Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2432. doi: 10.1107/S1600536811033344

(3-Benzoyl­phen­yl)(phen­yl)methanone

Ahmed Raza Ahsraf a, Zareen Akhter a,*, Michael Bolte b
PMCID: PMC3200948  PMID: 22059009

Abstract

Mol­ecules of the title compound, C20H14O2, show approximate C s symmetry with the approximate mirror plane perpendicular to the central ring. The torsion angles about the acyclic bonds are 30.05 (15) and 30.77 (15)° in one half compared to −36.62 (14) and −18.60 (15)° in the other half of the mol­ecule. The central aromatic ring makes dihedral angles of 47.78 (4) and 51.68 (3)° with the two terminal rings.

Related literature

For background to diaryl­ketones, see: Olah (1964); Szmant (1989); March (1992). For the synthesis of benzoyl­benzene and its derivatives, see: Karrer et al. (2000); Kowalski et al. (2005). For its natural occurrence, see: Baggett et al. (2005); Chiang et al. (2003); Bernardi, et al. (2005); Kulanthaivel et al. (1993); Iijima et al. (2004). For applications of these compounds, see: Bohm et al. (2001); Chan et al. (2004); Bagheri et al. (2000); Husain et al. (2006).graphic file with name e-67-o2432-scheme1.jpg

Experimental

Crystal data

  • C20H14O2

  • M r = 286.31

  • Orthorhombic, Inline graphic

  • a = 16.2029 (5) Å

  • b = 7.8648 (4) Å

  • c = 22.8422 (8) Å

  • V = 2910.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.45 × 0.45 × 0.43 mm

Data collection

  • Stoe IPDS II two-circle diffractometer

  • 40513 measured reflections

  • 3653 independent reflections

  • 3095 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.101

  • S = 1.05

  • 3653 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033344/fy2021sup1.cif

e-67-o2432-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033344/fy2021Isup2.hkl

e-67-o2432-Isup2.hkl (179.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033344/fy2021Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Dibenzoylbenzene represents the class of diarylketones in which a carbonyl group is present between two phenyl rings. The parent diarylketone is benzoylbenzene, which is also known as benzophenone and is a widely used as a building block in organic synthesis. Benzoylbenzene and its derivatives are important chemicals or intermediates in the dyes, pharmaceutical, pesticide and other chemical industries (Olah, 1964; Szmant, 1989; March, 1992). In the pharmaceutical industry, these are used as farnesyltransferase inhibitors (Bohm et al., 2001) and non-nucleoside reverse transcriptase inhibitors of HIV-1 (Chan et al., 2004) and are renowned to be effective anesthetics (Husain et al., 2006) and the strongest photosensitizer among non-steroidal anti-inflammatory drugs (Bagheri et al., 2000). In the fragrance industry, benzoylbenzene is a useful additive in perfumes, colognes and scented soaps. Symmetrical and unsymmetrical benzoylbenzenes functionalized with electron-donating or withdrawing groups are found in a large number of plants of the Guttiferae family (Baggett et al., 2005; Chiang et al., 2003). In the past few decades, numerous natural products bearing a benzoylbenzene architecture have been reported such as cariphenones A and B (Bernardi et al., 2005), balanol (Kulanthaivel et al., 1993), and pestalone (Iijima et al., 2004). The chemistry of symmetrical and unsymmetrical benzoylbenzene includes many synthetic methods. Generally benzoylbenzene and its derivatives are prepared via Friedel–Crafts acylation of aromatic compounds catalyzed by Lewis acids, such as AlCl3, BF3, TiCl4, or ZnCl2 (Karrer et al., 2000; Kowalski et al., 2005). The title compound was synthesized successfully in an attempt to prepare dibenzoylbenzene compounds.

Experimental

For the synthesis of 1,3-dibenzoylbenzene, a 250 ml three-necked round bottomed flask equipped with a thermometer and a magnetic stirrer was charged with 20 milliliters of benzene and 19 g (0.15 mole) of anhydrous aluminium chloride (AlCl3). Then 9 g (0.044 mole) of isophathaloyl chloride was gradually added into the flask over a period of 2 h. During this addition, the temperature of the reaction mixture was maintained at 285–291 K. After the addition was complete, the reaction was continued at 291 K for another 4 h. The mixture was slowly heated to 313 K and kept at that temperature for 2h. Finally, the reaction mixture was cooled and poured into 200 ml of aqueous HCl solution. Some white solid precipitated out, which was filtered, washed with ethanol and the crude product obtained was recrystallized from petroleum ether (b.p. 333–363 K). The related yield is 80% and melting point of the product is 378 K. For the growth of single crystals the compound was dissolved in petroleum ether (b.p. 333–363 K) and set aside for crystallization.

Refinement

H atoms were geometrically positioned and refined using a riding model with C—H = 0.95Å and U(H) set to 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C20H14O2 F(000) = 1200
Mr = 286.31 Dx = 1.307 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 32870 reflections
a = 16.2029 (5) Å θ = 2.7–28.7°
b = 7.8648 (4) Å µ = 0.08 mm1
c = 22.8422 (8) Å T = 173 K
V = 2910.8 (2) Å3 Block, colourless
Z = 8 0.45 × 0.45 × 0.43 mm

Data collection

Stoe IPDS II two-circle diffractometer 3095 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.050
graphite θmax = 28.4°, θmin = 3.0°
ω scans h = −21→21
40513 measured reflections k = −10→10
3653 independent reflections l = −29→30

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.4425P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3653 reflections Δρmax = 0.28 e Å3
200 parameters Δρmin = −0.15 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0128 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.57553 (5) 0.26790 (13) 0.50072 (4) 0.0480 (2)
O2 0.72489 (5) 0.52781 (15) 0.23112 (4) 0.0539 (3)
C1 0.60337 (6) 0.42835 (12) 0.41666 (4) 0.0262 (2)
C2 0.60051 (6) 0.42295 (12) 0.35545 (4) 0.0259 (2)
H2 0.5597 0.3564 0.3363 0.031*
C3 0.65756 (6) 0.51526 (13) 0.32241 (4) 0.0286 (2)
C4 0.71769 (6) 0.61245 (13) 0.35094 (5) 0.0334 (2)
H4 0.7570 0.6743 0.3286 0.040*
C5 0.72029 (7) 0.61901 (13) 0.41153 (5) 0.0347 (2)
H5 0.7607 0.6866 0.4306 0.042*
C6 0.66382 (6) 0.52687 (13) 0.44426 (5) 0.0304 (2)
H6 0.6662 0.5306 0.4858 0.036*
C7 0.54757 (6) 0.32464 (13) 0.45492 (4) 0.0293 (2)
C8 0.65929 (7) 0.50879 (14) 0.25675 (5) 0.0338 (2)
C11 0.45990 (6) 0.29171 (12) 0.43842 (4) 0.0268 (2)
C12 0.41725 (6) 0.38926 (13) 0.39722 (4) 0.0303 (2)
H12 0.4445 0.4802 0.3778 0.036*
C13 0.33493 (7) 0.35381 (15) 0.38441 (5) 0.0365 (2)
H13 0.3063 0.4198 0.3561 0.044*
C14 0.29496 (7) 0.22188 (15) 0.41305 (6) 0.0400 (3)
H14 0.2388 0.1978 0.4044 0.048*
C15 0.33652 (7) 0.12507 (14) 0.45422 (5) 0.0378 (3)
H15 0.3089 0.0347 0.4736 0.045*
C16 0.41827 (6) 0.15987 (13) 0.46714 (5) 0.0312 (2)
H16 0.4463 0.0938 0.4957 0.037*
C21 0.58125 (6) 0.47839 (13) 0.22351 (4) 0.0300 (2)
C22 0.50446 (7) 0.53230 (13) 0.24428 (5) 0.0313 (2)
H22 0.5006 0.5873 0.2812 0.038*
C23 0.43365 (7) 0.50573 (15) 0.21107 (5) 0.0371 (2)
H23 0.3815 0.5417 0.2254 0.044*
C24 0.43937 (8) 0.42670 (15) 0.15702 (5) 0.0400 (3)
H24 0.3910 0.4086 0.1344 0.048*
C25 0.51537 (9) 0.37388 (15) 0.13580 (5) 0.0414 (3)
H25 0.5190 0.3199 0.0987 0.050*
C26 0.58596 (8) 0.39992 (15) 0.16880 (5) 0.0375 (3)
H26 0.6380 0.3641 0.1541 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0428 (5) 0.0614 (6) 0.0398 (5) −0.0123 (4) −0.0126 (4) 0.0191 (4)
O2 0.0303 (4) 0.0890 (7) 0.0425 (5) −0.0035 (4) 0.0115 (4) 0.0008 (5)
C1 0.0234 (4) 0.0247 (4) 0.0305 (5) 0.0028 (3) −0.0006 (4) −0.0009 (4)
C2 0.0228 (4) 0.0243 (4) 0.0307 (5) 0.0014 (3) −0.0005 (4) −0.0021 (4)
C3 0.0241 (5) 0.0278 (5) 0.0338 (5) 0.0032 (4) 0.0029 (4) −0.0005 (4)
C4 0.0251 (5) 0.0303 (5) 0.0448 (6) −0.0021 (4) 0.0041 (4) −0.0002 (4)
C5 0.0273 (5) 0.0323 (5) 0.0444 (6) −0.0034 (4) −0.0023 (4) −0.0075 (4)
C6 0.0268 (5) 0.0308 (5) 0.0336 (5) 0.0027 (4) −0.0029 (4) −0.0049 (4)
C7 0.0290 (5) 0.0301 (5) 0.0287 (5) −0.0004 (4) −0.0017 (4) 0.0011 (4)
C8 0.0283 (5) 0.0387 (5) 0.0344 (5) 0.0019 (4) 0.0063 (4) 0.0018 (4)
C11 0.0256 (5) 0.0274 (4) 0.0273 (4) 0.0014 (4) 0.0024 (3) −0.0031 (4)
C12 0.0285 (5) 0.0316 (5) 0.0310 (5) 0.0020 (4) 0.0018 (4) 0.0003 (4)
C13 0.0298 (5) 0.0404 (6) 0.0393 (6) 0.0054 (4) −0.0045 (4) −0.0026 (5)
C14 0.0268 (5) 0.0412 (6) 0.0520 (7) −0.0019 (4) −0.0020 (5) −0.0085 (5)
C15 0.0321 (5) 0.0326 (5) 0.0487 (6) −0.0049 (4) 0.0081 (5) −0.0024 (5)
C16 0.0311 (5) 0.0285 (5) 0.0340 (5) 0.0014 (4) 0.0039 (4) 0.0002 (4)
C21 0.0314 (5) 0.0305 (5) 0.0282 (5) −0.0004 (4) 0.0046 (4) 0.0032 (4)
C22 0.0315 (5) 0.0325 (5) 0.0299 (5) 0.0023 (4) 0.0019 (4) 0.0011 (4)
C23 0.0328 (5) 0.0389 (6) 0.0394 (6) −0.0002 (4) −0.0020 (4) 0.0079 (5)
C24 0.0467 (7) 0.0364 (6) 0.0369 (5) −0.0107 (5) −0.0092 (5) 0.0086 (5)
C25 0.0601 (8) 0.0362 (6) 0.0278 (5) −0.0078 (5) 0.0007 (5) 0.0007 (4)
C26 0.0435 (6) 0.0388 (6) 0.0302 (5) 0.0000 (5) 0.0097 (4) 0.0011 (4)

Geometric parameters (Å, °)

O1—C7 1.2242 (12) C12—H12 0.9500
O2—C8 1.2227 (13) C13—C14 1.3870 (17)
C1—C6 1.3989 (14) C13—H13 0.9500
C1—C2 1.3995 (13) C14—C15 1.3847 (17)
C1—C7 1.4990 (14) C14—H14 0.9500
C2—C3 1.3969 (14) C15—C16 1.3844 (15)
C2—H2 0.9500 C15—H15 0.9500
C3—C4 1.3993 (15) C16—H16 0.9500
C3—C8 1.5009 (15) C21—C26 1.3958 (15)
C4—C5 1.3857 (16) C21—C22 1.3975 (14)
C4—H4 0.9500 C22—C23 1.3913 (16)
C5—C6 1.3861 (15) C22—H22 0.9500
C5—H5 0.9500 C23—C24 1.3852 (17)
C6—H6 0.9500 C23—H23 0.9500
C7—C11 1.4923 (14) C24—C25 1.3870 (19)
C8—C21 1.4942 (15) C24—H24 0.9500
C11—C12 1.3970 (14) C25—C26 1.3851 (18)
C11—C16 1.4002 (14) C25—H25 0.9500
C12—C13 1.3937 (15) C26—H26 0.9500
C6—C1—C2 119.36 (9) C14—C13—C12 119.83 (10)
C6—C1—C7 117.45 (9) C14—C13—H13 120.1
C2—C1—C7 123.09 (9) C12—C13—H13 120.1
C3—C2—C1 120.13 (9) C15—C14—C13 120.31 (10)
C3—C2—H2 119.9 C15—C14—H14 119.8
C1—C2—H2 119.9 C13—C14—H14 119.8
C2—C3—C4 119.54 (9) C16—C15—C14 120.09 (10)
C2—C3—C8 122.32 (9) C16—C15—H15 120.0
C4—C3—C8 118.09 (9) C14—C15—H15 120.0
C5—C4—C3 120.44 (10) C15—C16—C11 120.49 (10)
C5—C4—H4 119.8 C15—C16—H16 119.8
C3—C4—H4 119.8 C11—C16—H16 119.8
C4—C5—C6 119.95 (10) C26—C21—C22 119.12 (10)
C4—C5—H5 120.0 C26—C21—C8 118.65 (10)
C6—C5—H5 120.0 C22—C21—C8 122.17 (9)
C5—C6—C1 120.57 (10) C23—C22—C21 120.23 (10)
C5—C6—H6 119.7 C23—C22—H22 119.9
C1—C6—H6 119.7 C21—C22—H22 119.9
O1—C7—C11 120.32 (9) C24—C23—C22 119.88 (11)
O1—C7—C1 118.25 (9) C24—C23—H23 120.1
C11—C7—C1 121.42 (8) C22—C23—H23 120.1
O2—C8—C21 120.79 (10) C23—C24—C25 120.34 (11)
O2—C8—C3 119.38 (10) C23—C24—H24 119.8
C21—C8—C3 119.83 (9) C25—C24—H24 119.8
C12—C11—C16 118.95 (9) C26—C25—C24 119.91 (10)
C12—C11—C7 123.07 (9) C26—C25—H25 120.0
C16—C11—C7 117.95 (9) C24—C25—H25 120.0
C13—C12—C11 120.33 (10) C25—C26—C21 120.50 (11)
C13—C12—H12 119.8 C25—C26—H26 119.8
C11—C12—H12 119.8 C21—C26—H26 119.8
C6—C1—C2—C3 −0.02 (14) C1—C7—C11—C16 163.41 (9)
C7—C1—C2—C3 −176.19 (9) C16—C11—C12—C13 −0.95 (15)
C1—C2—C3—C4 0.26 (14) C7—C11—C12—C13 −178.93 (10)
C1—C2—C3—C8 177.63 (9) C11—C12—C13—C14 0.51 (16)
C2—C3—C4—C5 −0.73 (15) C12—C13—C14—C15 −0.12 (17)
C8—C3—C4—C5 −178.22 (9) C13—C14—C15—C16 0.18 (17)
C3—C4—C5—C6 0.96 (16) C14—C15—C16—C11 −0.63 (16)
C4—C5—C6—C1 −0.72 (16) C12—C11—C16—C15 1.01 (15)
C2—C1—C6—C5 0.25 (15) C7—C11—C16—C15 179.09 (10)
C7—C1—C6—C5 176.64 (9) O2—C8—C21—C26 27.69 (16)
C6—C1—C7—O1 −32.33 (14) C3—C8—C21—C26 −151.99 (10)
C2—C1—C7—O1 143.91 (11) O2—C8—C21—C22 −149.55 (12)
C6—C1—C7—C11 147.13 (9) C3—C8—C21—C22 30.77 (15)
C2—C1—C7—C11 −36.62 (14) C26—C21—C22—C23 0.87 (15)
C2—C3—C8—O2 −149.63 (11) C8—C21—C22—C23 178.10 (10)
C4—C3—C8—O2 27.79 (16) C21—C22—C23—C24 −0.48 (16)
C2—C3—C8—C21 30.05 (15) C22—C23—C24—C25 −0.01 (17)
C4—C3—C8—C21 −152.53 (10) C23—C24—C25—C26 0.11 (17)
O1—C7—C11—C12 160.85 (11) C24—C25—C26—C21 0.30 (17)
C1—C7—C11—C12 −18.60 (15) C22—C21—C26—C25 −0.78 (16)
O1—C7—C11—C16 −17.14 (15) C8—C21—C26—C25 −178.11 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2021).

References

  1. Baggett, S., Protiva, P., Mazzola, E. P., Yang, H., Ressler, E. T., Basile, M. J., Weinstein, I. B. & Kennelly, E. J. (2005). J. Nat. Prod. 68, 354–360. [DOI] [PubMed]
  2. Bagheri, H., Lhiaubet, V., Montastruc, J. L. & Chouini-Lalanne, N. (2000). Drug. Saf. 22, 339–349. [DOI] [PubMed]
  3. Bernardi, A. P. M., Ferraz, A. B. F., Albring, D. V., Bordignon, S. A. L., Schripsema, J., Bridi, R., Dutra-Filho, C. S., Henriques, A. T. & Poser, G. L. (2005). J. Nat. Prod. 68, 784–786. [DOI] [PubMed]
  4. Bohm, M., Mitsch, A., Wissner, P., Sattler, I. & Schlitzer, M. (2001). J. Med. Chem. 44, 3117–3124. [DOI] [PubMed]
  5. Chan, J. H., Freeman, G. A., Tidwell, J. H., Romines, K. R., Schaller, L. T., Cowan, J. R., Gonzales, S. S., Lowell, G. S., Andrews, C. W., Reynolds, D. J., St Clair, M., Hazen, R. J., Ferris, R. G., Creech, K. L., Roberts, G. B., Short, S. A., Weaver, K., Koszalka, G. W. & Boone, L. R. (2004). J. Med. Chem. 47, 1175–1182. [DOI] [PubMed]
  6. Chiang, Y. M., Kuo, Y. H., Oota, S. & Fukuyama, Y. (2003). J. Nat. Prod. 66, 1070–1073. [DOI] [PubMed]
  7. Husain, S. S., Nirthanan, S., Ruesch, D., Solt, K., Cheng, Q., Li, G. D., Arevalo, E., Olsen, R. W., Raines, D. E., Forman, S. A., Cohen, J. B. & Miller, K. W. (2006). J. Med. Chem. 49, 4818–4825. [DOI] [PubMed]
  8. Iijima, D., Tanaka, D., Hamada, M., Ogamino, T., Ishikawa, Y. & Nishiyama, S. (2004). Tetrahedron Lett. 45, 5469–5471.
  9. Karrer, F., Meier, H. & Pascual, A. (2000). J. Fluorine Chem. 103, 81–84.
  10. Kowalski, K., Zakrzewski, J. & Jerzykiewicz, L. (2005). J. Organomet. Chem. 690, 1474–1477.
  11. Kulanthaivel, P., Hallock, Y. F., Boros, C., Hamilton, S. M., Janzen, W. P., Ballas, L. M., Loomis, C. R., Jiang, J. B., Steiner, J. R. & Clardy, J. (1993). J. Am. Chem. Soc. 115, 6452–6453.
  12. March, J. (1992). Advanced Organic Chemistry, 4th ed. New York: Wiley.
  13. Olah, G. A. (1964). Friedel–Crafts and Related Reaction, Vol. III, Part I. New York: Interscience.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  16. Szmant, H. (1989). Organic Building Blocks of the Chemical Industry New York: Wiley.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033344/fy2021sup1.cif

e-67-o2432-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033344/fy2021Isup2.hkl

e-67-o2432-Isup2.hkl (179.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033344/fy2021Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES