Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 2;67(Pt 9):o2237. doi: 10.1107/S1600536811028613

Propyl 3-oxo-2,3-dihydro-1,2-benzothia­zole-2-carboxyl­ate

Xiang-hui Wang a, Jian-xin Yang b,*, Cheng-hang You b, Qiang Lin c,d,*
PMCID: PMC3200959  PMID: 22065833

Abstract

The title compound, C11H11NO3S, was synthesized by the reaction of benzo[d]isothia­zol-3(2H)-one with propyl carbono­chloridate in toluene. The benzoisothiazolone ring system is approximately planar with a maximum deviation from the mean plane of 0.0226 (14) Å for the N atom. Weak inter­molecular C—H⋯O hydrogen bonding occurs in the crystal structure.

Related literature

For background to the synthesis of benzoisothiazolone derivatives, see: Davis (1972); Elgazwy & Abdel-Sattar (2003). For their biological activity, see: Taubert et al. (2002). For related structures, see: Xu et al. (2005, 2006); Cavalca et al. (1969, 1970).graphic file with name e-67-o2237-scheme1.jpg

Experimental

Crystal data

  • C11H11NO3S

  • M r = 237.27

  • Monoclinic, Inline graphic

  • a = 16.235 (7) Å

  • b = 5.123 (2) Å

  • c = 12.791 (6) Å

  • β = 90.720 (7)°

  • V = 1063.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 153 K

  • 0.35 × 0.25 × 0.20 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.904, T max = 0.943

  • 8491 measured reflections

  • 2766 independent reflections

  • 2224 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.099

  • S = 1.00

  • 2766 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811028613/fl2349sup1.cif

e-67-o2237-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028613/fl2349Isup2.hkl

e-67-o2237-Isup2.hkl (135.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028613/fl2349Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.60 3.437 (3) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (No. 20962007) and the Creative Talents Plan of Hainan University 211 Project.

supplementary crystallographic information

Comment

1,2-benzisothiazol-3(2H)-ones are a class of compounds with a wide spectrum of biological activities (Davis, 1972), Elgazwy & Abdel-Sattar, 2003). 1, 2-Benzisothiazolone derivatives have been reported to possess high antibacterial and antifungal activity (Taubert et al., 2002). In view of the importance of the 1,2-benzisothiazol-3(2H)-ones, the title compound, (I), was synthesized and characterized by X-ray diffraction.

The molecular structure of the title compound is shown in Fig. 1. In the molecule, the benzisothiazolone ring system is approximately planar with a maximum deviation from the mean plane of 0.0226 (14) A ° for the N atom, and the C8—O2—C9—C10 torsion angle is 85.16 (18)°. Weak intermolecular C—H···O hydrogen bonding occurs in the crystal structure (Table 1, Fig. 22))..

Experimental

A toluol solution (20 ml) containing benzo[d]isothiazol-3(2H)-one (1.51 g, 0.01 mol) was added dropwise to a solution of propyl carbonochloridate (1.22 g, 0.01 mol) in toluol (20 ml) under stirring on an ice-water bath. The reaction mixture was stirred at room temperature for 4.5 h to afford the title compound (1.55 g, yield 65.5%). Single crystals suitable for X-ray measurements were obtained by recrystallization of the title compound from cyclohexane at room temperature.

Refinement

The H atoms were placed at calculated positions and refined in riding mode, with the carrier atom-H distances = 0.95 Å for aryl, 0.99 for methylene, 0.98 Å for the methyl. The Uiso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq for the remaining H atoms.

Figures

Fig. 1.

Fig. 1.

Title molecule showing the 30% probability displacement ellipsoids and the atomnumbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) molecular chain.

Crystal data

C11H11NO3S F(000) = 496
Mr = 237.27 Dx = 1.482 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.235 (7) Å Cell parameters from 3253 reflections
b = 5.123 (2) Å θ = 3.0–29.1°
c = 12.791 (6) Å µ = 0.29 mm1
β = 90.720 (7)° T = 153 K
V = 1063.7 (8) Å3 Block, pink
Z = 4 0.35 × 0.25 × 0.20 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer 2766 independent reflections
Radiation source: Rotating Anode 2224 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 28.5714 pixels mm-1 θmax = 29.1°, θmin = 3.2°
phi and ω scans h = −20→22
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −6→6
Tmin = 0.904, Tmax = 0.943 l = −16→17
8491 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.316P] where P = (Fo2 + 2Fc2)/3
2766 reflections (Δ/σ)max < 0.001
146 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.25453 (2) 0.70918 (8) 0.71855 (3) 0.02263 (12)
O1 0.16642 (7) 0.7439 (2) 0.43840 (8) 0.0285 (3)
O2 0.28813 (7) 1.0985 (2) 0.46620 (9) 0.0289 (3)
O3 0.34796 (8) 1.1023 (3) 0.62778 (10) 0.0339 (3)
N1 0.24529 (8) 0.8149 (3) 0.59025 (10) 0.0210 (3)
C1 0.17595 (9) 0.4842 (3) 0.69666 (11) 0.0195 (3)
C2 0.14578 (10) 0.3037 (3) 0.76888 (12) 0.0227 (3)
H2 0.1671 0.2966 0.8383 0.027*
C3 0.08395 (10) 0.1360 (3) 0.73593 (13) 0.0256 (3)
H3 0.0628 0.0116 0.7837 0.031*
C4 0.05157 (10) 0.1449 (3) 0.63348 (13) 0.0258 (3)
H4 0.0088 0.0285 0.6130 0.031*
C5 0.08200 (9) 0.3230 (3) 0.56251 (12) 0.0226 (3)
H5 0.0608 0.3292 0.4930 0.027*
C6 0.14445 (9) 0.4939 (3) 0.59480 (11) 0.0189 (3)
C7 0.18296 (9) 0.6918 (3) 0.52901 (12) 0.0203 (3)
C8 0.29898 (9) 1.0187 (3) 0.56431 (12) 0.0231 (3)
C9 0.34321 (10) 1.3087 (3) 0.43295 (15) 0.0304 (4)
H9A 0.3533 1.4290 0.4923 0.036*
H9B 0.3163 1.4093 0.3760 0.036*
C10 0.42408 (10) 1.2039 (4) 0.39541 (14) 0.0295 (4)
H10A 0.4139 1.0737 0.3395 0.035*
H10B 0.4532 1.1151 0.4539 0.035*
C11 0.47784 (11) 1.4220 (4) 0.35365 (15) 0.0357 (4)
H11A 0.4520 1.4964 0.2907 0.043*
H11B 0.5322 1.3520 0.3364 0.043*
H11C 0.4840 1.5583 0.4070 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0270 (2) 0.0248 (2) 0.01593 (19) −0.00360 (15) −0.00484 (14) 0.00027 (15)
O1 0.0359 (7) 0.0350 (7) 0.0145 (5) −0.0040 (5) −0.0035 (5) 0.0026 (5)
O2 0.0261 (6) 0.0344 (7) 0.0262 (6) −0.0044 (5) −0.0009 (5) 0.0112 (5)
O3 0.0381 (7) 0.0357 (7) 0.0279 (6) −0.0132 (6) −0.0037 (5) −0.0001 (5)
N1 0.0242 (6) 0.0236 (7) 0.0151 (6) −0.0010 (5) −0.0010 (5) 0.0009 (5)
C1 0.0213 (7) 0.0193 (7) 0.0178 (7) 0.0021 (5) −0.0014 (5) −0.0029 (6)
C2 0.0276 (8) 0.0237 (8) 0.0166 (7) 0.0024 (6) −0.0013 (6) 0.0017 (6)
C3 0.0299 (8) 0.0225 (8) 0.0245 (8) 0.0000 (6) 0.0042 (6) 0.0010 (6)
C4 0.0248 (8) 0.0254 (8) 0.0270 (8) −0.0027 (6) 0.0001 (6) −0.0052 (7)
C5 0.0232 (7) 0.0258 (8) 0.0188 (7) 0.0026 (6) −0.0025 (6) −0.0051 (6)
C6 0.0218 (7) 0.0199 (7) 0.0150 (7) 0.0044 (6) −0.0006 (5) −0.0030 (6)
C7 0.0226 (7) 0.0227 (8) 0.0156 (7) 0.0024 (6) −0.0006 (6) −0.0030 (6)
C8 0.0242 (8) 0.0221 (8) 0.0228 (8) 0.0023 (6) 0.0018 (6) −0.0005 (6)
C9 0.0274 (8) 0.0260 (9) 0.0378 (10) 0.0003 (7) 0.0037 (7) 0.0136 (7)
C10 0.0300 (9) 0.0278 (9) 0.0308 (9) −0.0015 (7) 0.0049 (7) −0.0023 (7)
C11 0.0334 (9) 0.0434 (11) 0.0305 (9) −0.0095 (8) 0.0042 (7) 0.0008 (8)

Geometric parameters (Å, °)

S1—N1 1.7328 (15) C4—C5 1.383 (2)
S1—C1 1.7393 (17) C4—H4 0.9500
O1—C7 1.2162 (19) C5—C6 1.398 (2)
O2—C8 1.329 (2) C5—H5 0.9500
O2—C9 1.466 (2) C6—C7 1.463 (2)
O3—C8 1.208 (2) C9—C10 1.503 (2)
N1—C8 1.403 (2) C9—H9A 0.9900
N1—C7 1.4195 (19) C9—H9B 0.9900
C1—C6 1.395 (2) C10—C11 1.519 (3)
C1—C2 1.400 (2) C10—H10A 0.9900
C2—C3 1.383 (2) C10—H10B 0.9900
C2—H2 0.9500 C11—H11A 0.9800
C3—C4 1.407 (2) C11—H11B 0.9800
C3—H3 0.9500 C11—H11C 0.9800
N1—S1—C1 90.00 (7) O1—C7—C6 127.56 (14)
C8—O2—C9 115.18 (13) N1—C7—C6 107.29 (12)
C8—N1—C7 129.86 (13) O3—C8—O2 127.15 (15)
C8—N1—S1 114.20 (10) O3—C8—N1 120.72 (15)
C7—N1—S1 115.87 (11) O2—C8—N1 112.13 (13)
C6—C1—C2 120.86 (14) O2—C9—C10 111.65 (14)
C6—C1—S1 112.73 (12) O2—C9—H9A 109.3
C2—C1—S1 126.40 (12) C10—C9—H9A 109.3
C3—C2—C1 117.89 (14) O2—C9—H9B 109.3
C3—C2—H2 121.1 C10—C9—H9B 109.3
C1—C2—H2 121.1 H9A—C9—H9B 108.0
C2—C3—C4 121.68 (15) C9—C10—C11 110.97 (16)
C2—C3—H3 119.2 C9—C10—H10A 109.4
C4—C3—H3 119.2 C11—C10—H10A 109.4
C5—C4—C3 120.04 (15) C9—C10—H10B 109.4
C5—C4—H4 120.0 C11—C10—H10B 109.4
C3—C4—H4 120.0 H10A—C10—H10B 108.0
C4—C5—C6 118.88 (15) C10—C11—H11A 109.5
C4—C5—H5 120.6 C10—C11—H11B 109.5
C6—C5—H5 120.6 H11A—C11—H11B 109.5
C1—C6—C5 120.65 (14) C10—C11—H11C 109.5
C1—C6—C7 114.07 (13) H11A—C11—H11C 109.5
C5—C6—C7 125.28 (14) H11B—C11—H11C 109.5
O1—C7—N1 125.15 (15)
C1—S1—N1—C8 178.88 (12) S1—N1—C7—O1 178.47 (13)
C1—S1—N1—C7 1.45 (12) C8—N1—C7—C6 −179.01 (14)
N1—S1—C1—C6 −0.32 (12) S1—N1—C7—C6 −2.07 (16)
N1—S1—C1—C2 178.34 (14) C1—C6—C7—O1 −178.77 (16)
C6—C1—C2—C3 0.0 (2) C5—C6—C7—O1 1.8 (3)
S1—C1—C2—C3 −178.55 (12) C1—C6—C7—N1 1.79 (18)
C1—C2—C3—C4 −0.3 (2) C5—C6—C7—N1 −177.67 (14)
C2—C3—C4—C5 0.6 (2) C9—O2—C8—O3 0.9 (2)
C3—C4—C5—C6 −0.6 (2) C9—O2—C8—N1 −179.00 (13)
C2—C1—C6—C5 −0.1 (2) C7—N1—C8—O3 178.88 (15)
S1—C1—C6—C5 178.67 (12) S1—N1—C8—O3 1.9 (2)
C2—C1—C6—C7 −179.57 (14) C7—N1—C8—O2 −1.2 (2)
S1—C1—C6—C7 −0.82 (17) S1—N1—C8—O2 −178.19 (10)
C4—C5—C6—C1 0.4 (2) C8—O2—C9—C10 85.16 (18)
C4—C5—C6—C7 179.80 (14) O2—C9—C10—C11 175.72 (15)
C8—N1—C7—O1 1.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2i 0.95 2.60 3.437 (3) 148

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2349).

References

  1. Cavalca, L., Gaetani, A., Mangia, A. & Pelizzi, G. (1970). Gazz. Chim. Ital. 100, 629–638.
  2. Cavalca, L., Gasparri, G. F., Mangia, A. & Pelizzi, G. (1969). Acta Cryst. B25, 2349–2354.
  3. Davis, M. (1972). Adv. Heterocycl. Chem. 14, 43–98.
  4. Elgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445–7463.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Taubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79–81.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Xu, L.-Z., Si, G.-D., Li, Z.-F., Yang, S.-H. & Li, K. (2005). Acta Cryst. E61, o1329–o1330.
  11. Xu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496–o497.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811028613/fl2349sup1.cif

e-67-o2237-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028613/fl2349Isup2.hkl

e-67-o2237-Isup2.hkl (135.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028613/fl2349Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES