Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2513. doi: 10.1107/S1600536811034775

2-Amino­pyridin-3-ol

Richard Betz a,*, Thomas Gerber a, Eric Hosten a, Henk Schalekamp a
PMCID: PMC3200947  PMID: 22059053

Abstract

The molecule of the title pyridine derivative, C5H6N2O, shows approximate C s symmetry. Intra­cyclic angles cover the range 118.34 (10)–123.11 (10)°. In the crystal, O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds connect the mol­ecules into double layers perpendicular to the a axis. The shortest centroid–centroid distance between two π-systems is 3.8887 (7) Å.

Related literature

For the crystal structure of 2,3-diamino­pyridine, see: Betz et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For general information about the chelate effect in coordination chemistry, see: Gade (1998).graphic file with name e-67-o2513-scheme1.jpg

Experimental

Crystal data

  • C5H6N2O

  • M r = 110.12

  • Monoclinic, Inline graphic

  • a = 12.5310 (6) Å

  • b = 3.8887 (2) Å

  • c = 11.6042 (5) Å

  • β = 113.139 (2)°

  • V = 519.98 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.29 × 0.25 × 0.13 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 4820 measured reflections

  • 1289 independent reflections

  • 1008 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.117

  • S = 1.13

  • 1289 reflections

  • 81 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811034775/bh2372sup1.cif

e-67-o2513-sup1.cif (12.2KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811034775/bh2372Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034775/bh2372Isup3.hkl

e-67-o2513-Isup3.hkl (63.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034775/bh2372Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.85 2.6639 (12) 172
N2—H71⋯O1ii 0.870 (17) 2.276 (17) 3.0184 (13) 143.2 (12)
N2—H72⋯N2iii 0.895 (18) 2.358 (17) 3.1249 (15) 143.8 (15)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Mrs Valerie Jacobs for helpful discussions.

supplementary crystallographic information

Comment

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant metal complexes in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different donor atoms, a molecular set-up to accommodate a large variety of metal centers of variable Lewis acidity is at hand. In this aspect, the title compound seemed interesting due to its use as strictly neutral or – depending on the pH value – as anionic or cationic ligand. Furthermore, thanks to the presence of three possible donor atoms, the title compound might serve as a building block in the formation of metal-organic framework structures. At the beginning of a more comprehensive study to elucidate the formation of coordination polymers featuring mixed N,O ligands, we determined the structure of the title compound to enable comparative studies of metrical parameters in envisioned reaction products. Information about the molecular and crystal structure of 2,3-diaminopyridine is apparent in the literature (Betz et al., 2011).

Intracyclic angles range from 118.34 (10) ° to 123.11 (10) ° with the smallest angle found on the carbon atom bearing the hydroxyl group and the largest angle found on the unsubstituted carbon atom in ortho position to the intracyclic N atom. The molecule is essentially planar (r.m.s. of all fitted non-hydrogen atoms = 0.0092 Å). The amino group is not planar, the least-squares planes defined by the atoms of the heterocycle on the one hand and the atoms of the NH2 group on the other hand group enclose an angle of 30.73(1.69) ° (Fig. 1).

The crystal structure of the title compound is marked by hydrogen bonds (Fig. 2). While the hydroxyl group forms a hydrogen bond to the intracyclic N atom (and its O atom acts as acceptor for one of the NH2 supported hydrogen bonds), there is also a cooperative hydrogen bonding system of the NH2···NH2-type. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these interactions on the unitary level is C11(2)C11(5)C11(5). In total, the molecules are connected to double layers perpendicular to the crystallographic a axis. The shortest intercentroid distance between two π-systems was measured at 3.8887 (7) Å.

The packing of the title compound in the crystal is shown in Figure 3.

Experimental

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided compound.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl group was placed in a calculated position (O—H 0.82 Å) and was included in the refinement in the riding model approximation, with U(H) set to 1.5Ueq(O). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed approximately along [-1 - 1 -1]. Symmetry operators: ix, -y + 3/2, z + 1/2; ii -x + 1, -y + 1, -z + 1; iii -x + 1, y - 1/2, -z + 1/2; vi -x + 1, y + 1/2, -z + 1/2; vx, -y + 3/2, z - 1/2.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C5H6N2O F(000) = 232
Mr = 110.12 Dx = 1.407 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2447 reflections
a = 12.5310 (6) Å θ = 3.5–28.1°
b = 3.8887 (2) Å µ = 0.10 mm1
c = 11.6042 (5) Å T = 200 K
β = 113.139 (2)° Block, brown
V = 519.98 (4) Å3 0.29 × 0.25 × 0.13 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1008 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
graphite θmax = 28.3°, θmin = 1.8°
φ and ω scans h = −15→16
4820 measured reflections k = −5→3
1289 independent reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.0455P] where P = (Fo2 + 2Fc2)/3
1289 reflections (Δ/σ)max < 0.001
81 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.22 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.36008 (7) 0.7180 (3) 0.48635 (7) 0.0334 (3)
H1 0.3249 0.7262 0.5328 0.050*
N1 0.26183 (8) 0.7983 (3) 0.15240 (8) 0.0262 (3)
N2 0.43131 (8) 0.5713 (3) 0.30122 (10) 0.0290 (3)
H71 0.4673 (14) 0.495 (4) 0.3773 (16) 0.037 (4)*
H72 0.4404 (14) 0.444 (5) 0.2414 (17) 0.051 (5)*
C1 0.32537 (9) 0.7224 (3) 0.27173 (10) 0.0223 (3)
C2 0.28799 (9) 0.8073 (3) 0.36913 (10) 0.0233 (3)
C3 0.18289 (10) 0.9681 (3) 0.33747 (11) 0.0273 (3)
H3 0.1558 1.0290 0.4006 0.033*
C4 0.11580 (10) 1.0419 (3) 0.21157 (11) 0.0302 (3)
H4 0.0424 1.1509 0.1877 0.036*
C5 0.15829 (10) 0.9537 (3) 0.12361 (10) 0.0300 (3)
H5 0.1127 1.0043 0.0382 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0280 (5) 0.0579 (6) 0.0161 (4) 0.0062 (4) 0.0109 (4) 0.0035 (4)
N1 0.0277 (5) 0.0355 (6) 0.0170 (5) −0.0017 (4) 0.0103 (4) 0.0006 (4)
N2 0.0275 (5) 0.0420 (7) 0.0207 (5) 0.0060 (4) 0.0129 (4) 0.0020 (4)
C1 0.0237 (6) 0.0271 (6) 0.0182 (5) −0.0031 (4) 0.0106 (4) −0.0002 (4)
C2 0.0246 (6) 0.0300 (6) 0.0167 (5) −0.0025 (4) 0.0096 (4) −0.0004 (4)
C3 0.0284 (6) 0.0337 (7) 0.0235 (6) −0.0001 (5) 0.0143 (5) −0.0026 (5)
C4 0.0251 (6) 0.0360 (7) 0.0297 (6) 0.0045 (5) 0.0109 (5) 0.0028 (5)
C5 0.0280 (6) 0.0399 (7) 0.0197 (5) 0.0003 (5) 0.0069 (4) 0.0047 (5)

Geometric parameters (Å, °)

O1—C2 1.3496 (13) C1—C2 1.4219 (14)
O1—H1 0.8200 C2—C3 1.3712 (16)
N1—C1 1.3312 (14) C3—C4 1.3994 (16)
N1—C5 1.3490 (15) C3—H3 0.9500
N2—C1 1.3667 (14) C4—C5 1.3675 (16)
N2—H71 0.870 (17) C4—H4 0.9500
N2—H72 0.895 (18) C5—H5 0.9500
C2—O1—H1 109.5 C3—C2—C1 118.34 (10)
C1—N1—C5 118.74 (9) C2—C3—C4 119.53 (10)
C1—N2—H71 117.7 (9) C2—C3—H3 120.2
C1—N2—H72 116.8 (11) C4—C3—H3 120.2
H71—N2—H72 115.2 (15) C5—C4—C3 118.52 (11)
N1—C1—N2 118.74 (9) C5—C4—H4 120.7
N1—C1—C2 121.74 (10) C3—C4—H4 120.7
N2—C1—C2 119.46 (10) N1—C5—C4 123.11 (10)
O1—C2—C3 125.40 (9) N1—C5—H5 118.4
O1—C2—C1 116.25 (10) C4—C5—H5 118.4
C5—N1—C1—N2 −178.69 (10) O1—C2—C3—C4 −179.09 (11)
C5—N1—C1—C2 −1.36 (18) C1—C2—C3—C4 0.32 (18)
N1—C1—C2—O1 −179.79 (10) C2—C3—C4—C5 −0.72 (19)
N2—C1—C2—O1 −2.49 (17) C1—N1—C5—C4 0.94 (19)
N1—C1—C2—C3 0.74 (18) C3—C4—C5—N1 0.1 (2)
N2—C1—C2—C3 178.05 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 1.85 2.6639 (12) 172.
N2—H71···O1ii 0.870 (17) 2.276 (17) 3.0184 (13) 143.2 (12)
N2—H72···N2iii 0.895 (18) 2.358 (17) 3.1249 (15) 143.8 (15)

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2372).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Betz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011). Acta Cryst. E67, o2154. [DOI] [PMC free article] [PubMed]
  3. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811034775/bh2372sup1.cif

e-67-o2513-sup1.cif (12.2KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811034775/bh2372Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034775/bh2372Isup3.hkl

e-67-o2513-Isup3.hkl (63.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034775/bh2372Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES