Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2294–o2295. doi: 10.1107/S1600536811031588

5-(Biphenyl-4-yl)-3-(3-meth­oxy­benzyl­idene)furan-2(3H)-one

Jerry P Jasinski a,*, James A Golen a, A S Dayananda b, H S Yathirajan b, Ravinesh Mishra c
PMCID: PMC3200951  PMID: 22065726

Abstract

In the title compound, C24H18O3, the dihedral angles between the mean planes of the five-membered furan ring and the meth­oxy-substituted benzene and the adjacent and outer biphenyl benzene rings are 2.43 (7), 4.48 (7) and 30.47 (8)°, respectively. The crystal packing is stabilized by weak C—H⋯O and C—H⋯π inter­molecular hydrogen bonds and π–π stacking inter­actions [centroid–centroid distances = 3.8752 (8) and 3.8331 (8) Å].

Related literature

For potential anti-ulcer agents containing a furan­one structure, see: Felman et al. (1992). For the role of furan­ones in the biochemical processes of the human body, see: Rappai et al. (2009). For the gastrointestinal toxicity of acidic non-steroidal anti-inflammatory drugs (NSAIDs), see: Husain et al. (2010). For gastrointestinal side effects of NSAIDS, see: Cioli et al. (1979). For biologically active five-membered heterocyles such as butenolides and pyrrolo­nes, see: Husain et al. (2005); Khan & Husain (2002). For oxadiazo­les and triazoles, see: Husain & Ajmal (2009); Hashem et al. (2007). For a related structure, see: Burke et al. (2000). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-o2294-scheme1.jpg

Experimental

Crystal data

  • C24H18O3

  • M r = 354.38

  • Monoclinic, Inline graphic

  • a = 19.8766 (8) Å

  • b = 6.9914 (3) Å

  • c = 13.2603 (6) Å

  • β = 107.735 (4)°

  • V = 1755.15 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 170 K

  • 0.22 × 0.22 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.981, T max = 0.990

  • 19756 measured reflections

  • 4534 independent reflections

  • 3310 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.143

  • S = 1.01

  • 4534 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031588/ci5197sup1.cif

e-67-o2294-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031588/ci5197Isup2.hkl

e-67-o2294-Isup2.hkl (222.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031588/ci5197Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.95 2.56 3.3358 (18) 138
C5—H5ACg1ii 0.95 2.69 3.4762 (16) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

ASD thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Certain drugs containing a furanone structure were potential anti-ulcer agents because they did not irritate the lining of the stomach (Felman et al., 1992). Their occurrence in nature has been exploited in the pharmaceutical industry because of their unusual biological activities, such as anti-ulcer and anti-cancer treatments. The antitumor activity of several analogs of furanones was evaluated using both in vivo and in vitro methods on mice, where oral adminstration showed a relative decrease in tumor growth. In an effort to create more efficient drugs, scientists began to explore the role of furanones in the biochemical processes of the human body (Rappai et al., 2009). The gastrointestinal toxicity of acidic non-steroidal anti- inflammatory drugs (NSAIDs) is one of the most challenging problems in medicinal chemistry (Husain et al., 2010). NSAIDs form a class of therapeutic agents that are most widely used world over because of their antiinflammatory, analgesic and antipyretic effects. Aroylpropionic acids and furanones are effective anti-inflammatory agents and some of them are available in the market, however, they are associated with gastrointestinal side effects; a common feature of NSAIDs (Cioli et al., 1979). Studies suggest that the direct tissue contact of these agents plays an important role in the production of side effects and the reported literature confirms that gastrointestinal side effects of aroylpropionic acids are due to the presence of the free carboxylic group in the parent drug. This free carboxylic group, therefore, has been converted to the furanone ring to get a compound free from GIT side effects. Furanones and b\-aroylpropionic acids are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five-membered heterocyles such as butenolides, pyrrolones (Husain et al., 2005; Khan et al., 2002) oxadiazoles (Husain et al., 2009) and triazoles (Hashem et al., 2007). The crystal structure study of a related compound, (E)-6-methoxy-3-( -methoxybenzylidene)benzo[b]furan-2(3H)-one, at 173 K is reported (Burke et al., 2000). In view of the importance of the title compound, (I), this paper reports its crystal structure.

In the title molecule, the dihedral angles between the mean planes of the five-menbered furan ring and the methoxy substituted benzene and biphenyl benzene rings are 2.43 (7)°, 4.48 (7)°, and 30.47 (8)°, respectively (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). The crystal packing is stabiized by weak C—H···O and C—H···π intermolecular hydrogen bonds and π-π stacking (Table 2) interactions (Fig. 2).

Experimental

A solution of 3-(4-phenylbenzoyl)propionic acid (0.71 g, 3 mmol) and 3-methoxybenzaldehyde (0.45 g, 3 mmol) in a acetic anhydride (5 ml) with triethylamine (3–4 drops) was refluxed for 5–6 hrs on a water bath under anhydrous conditions. After completion of the reaction, the contents were poured into crushed ice in small portions while stirring. A solid mass separated out, which was filtered, washed with water and crystallized from 2-butanone to get X-ray quality crystals (m.p. 411–413 K).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C–H lengths of 0.95 Å (CH) or 0.98 Å (CH3). The isotropic displacement parameters for these atoms were set to 1.18–1.21 (CH) or 1.49 (CH3) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, viewed down the b axis.

Crystal data

C24H18O3 F(000) = 744
Mr = 354.38 Dx = 1.341 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5822 reflections
a = 19.8766 (8) Å θ = 3.1–32.2°
b = 6.9914 (3) Å µ = 0.09 mm1
c = 13.2603 (6) Å T = 170 K
β = 107.735 (4)° Block, pale yellow
V = 1755.15 (13) Å3 0.22 × 0.22 × 0.12 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 4534 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3310 reflections with I > 2σ(I)
graphite Rint = 0.029
Detector resolution: 16.1500 pixels mm-1 θmax = 28.7°, θmin = 3.2°
ω scans h = −26→26
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −9→9
Tmin = 0.981, Tmax = 0.990 l = −17→17
19756 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.299P] where P = (Fo2 + 2Fc2)/3
4534 reflections (Δ/σ)max = 0.001
245 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.71593 (5) 0.14726 (16) 0.22178 (7) 0.0415 (3)
O2 0.63009 (6) 0.13953 (19) 0.06638 (8) 0.0539 (3)
O3 0.28081 (5) 0.15321 (18) 0.15671 (9) 0.0516 (3)
C1 1.04917 (7) 0.3141 (2) 0.59764 (12) 0.0393 (3)
H1A 1.0398 0.3604 0.5274 0.047*
C2 1.11564 (8) 0.3377 (2) 0.66876 (14) 0.0470 (4)
H2A 1.1514 0.4004 0.6473 0.056*
C3 1.13016 (8) 0.2703 (3) 0.77084 (13) 0.0497 (4)
H3A 1.1759 0.2862 0.8199 0.060*
C4 1.07787 (9) 0.1797 (3) 0.80145 (13) 0.0500 (4)
H4A 1.0879 0.1325 0.8717 0.060*
C5 1.01101 (8) 0.1571 (2) 0.73078 (12) 0.0411 (3)
H5A 0.9753 0.0958 0.7531 0.049*
C6 0.99552 (7) 0.2235 (2) 0.62704 (11) 0.0330 (3)
C7 0.92411 (7) 0.19992 (19) 0.55035 (10) 0.0317 (3)
C8 0.86347 (7) 0.2076 (2) 0.58311 (11) 0.0395 (3)
H8A 0.8685 0.2235 0.6562 0.047*
C9 0.79673 (7) 0.1927 (2) 0.51171 (11) 0.0389 (3)
H9A 0.7565 0.1986 0.5361 0.047*
C10 0.78789 (7) 0.16882 (19) 0.40409 (10) 0.0315 (3)
C11 0.84804 (7) 0.1561 (2) 0.37113 (11) 0.0365 (3)
H11A 0.8431 0.1359 0.2984 0.044*
C12 0.91467 (7) 0.1724 (2) 0.44324 (11) 0.0363 (3)
H12A 0.9549 0.1646 0.4190 0.044*
C13 0.71770 (7) 0.1588 (2) 0.32790 (10) 0.0329 (3)
C14 0.65258 (7) 0.16084 (19) 0.33828 (10) 0.0331 (3)
H14A 0.6416 0.1683 0.4030 0.040*
C15 0.60244 (7) 0.14966 (19) 0.23409 (10) 0.0322 (3)
C16 0.64589 (7) 0.1442 (2) 0.16115 (11) 0.0379 (3)
C17 0.53146 (7) 0.1432 (2) 0.19272 (10) 0.0340 (3)
H17A 0.5149 0.1351 0.1177 0.041*
C18 0.47600 (7) 0.14655 (19) 0.24314 (10) 0.0318 (3)
C19 0.40626 (7) 0.1452 (2) 0.17584 (11) 0.0340 (3)
H19A 0.3975 0.1408 0.1013 0.041*
C20 0.35005 (7) 0.1504 (2) 0.21690 (11) 0.0363 (3)
C21 0.36229 (8) 0.1503 (2) 0.32559 (12) 0.0418 (4)
H21A 0.3238 0.1504 0.3540 0.050*
C22 0.43071 (8) 0.1501 (2) 0.39204 (12) 0.0436 (4)
H22A 0.4390 0.1498 0.4665 0.052*
C23 0.48761 (7) 0.1505 (2) 0.35246 (11) 0.0383 (3)
H23A 0.5344 0.1534 0.3995 0.046*
C24 0.26584 (9) 0.1751 (3) 0.04562 (13) 0.0543 (4)
H24A 0.2147 0.1852 0.0125 0.081*
H24B 0.2838 0.0640 0.0168 0.081*
H24C 0.2888 0.2913 0.0309 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0317 (5) 0.0641 (7) 0.0309 (5) 0.0013 (5) 0.0128 (4) 0.0002 (4)
O2 0.0438 (6) 0.0898 (9) 0.0293 (5) 0.0029 (6) 0.0128 (5) 0.0027 (5)
O3 0.0273 (5) 0.0822 (9) 0.0436 (6) 0.0008 (5) 0.0084 (4) 0.0029 (6)
C1 0.0339 (7) 0.0437 (8) 0.0425 (8) 0.0023 (6) 0.0150 (6) 0.0029 (6)
C2 0.0317 (7) 0.0508 (9) 0.0608 (10) −0.0004 (6) 0.0174 (7) −0.0006 (8)
C3 0.0302 (7) 0.0584 (10) 0.0535 (10) 0.0033 (7) 0.0026 (7) −0.0021 (8)
C4 0.0437 (8) 0.0595 (11) 0.0415 (8) 0.0041 (7) 0.0048 (7) 0.0051 (7)
C5 0.0378 (7) 0.0458 (9) 0.0401 (8) −0.0024 (6) 0.0121 (6) 0.0039 (6)
C6 0.0296 (6) 0.0338 (7) 0.0364 (7) 0.0029 (5) 0.0110 (5) −0.0006 (5)
C7 0.0293 (6) 0.0323 (7) 0.0342 (7) 0.0012 (5) 0.0110 (5) 0.0009 (5)
C8 0.0340 (7) 0.0550 (9) 0.0312 (7) −0.0010 (6) 0.0125 (6) −0.0033 (6)
C9 0.0300 (7) 0.0542 (9) 0.0360 (7) −0.0004 (6) 0.0150 (6) −0.0035 (6)
C10 0.0298 (6) 0.0325 (7) 0.0334 (7) 0.0005 (5) 0.0114 (5) 0.0007 (5)
C11 0.0362 (7) 0.0453 (8) 0.0301 (7) 0.0011 (6) 0.0133 (5) −0.0012 (6)
C12 0.0305 (6) 0.0445 (8) 0.0379 (7) 0.0015 (6) 0.0166 (6) −0.0010 (6)
C13 0.0343 (7) 0.0370 (7) 0.0281 (6) 0.0008 (5) 0.0106 (5) −0.0007 (5)
C14 0.0305 (6) 0.0393 (7) 0.0302 (7) 0.0004 (5) 0.0102 (5) −0.0002 (5)
C15 0.0334 (7) 0.0345 (7) 0.0298 (6) 0.0028 (5) 0.0115 (5) 0.0018 (5)
C16 0.0333 (7) 0.0504 (9) 0.0307 (7) 0.0027 (6) 0.0108 (6) 0.0024 (6)
C17 0.0328 (7) 0.0409 (8) 0.0279 (6) 0.0027 (6) 0.0088 (5) 0.0030 (5)
C18 0.0311 (6) 0.0332 (7) 0.0310 (6) 0.0011 (5) 0.0091 (5) 0.0005 (5)
C19 0.0327 (7) 0.0397 (8) 0.0289 (6) 0.0001 (5) 0.0085 (5) −0.0001 (5)
C20 0.0294 (6) 0.0403 (8) 0.0379 (7) −0.0007 (5) 0.0086 (6) −0.0009 (6)
C21 0.0375 (7) 0.0530 (9) 0.0401 (8) 0.0002 (6) 0.0196 (6) −0.0016 (7)
C22 0.0454 (8) 0.0560 (10) 0.0309 (7) 0.0006 (7) 0.0140 (6) −0.0016 (6)
C23 0.0323 (7) 0.0486 (8) 0.0320 (7) 0.0003 (6) 0.0067 (5) 0.0003 (6)
C24 0.0369 (8) 0.0779 (13) 0.0418 (9) 0.0006 (8) 0.0027 (7) −0.0008 (8)

Geometric parameters (Å, °)

O1—C16 1.3795 (16) C10—C13 1.4537 (18)
O1—C13 1.3991 (15) C11—C12 1.3819 (19)
O2—C16 1.1994 (16) C11—H11A 0.95
O3—C20 1.3647 (16) C12—H12A 0.95
O3—C24 1.4195 (19) C13—C14 1.3427 (18)
C1—C2 1.379 (2) C14—C15 1.4385 (18)
C1—C6 1.3941 (19) C14—H14A 0.95
C1—H1A 0.95 C15—C17 1.3499 (18)
C2—C3 1.378 (2) C15—C16 1.4803 (19)
C2—H2A 0.95 C17—C18 1.4531 (18)
C3—C4 1.380 (2) C17—H17A 0.95
C3—H3A 0.95 C18—C23 1.3971 (19)
C4—C5 1.382 (2) C18—C19 1.4016 (18)
C4—H4A 0.95 C19—C20 1.3845 (19)
C5—C6 1.3945 (19) C19—H19A 0.95
C5—H5A 0.95 C20—C21 1.387 (2)
C6—C7 1.4821 (18) C21—C22 1.377 (2)
C7—C12 1.3882 (18) C21—H21A 0.95
C7—C8 1.4010 (18) C22—C23 1.384 (2)
C8—C9 1.3792 (19) C22—H22A 0.95
C8—H8A 0.95 C23—H23A 0.95
C9—C10 1.3937 (19) C24—H24A 0.98
C9—H9A 0.95 C24—H24B 0.98
C10—C11 1.3954 (18) C24—H24C 0.98
C16—O1—C13 107.39 (10) C14—C13—C10 132.78 (12)
C20—O3—C24 117.63 (12) O1—C13—C10 115.25 (11)
C2—C1—C6 121.21 (14) C13—C14—C15 107.96 (12)
C2—C1—H1A 119.4 C13—C14—H14A 126.0
C6—C1—H1A 119.4 C15—C14—H14A 126.0
C3—C2—C1 120.07 (15) C17—C15—C14 136.44 (13)
C3—C2—H2A 120.0 C17—C15—C16 118.63 (12)
C1—C2—H2A 120.0 C14—C15—C16 104.92 (11)
C2—C3—C4 119.65 (14) O2—C16—O1 120.44 (12)
C2—C3—H3A 120.2 O2—C16—C15 131.81 (13)
C4—C3—H3A 120.2 O1—C16—C15 107.74 (11)
C3—C4—C5 120.52 (15) C15—C17—C18 131.15 (13)
C3—C4—H4A 119.7 C15—C17—H17A 114.4
C5—C4—H4A 119.7 C18—C17—H17A 114.4
C4—C5—C6 120.57 (14) C23—C18—C19 118.66 (12)
C4—C5—H5A 119.7 C23—C18—C17 124.69 (12)
C6—C5—H5A 119.7 C19—C18—C17 116.66 (12)
C1—C6—C5 117.98 (12) C20—C19—C18 120.63 (12)
C1—C6—C7 120.87 (12) C20—C19—H19A 119.7
C5—C6—C7 121.16 (12) C18—C19—H19A 119.7
C12—C7—C8 117.49 (12) O3—C20—C19 124.14 (13)
C12—C7—C6 121.34 (12) O3—C20—C21 115.74 (12)
C8—C7—C6 121.16 (12) C19—C20—C21 120.11 (13)
C9—C8—C7 121.52 (13) C22—C21—C20 119.45 (13)
C9—C8—H8A 119.2 C22—C21—H21A 120.3
C7—C8—H8A 119.2 C20—C21—H21A 120.3
C8—C9—C10 120.45 (13) C21—C22—C23 121.27 (13)
C8—C9—H9A 119.8 C21—C22—H22A 119.4
C10—C9—H9A 119.8 C23—C22—H22A 119.4
C9—C10—C11 118.40 (12) C22—C23—C18 119.84 (13)
C9—C10—C13 120.82 (12) C22—C23—H23A 120.1
C11—C10—C13 120.78 (12) C18—C23—H23A 120.1
C12—C11—C10 120.66 (13) O3—C24—H24A 109.5
C12—C11—H11A 119.7 O3—C24—H24B 109.5
C10—C11—H11A 119.7 H24A—C24—H24B 109.5
C11—C12—C7 121.45 (12) O3—C24—H24C 109.5
C11—C12—H12A 119.3 H24A—C24—H24C 109.5
C7—C12—H12A 119.3 H24B—C24—H24C 109.5
C14—C13—O1 111.96 (11)
C6—C1—C2—C3 0.4 (2) C11—C10—C13—O1 −3.56 (19)
C1—C2—C3—C4 −0.1 (3) O1—C13—C14—C15 0.14 (16)
C2—C3—C4—C5 −0.4 (3) C10—C13—C14—C15 179.15 (14)
C3—C4—C5—C6 0.7 (2) C13—C14—C15—C17 178.84 (16)
C2—C1—C6—C5 0.0 (2) C13—C14—C15—C16 −0.94 (15)
C2—C1—C6—C7 179.58 (13) C13—O1—C16—O2 178.09 (14)
C4—C5—C6—C1 −0.5 (2) C13—O1—C16—C15 −1.35 (15)
C4—C5—C6—C7 179.88 (14) C17—C15—C16—O2 2.2 (2)
C1—C6—C7—C12 33.2 (2) C14—C15—C16—O2 −177.94 (17)
C5—C6—C7—C12 −147.21 (15) C17—C15—C16—O1 −178.42 (12)
C1—C6—C7—C8 −145.78 (15) C14—C15—C16—O1 1.42 (15)
C5—C6—C7—C8 33.8 (2) C14—C15—C17—C18 0.4 (3)
C12—C7—C8—C9 −1.4 (2) C16—C15—C17—C18 −179.83 (13)
C6—C7—C8—C9 177.64 (13) C15—C17—C18—C23 −2.6 (2)
C7—C8—C9—C10 0.2 (2) C15—C17—C18—C19 177.53 (14)
C8—C9—C10—C11 1.5 (2) C23—C18—C19—C20 0.9 (2)
C8—C9—C10—C13 −178.10 (13) C17—C18—C19—C20 −179.26 (13)
C9—C10—C11—C12 −1.9 (2) C24—O3—C20—C19 −7.8 (2)
C13—C10—C11—C12 177.69 (13) C24—O3—C20—C21 173.06 (14)
C10—C11—C12—C7 0.7 (2) C18—C19—C20—O3 178.70 (13)
C8—C7—C12—C11 1.0 (2) C18—C19—C20—C21 −2.2 (2)
C6—C7—C12—C11 −178.05 (13) O3—C20—C21—C22 −179.16 (13)
C16—O1—C13—C14 0.79 (16) C19—C20—C21—C22 1.7 (2)
C16—O1—C13—C10 −178.41 (11) C20—C21—C22—C23 0.2 (2)
C9—C10—C13—C14 −3.0 (2) C21—C22—C23—C18 −1.5 (2)
C11—C10—C13—C14 177.46 (15) C19—C18—C23—C22 1.0 (2)
C9—C10—C13—O1 176.00 (12) C17—C18—C23—C22 −178.89 (14)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
C2—H2A···O3i 0.95 2.56 3.3358 (18) 138
C5—H5A···Cg1ii 0.95 2.69 3.4762 (16) 141

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) −x+2, y−1/2, −z+3/2.

Table 2 π-π-stacking interactions.

CgI···CgJ CgI···CgJ (Å) CgI···Perp (Å) CgJ···Perp (Å)
Cg2···Cg3i 3.8752 (8) 3.5136 (6) -3.4926 (6)
Cg2···Cg3ii 3.8331 (8) -3.4772 (6) 3.4889 (6)

Cg2 and Cg3 are the centroids of rings O1/C13–C16 and C18–C23, respectively.Symmetry codes: (i) 1-x, -1/2+y, 1/2-z; (ii) 1-x, 1/2+y, 1/2-z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5197).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Burke, A. J., Schmalle, H. W., Brady, B. A. & O’Sullivan, W. I. (2000). Acta Cryst. C56, 484–486. [DOI] [PubMed]
  3. Cioli, V., Putzolu, S., Rossi, V., Barcellona, P. S. & Corradino, C. (1979). Toxicol. Appl. Pharmacol. 50, 283–289. [DOI] [PubMed]
  4. Felman, S. W., Jirkovsky, I., Memoli, K. A., Borella, L., Wells, C., Russell, J. & Ward, J. (1992). J. Med. Chem. 35, 1183–1190. [DOI] [PubMed]
  5. Hashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmangd, W. S. I. (2007). Eur. J. Med. Chem. 42, 934–939. [DOI] [PubMed]
  6. Husain, A., Ahmad, A., Mujeeb, M. & Akhtar, M. (2010). J. Chil. Chem. Soc. 55, 74–77.
  7. Husain, A. & Ajmal, M. (2009). Acta Pharm. 59, 223–233. [DOI] [PubMed]
  8. Husain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem. 40, 1394–1404. [DOI] [PubMed]
  9. Khan, M. S. Y. & Husain, A. (2002). Pharmazie, 57, 448–452. [PubMed]
  10. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  11. Rappai, J., Thomas, S., Paulose, C., Prathapan, S., Unnikrishnan, P. & Raman, V. (2009). Bioorg. Med. Chem. Lett. 19, 764–765. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031588/ci5197sup1.cif

e-67-o2294-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031588/ci5197Isup2.hkl

e-67-o2294-Isup2.hkl (222.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031588/ci5197Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES