5)
C11 0.0442 (6) 0.0270 (5) 0.0247 (5) −0.0059 (5) 0.0093 (5) 0.0048 (4)
C12 0.0208 (5) 0.0460 (7) 0.0389 (6) 0.0005 (4) −0.0086 (4) −0.0107 (5)

Geometric parameters (Å, °)

O1—C6 1.3767 (10) C5—H5A 0.9300
O1—C7 1.4252 (11) C7—C8 1.5189 (12)
O2—C8 1.2311 (11) C7—H7A 0.9700
N1—C8 1.3375 (11) C7—H7B 0.9700
N1—N1i 1.3922 (14) C9—C11 1.5246 (14)
N1—H1N1 0.902 (15) C9—C10 1.5279 (15)
C1—C2 1.3920 (13) C9—H9A 0.9800
C1—C6 1.4087 (13) C10—H10A 0.9600
C1—C9 1.5153 (13) C10—H10B 0.9600
C2—C3 1.3968 (16) C10—H10C 0.9600
C2—H2A 0.9300 C11—H11A 0.9600
C3—C4 1.3854 (16) C11—H11C 0.9600
C3—H3A 0.9300 C11—H11B 0.9600
C4—C5 1.4009 (13) C12—H12A 0.9600
C4—C12 1.5115 (15) C12—H12B 0.9600
C5—C6 1.3934 (13) C12—H12C 0.9600
C6—O1—C7 118.14 (7) O2—C8—N1 123.37 (8)
C8—N1—N1i 119.41 (9) O2—C8—C7 122.02 (8)
C8—N1—H1N1 122.2 (9) N1—C8—C7 114.61 (8)
N1i—N1—H1N1 116.8 (9) C1—C9—C11 114.44 (9)
C2—C1—C6 116.97 (9) C1—C9—C10 109.08 (8)
C2—C1—C9 122.97 (9) C11—C9—C10 110.24 (9)
C6—C1—C9 119.98 (8) C1—C9—H9A 107.6
C1—C2—C3 121.93 (10) C11—C9—H9A 107.6
C1—C2—H2A 119.0 C10—C9—H9A 107.6
C3—C2—H2A 119.0 C9—C10—H10A 109.5
C4—C3—C2 120.49 (9) C9—C10—H10B 109.5
C4—C3—H3A 119.8 H10A—C10—H10B 109.5
C2—C3—H3A 119.8 C9—C10—H10C 109.5
C3—C4—C5 118.83 (9) H10A—C10—H10C 109.5
C3—C4—C12 121.47 (9) H10B—C10—H10C 109.5
C5—C4—C12 119.69 (10) C9—C11—H11A 109.5
C6—C5—C4 120.22 (9) C9—C11—H11C 109.5
C6—C5—H5A 119.9 H11A—C11—H11C 109.5
C4—C5—H5A 119.9 C9—C11—H11B 109.5
O1—C6—C5 123.67 (8) H11A—C11—H11B 109.5
O1—C6—C1 114.77 (8) H11C—C11—H11B 109.5
C5—C6—C1 121.55 (8) C4—C12—H12A 109.5
O1—C7—C8 107.97 (7) C4—C12—H12B 109.5
O1—C7—H7A 110.1 H12A—C12—H12B 109.5
C8—C7—H7A 110.1 C4—C12—H12C 109.5
O1—C7—H7B 110.1 H12A—C12—H12C 109.5
C8—C7—H7B 110.1 H12B—C12—H12C 109.5
H7A—C7—H7B 108.4
C6—C1—C2—C3 −0.57 (14) C9—C1—C6—O1 3.50 (12)
C9—C1—C2—C3 176.25 (9) C2—C1—C6—C5 0.57 (13)
C1—C2—C3—C4 0.24 (16) C9—C1—C6—C5 −176.35 (8)
C2—C3—C4—C5 0.13 (15) C6—O1—C7—C8 −161.38 (7)
C2—C3—C4—C12 179.36 (10) N1i—N1—C8—O2 −2.20 (16)
C3—C4—C5—C6 −0.14 (14) N1i—N1—C8—C7 176.73 (10)
C12—C4—C5—C6 −179.38 (9) O1—C7—C8—O2 −127.62 (9)
C7—O1—C6—C5 −7.22 (13) O1—C7—C8—N1 53.43 (10)
C7—O1—C6—C1 172.93 (8) C2—C1—C9—C11 28.23 (13)
C4—C5—C6—O1 179.93 (9) C6—C1—C9—C11 −155.04 (9)
C4—C5—C6—C1 −0.23 (14) C2—C1—C9—C10 −95.77 (12)
C2—C1—C6—O1 −179.58 (8) C6—C1—C9—C10 80.96 (11)

Symmetry codes: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2ii 0.902 (16) 1.916 (15) 2.7759 (11) 158.8 (13)
C11—H11A···O2iii 0.96 2.58 3.4830 (14) 157
C7—H7B···Cg1iv 0.97 2.68 3.3706 (10) 129

Symmetry codes: (ii) x, −y+1, z+1/2; (iii) x, y, z+1; (iv) −x−1/2, y+1/2, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6377).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bratenko, M. K., Chornous, V. A., Voloshin, N. P. & Vovk, M. V. (1999). Chem. Heterocycl. Compd, 35, 1075–1077.
  5. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  7. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  8. Rollas, S., Gulerman, N. & Erdeniz, H. (2002). Il Farmaco, 57, 171–174. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033964/hb6377sup1.cif

e-67-o2414-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033964/hb6377Isup2.hkl

e-67-o2414-Isup2.hkl (163.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033964/hb6377Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES