Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 31;67(Pt 9):o2526. doi: 10.1107/S1600536811034441

N-(2-Amino-4,6-dihydroxypyrimidin-5-yl)acetamide dihydrate

Xiao-Min Zhang a, Hui-Liang Zhou a, Qi-Lin Hu a,*
PMCID: PMC3200964  PMID: 22064693

Abstract

The title compound, C6H8N4O3·2H2O, which crystallized as a dihydrate, has two almost planar segments viz. the pyrimidine ring and the C—N—C(=O)—C group [maxmum deviations of 0.020 (2) and 0.014 (2) Å, respectively], with a dihedral angle of 87.45°. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the biological properties of pyrimidine compounds see: Marchal et al. (2010); Giandinoto et al. (1996); Sun et al. (2006). For related structures, see: Glidewell et al. (2003); Nakayama et al. (2004); Quesada et al. (2004); Hockova et al. (2003).graphic file with name e-67-o2526-scheme1.jpg

Experimental

Crystal data

  • C6H8N4O3·2H2O

  • M r = 220.20

  • Monoclinic, Inline graphic

  • a = 9.5501 (12) Å

  • b = 12.2161 (13) Å

  • c = 8.5324 (8) Å

  • β = 98.708 (1)°

  • V = 983.96 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.23 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.971, T max = 0.987

  • 5002 measured reflections

  • 1727 independent reflections

  • 1082 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.120

  • S = 0.85

  • 1727 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811034441/fl2354sup1.cif

e-67-o2526-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034441/fl2354Isup2.hkl

e-67-o2526-Isup2.hkl (85.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034441/fl2354Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.98 2.810 (2) 164
N2—H2⋯O2ii 0.86 2.00 2.836 (2) 163
N3—H3A⋯O5ii 0.86 1.95 2.803 (2) 172
N3—H3B⋯O4i 0.86 1.98 2.843 (2) 178
N4—H4⋯O2iii 0.86 2.27 3.115 (2) 170
O4—H4A⋯O1 0.85 1.90 2.717 (2) 159
O4—H4B⋯O3iv 0.85 1.96 2.812 (2) 176
O5—H5A⋯O2 0.85 1.95 2.716 (2) 150
O5—H5B⋯O3iii 0.85 1.97 2.814 (2) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Instrumental Analysis Center of LiaoCheng University for the data collection.

supplementary crystallographic information

Comment

Pyrimidine and its derivatives are important targets for drug discovery having attracted much attention for their biological activities and molecular structures (Sun et al., (2006)). Research findings indicate that the pyrimidine derivatives are associated with diverse pharmacological activities, such as antifungal, antibacterial, pesticidal, analgesic, and antitumor (Giandinoto et al.; (1996); Nakayama et al., (2004); Hockova et al., (2003)). The present X-ray crystal structure analysis was undertaken in order to study the stereochemistry and crystal packing of the title compound (I).

As shown in Fig 1, the title compound which crystallized as a dihydrate is composed of two planar segments. One segment is a pyrimidine ring, which (C1, N2, C2, C3, C4, N1), and the other segment contains C3, N4, C6, C5 and O3. The dihedral angle between the two planar segments is 87.45 °. (I)crystallized in the keto form.

The molecule exhibits O..H···O hydrogen bonding with the water molecules and intermoleculer N-H···O hydrogen bonding between the pyrimidine moieties (Table 1). The chains formed by the the N—H···O hydrogen bonds can be seen in Fig. 2. The crystal structure is also aggregated into a three-dimensional framework via further N—H···O interactions (Fig.3).

Experimental

A mixture of guanidine hydrochloride (2.04 g, 4 mmol) and diethyl acetylaminomalonate (5.0 g, 2 mmol) were reacted in 36 ml sodium ethylate at 358 K for 5 h. Then the product was disolved in water with proper pH adjustment (3–4) by HCl. After filtering and drying, the crystalline product of the title compound was collected by recrystallization at room temperature in 10% HCl(10 ml).

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H distances of 0.85 Å, N—-H distances of 0.86 Å, C—H distances of 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

One-dimensional chain of the title compound. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The molecular packing of the title compound, viewed along the b axis. Intermolecular hydrogen bonds are indicated by dashed lines.

Crystal data

C6H8N4O3·2H2O F(000) = 464
Mr = 220.20 Dx = 1.486 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.5501 (12) Å Cell parameters from 1089 reflections
b = 12.2161 (13) Å θ = 2.7–26.2°
c = 8.5324 (8) Å µ = 0.13 mm1
β = 98.708 (1)° T = 298 K
V = 983.96 (19) Å3 Cuboid, colorless
Z = 4 0.23 × 0.15 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 1727 independent reflections
Radiation source: fine-focus sealed tube 1082 reflections with I > 2σ(I)
graphite Rint = 0.039
Detector resolution: 0 pixels mm-1 θmax = 25.0°, θmin = 2.2°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2002) k = −14→13
Tmin = 0.971, Tmax = 0.987 l = −9→10
5002 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2581P] where P = (Fo2 + 2Fc2)/3
1727 reflections (Δ/σ)max < 0.001
136 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O4 0.21459 (17) 0.66228 (13) 0.37653 (19) 0.0498 (5)
N1 0.51891 (18) 0.27137 (14) 0.8076 (2) 0.0336 (5)
H1 0.5490 0.2108 0.8520 0.040*
N2 0.53066 (18) 0.45908 (14) 0.7961 (2) 0.0350 (5)
H2 0.5664 0.5196 0.8351 0.042*
N3 0.68269 (19) 0.36480 (15) 0.9877 (2) 0.0403 (5)
H3A 0.7194 0.4256 1.0247 0.048*
H3B 0.7129 0.3038 1.0305 0.048*
N4 0.25806 (19) 0.36468 (14) 0.4697 (2) 0.0364 (5)
H4 0.2839 0.3634 0.3774 0.044*
O1 0.38963 (16) 0.55753 (12) 0.60969 (18) 0.0443 (5)
O2 0.35840 (16) 0.17282 (12) 0.64300 (17) 0.0408 (4)
O3 0.07419 (17) 0.37021 (14) 0.60637 (19) 0.0526 (5)
H4A 0.2598 0.6153 0.4382 0.063*
H4B 0.1272 0.6500 0.3778 0.063*
O5 0.1825 (2) 0.06285 (14) 0.4167 (2) 0.0641 (6)
H5A 0.2207 0.1168 0.4697 0.077*
H5B 0.1527 0.0876 0.3245 0.077*
C1 0.5807 (2) 0.36517 (17) 0.8661 (2) 0.0313 (5)
C2 0.4238 (2) 0.46472 (18) 0.6633 (2) 0.0327 (5)
C3 0.3655 (2) 0.36483 (17) 0.6053 (2) 0.0320 (5)
C4 0.4087 (2) 0.26646 (18) 0.6789 (2) 0.0314 (5)
C5 0.1185 (2) 0.36648 (18) 0.4780 (3) 0.0377 (6)
C6 0.0201 (3) 0.3621 (2) 0.3226 (3) 0.0566 (8)
H6A −0.0314 0.2944 0.3152 0.085*
H6B 0.0743 0.3670 0.2367 0.085*
H6C −0.0452 0.4222 0.3166 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O4 0.0423 (10) 0.0475 (11) 0.0557 (11) −0.0018 (8) −0.0048 (8) 0.0086 (8)
N1 0.0395 (11) 0.0234 (10) 0.0348 (10) 0.0006 (8) −0.0042 (9) 0.0052 (8)
N2 0.0390 (11) 0.0231 (10) 0.0398 (11) −0.0015 (8) −0.0039 (9) −0.0026 (8)
N3 0.0443 (12) 0.0300 (10) 0.0418 (11) 0.0004 (9) −0.0090 (9) −0.0010 (9)
N4 0.0418 (12) 0.0348 (11) 0.0312 (10) 0.0005 (9) 0.0009 (8) −0.0002 (8)
O1 0.0548 (11) 0.0217 (9) 0.0508 (10) 0.0016 (7) −0.0104 (8) 0.0031 (7)
O2 0.0472 (10) 0.0251 (9) 0.0452 (9) −0.0033 (7) −0.0092 (7) 0.0004 (7)
O3 0.0398 (10) 0.0727 (13) 0.0433 (10) −0.0004 (9) −0.0004 (8) −0.0034 (9)
O5 0.0867 (14) 0.0427 (11) 0.0521 (11) −0.0023 (10) −0.0241 (10) −0.0001 (9)
C1 0.0329 (12) 0.0273 (12) 0.0328 (11) 0.0001 (10) 0.0020 (10) −0.0005 (10)
C2 0.0335 (12) 0.0301 (13) 0.0336 (12) 0.0022 (10) 0.0019 (10) 0.0008 (10)
C3 0.0344 (12) 0.0277 (12) 0.0319 (12) 0.0004 (10) −0.0017 (10) −0.0008 (10)
C4 0.0316 (12) 0.0290 (13) 0.0331 (12) −0.0020 (10) 0.0029 (10) −0.0036 (10)
C5 0.0427 (15) 0.0293 (12) 0.0385 (13) 0.0016 (11) −0.0025 (11) −0.0034 (10)
C6 0.0507 (16) 0.0645 (19) 0.0473 (15) 0.0095 (13) −0.0159 (13) −0.0124 (13)

Geometric parameters (Å, °)

O4—H4A 0.8504 N4—H4 0.8600
O4—H4B 0.8494 O1—C2 1.247 (2)
N1—C1 1.350 (3) O2—C4 1.260 (2)
N1—C4 1.403 (2) O3—C5 1.234 (3)
N1—H1 0.8600 O5—H5A 0.8501
N2—C1 1.347 (3) O5—H5B 0.8501
N2—C2 1.407 (2) C2—C3 1.400 (3)
N2—H2 0.8600 C3—C4 1.389 (3)
N3—C1 1.312 (3) C5—C6 1.505 (3)
N3—H3A 0.8600 C6—H6A 0.9600
N3—H3B 0.8600 C6—H6B 0.9600
N4—C5 1.345 (3) C6—H6C 0.9600
N4—C3 1.426 (3)
H4A—O4—H4B 106.3 O1—C2—N2 117.21 (19)
C1—N1—C4 124.06 (18) C3—C2—N2 116.30 (19)
C1—N1—H1 118.0 C4—C3—C2 121.27 (19)
C4—N1—H1 118.0 C4—C3—N4 119.58 (19)
C1—N2—C2 124.33 (18) C2—C3—N4 119.14 (19)
C1—N2—H2 117.8 O2—C4—C3 126.82 (19)
C2—N2—H2 117.8 O2—C4—N1 116.23 (19)
C1—N3—H3A 120.0 C3—C4—N1 116.95 (19)
C1—N3—H3B 120.0 O3—C5—N4 121.5 (2)
H3A—N3—H3B 120.0 O3—C5—C6 122.1 (2)
C5—N4—C3 123.67 (19) N4—C5—C6 116.4 (2)
C5—N4—H4 118.2 C5—C6—H6A 109.5
C3—N4—H4 118.2 C5—C6—H6B 109.5
H5A—O5—H5B 105.9 H6A—C6—H6B 109.5
N3—C1—N2 121.66 (19) C5—C6—H6C 109.5
N3—C1—N1 121.37 (19) H6A—C6—H6C 109.5
N2—C1—N1 116.96 (17) H6B—C6—H6C 109.5
O1—C2—C3 126.5 (2)
C2—N2—C1—N3 178.5 (2) C5—N4—C3—C4 85.7 (3)
C2—N2—C1—N1 −2.9 (3) C5—N4—C3—C2 −93.2 (3)
C4—N1—C1—N3 179.4 (2) C2—C3—C4—O2 175.6 (2)
C4—N1—C1—N2 0.9 (3) N4—C3—C4—O2 −3.3 (3)
C1—N2—C2—O1 −178.93 (19) C2—C3—C4—N1 −3.7 (3)
C1—N2—C2—C3 1.6 (3) N4—C3—C4—N1 177.38 (19)
O1—C2—C3—C4 −177.5 (2) C1—N1—C4—O2 −177.07 (19)
N2—C2—C3—C4 1.9 (3) C1—N1—C4—C3 2.4 (3)
O1—C2—C3—N4 1.4 (3) C3—N4—C5—O3 1.2 (3)
N2—C2—C3—N4 −179.17 (18) C3—N4—C5—C6 −178.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 1.98 2.810 (2) 164.
N2—H2···O2ii 0.86 2.00 2.836 (2) 163.
N3—H3A···O5ii 0.86 1.95 2.803 (2) 172.
N3—H3B···O4i 0.86 1.98 2.843 (2) 178.
N4—H4···O2iii 0.86 2.27 3.115 (2) 170.
O4—H4A···O1 0.85 1.90 2.717 (2) 159.
O4—H4B···O3iv 0.85 1.96 2.812 (2) 176.
O5—H5A···O2 0.85 1.95 2.716 (2) 150.
O5—H5B···O3iii 0.85 1.97 2.814 (2) 174.

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y+1/2, −z+3/2; (iii) x, −y+1/2, z−1/2; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2354).

References

  1. Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Giandinoto, S., Mbagwu, G. O., Robinson, T. A., Ferguson, C. & Nunez, J. (1996). J. Heterocycl. Chem. 33, 1839–1845.
  3. Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o19–o21. [PubMed]
  4. Hockova, D., Holy, A., Masojidkova, M., Andrei, G., Snoeck, R., Clercq, E. D. & Balzarini, J. (2003). J. Med. Chem. 46, 5064–5073. [DOI] [PubMed]
  5. Marchal, A., Nogueras, M., Sanchez, A., Low, J. N., Naesens, L., Clercq, E. D. & Melguizo, M. (2010). Eur. J. Org. Chem. pp. 3823–3830.
  6. Nakayama, K., Kawato, H. & Watanabe, J. (2004). Bioorg. Med. Chem Lett. 14, 475–479. [DOI] [PubMed]
  7. Quesada, A., Marchal, A., Melguizo, M., Low, J. N. & Glidewell, C. (2004). Acta Cryst. B60, 76–89. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sun, F.-F., Ma, N., Li, Z.-M. & Song, H.-B. (2006). Acta Cryst. E62, o3864–o3865.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811034441/fl2354sup1.cif

e-67-o2526-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034441/fl2354Isup2.hkl

e-67-o2526-Isup2.hkl (85.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034441/fl2354Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES