Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 6;67(Pt 9):m1195–m1196. doi: 10.1107/S1600536811030807

Poly[[tetra­aqua­bis­(μ3-pyridine-2,6-dicarboxyl­ato)(μ2-pyridine-2,6-dicarboxyl­ato)dilanthanum(III)] dihydrate]

Shie Fu Lush a, Fwu Ming Shen b,*
PMCID: PMC3200968  PMID: 22064837

Abstract

There are two independent LaIII cations in the polymeric title compound, {[La2(C7H3NO4)3(H2O)4]·2H2O}n. One is nine-coordinated in an LaN2O7 tricapped trigonal–prismatic geometry formed by three pyridine-2,6-dicarboxyl­ate anions and two water mol­ecules, while the other is ten-coordinated in an LaNO9 bicapped square-anti­prismatic geometry formed by four pyridine-2,6-dicarboxyl­ate anions and two water mol­ecules. The two LaIII cations are separated by a non-bonding distance of 5.026 (3) Å. The pyridine-2,6-dicarboxyl­ate anions bridge the LaIII cations, forming a three-dimensional polymeric complex. The crystal structure contains extensive classical O—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O hydrogen bonds. The crystal structure is further consolidated by π–π stacking between pyridine rings, the shortest centroid–centroid distance between parallel pyridine rings being 3.700 (5) Å.

Related literature

For applications of lanthanide metal carboxyl­ate systems in supra­molecular chemistry and functional materials, see: Yang et al. (2011); Chantal et al. (2008). For similar structures, see: Brouca et al. (2002); Ghosh & Bharadwaj (2004).graphic file with name e-67-m1195-scheme1.jpg

Experimental

Crystal data

  • [La2(C7H3NO4)3(H2O)4]·2H2O

  • M r = 881.23

  • Triclinic, Inline graphic

  • a = 10.4910 (2) Å

  • b = 10.9197 (2) Å

  • c = 13.0850 (3) Å

  • α = 77.915 (1)°

  • β = 76.702 (1)°

  • γ = 86.049 (1)°

  • V = 1426.14 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.04 mm−1

  • T = 293 K

  • 0.17 × 0.13 × 0.11 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.592, T max = 0.699

  • 10097 measured reflections

  • 4496 independent reflections

  • 4014 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.126

  • S = 1.03

  • 4496 reflections

  • 398 parameters

  • H-atom parameters constrained

  • Δρmax = 3.36 e Å−3

  • Δρmin = −1.06 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030807/xu5269sup1.cif

e-67-m1195-sup1.cif (35.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030807/xu5269Isup2.hkl

e-67-m1195-Isup2.hkl (220.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

La1—N1 2.644 (5)
La1—N2i 2.728 (6)
La1—O1 2.502 (5)
La1—O3 2.614 (5)
La1—O8i 2.575 (5)
La1—O11i 2.578 (5)
La1—O11ii 2.600 (5)
La1—O13 2.593 (5)
La1—O14 2.525 (5)
La2—N3iii 2.688 (6)
La2—O3 2.674 (5)
La2—O4 2.605 (5)
La2—O5 2.865 (6)
La2—O6 2.591 (5)
La2—O6iii 2.615 (5)
La2—O7 2.524 (5)
La2—O10iii 2.539 (5)
La2—O15 2.574 (5)
La2—O16 2.575 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O5 0.85 2.04 2.766 (8) 143
O13—H13B⋯O1iv 0.85 1.91 2.721 (7) 160
O14—H14A⋯O5 0.97 2.23 3.062 (8) 143
O14—H14B⋯O9v 0.83 2.44 3.225 (10) 160
O14—H14B⋯O10v 0.83 2.22 2.712 (8) 119
O15—H15A⋯O7iii 0.85 2.14 2.948 (8) 160
O15—H15B⋯O12ii 0.85 2.16 2.849 (7) 138
O16—H16A⋯O8 0.85 2.12 2.760 (8) 132
O16—H16B⋯O17iii 0.85 2.05 2.843 (15) 155
O17—H17A⋯O9vi 0.82 2.13 2.816 (17) 141
O17—H17B⋯O9vii 0.82 2.39 2.758 (15) 108
O18—H18A⋯O2viii 0.82 2.31 2.75 (2) 114
O18—H18B⋯O18ix 0.88 2.46 2.89 (3) 110
C11—H11⋯O2x 0.93 2.45 3.320 (11) 155
C12—H12⋯O18xi 0.93 2.51 3.36 (2) 152

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic.

Acknowledgments

This work was supported financially by Yuanpei University, Taiwan.

supplementary crystallographic information

Comment

Pyridine-2,6-dicarboxylic acid (pydH2) and its deprotonated anion behave as multifunctional ligands to act as bridging ligands in metal complexes with five coordination sites involving the oxygen atoms of the carboxylate groups and the nitrogen atom of the pyridine ring. In recent years, the chemistry of lanthanide metal carboxylate systems is of great interest because of their extensive usage in supramolecular chemistry and functional materials (Brouca et al. 2002; Ghosh et al. 2004; Yang et al. 2011; Chantal et al. 2008). Here, we report a new LaIII complex with pyridine-2,6-dicarboxylic acid, [[La2(pyd)3(H2O)4].2H2O]n, from hydrothermal reaction.

The structure of the title compound is shown as Fig 1. There are two independent LaIII ions where La(1) is nine coordinated with N2O7 donors sets to form tricapped trigonal prism geometries, where La(2) is ten coordinated with NO9 donor sets to from bicapped square antiprisms geometries. The selected bond lengths (Å) of title compound are listed in Table 2. The LaIII—O and LaIII—N distances are similar to those found in other LaIII complex (Brouca, et al.2002; Ghosh, et al. 2004). The bond distances and bond angles in the ligand moiety are within normal ranges.

The structure consists of two types of ligand-binding modes contributing to link the LaO5N2(H2O)2 and LaO7N(H2O)2 polyhedral chains to three-dimensional network. This network can be described in terms of a 20-membered ring related to each other by the intermediate C8 carboxylate group. It results in a La1—La1 distance equal to 4.440 (1) Å. A projection of one 20-membered ring along x axis is shown in Fig. 2. Rings built from eight lanthanum atoms can be seen. In these rings, long La—La distances are found:La1—La2 = 6.190 (3) Å through C8 carboxylate group of pda1, La1—La2 =5.026 (3) Å through C7 carboxylate group of pda2. The La2—La2 distance through theµ-O6 atom is apart from the others with the shortest value of 4.514 (2) Å.

In the title crystal structure stabilized via O—H···O and weak C—H···O hydrogen bonds (Fig.3) (full details and symmetry codes are given in Table 3). The π–π stacking interaction is also observed, the centroid···centroid distance between the parallel aryl ring being 3.969 (4)Å and 3.700 (5) Å [Cg2vi···Cg2(N2/C9—C13), Cg3vii···Cg3(N3/C16—C20)] (symmetry code: (vi)1-X, 1-Y, 1-Z,(vii) 2-X, 1-Y, –Z). C1—O2···Cg1viii((N1/C2—C6) is 3.892 (6) Å((viii) –X, –Y, 1-Z).

Experimental

LaCl3.6H2O (0.0899 g, 0.25 mmol), pydridine-2,6-dicarboxylic acid (0.0418 g, 0.25 mmol) and 1,2-bis(4-pyridyl)ethane were mixed in 10 ml of deionized water. After stirring for 30 min, the mixture was placed in a 23 ml Teflon-lined reactor, heated at 453 K for 72 h, then cooled slowly to room temperature. The colorless transparent single crystals of the title compound were obtained in 35.10% yield (based on La).

Refinement

Water H atoms were placed in chemical sensible positions and Uiso(H)= 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C). The precise of the structure is low.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity [symmetry code:(i) x, y, z + 1; (ii) -x + 1, -y, -z; (iii) -x + 1, -y + 1, -z].

Fig. 2.

Fig. 2.

Perspective view of carboxylate-bridged-metal rings of La8C2O10.

Fig. 3.

Fig. 3.

The molecular packing for the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[La2(C7H3NO4)3(H2O)4]·2H2O Z = 2
Mr = 881.23 F(000) = 852
Triclinic, P1 Dx = 2.052 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.4910 (2) Å Cell parameters from 11712 reflections
b = 10.9197 (2) Å θ = 2.0–25.4°
c = 13.0850 (3) Å µ = 3.04 mm1
α = 77.915 (1)° T = 293 K
β = 76.702 (1)° Prism, colorless
γ = 86.049 (1)° 0.17 × 0.13 × 0.11 mm
V = 1426.14 (5) Å3

Data collection

Nonius KappaCCD diffractometer 4496 independent reflections
Radiation source: fine-focus sealed tube 4014 reflections with I > 2σ(I)
graphite Rint = 0.059
Detector resolution: 9 pixels mm-1 θmax = 24.2°, θmin = 2.8°
ω/2θ scans h = −12→11
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) k = −12→12
Tmin = 0.592, Tmax = 0.699 l = −14→15
10097 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0734P)2 + 6.7391P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
4496 reflections Δρmax = 3.36 e Å3
398 parameters Δρmin = −1.06 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=KFc[1+0.001Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0024 (7)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
La1 0.44785 (3) −0.02327 (3) 0.35019 (3) 0.0209 (2)
La2 0.41829 (4) 0.30745 (3) 0.02503 (3) 0.0252 (2)
O1 0.3054 (5) −0.1677 (5) 0.5004 (4) 0.0337 (17)
O2 0.1185 (5) −0.2630 (5) 0.5862 (5) 0.0492 (19)
O3 0.3593 (4) 0.1173 (4) 0.1926 (4) 0.0272 (16)
O4 0.1922 (5) 0.2287 (5) 0.1428 (4) 0.0399 (17)
O5 0.6510 (6) 0.2726 (5) 0.1081 (5) 0.0463 (19)
O6 0.6152 (5) 0.4494 (4) 0.0013 (4) 0.0328 (17)
O7 0.5246 (5) 0.3575 (5) −0.1722 (4) 0.0356 (17)
O8 0.5833 (5) 0.1871 (4) −0.2427 (4) 0.0319 (17)
O9 0.9032 (7) 0.8529 (6) 0.0852 (8) 0.081 (3)
O10 0.7051 (5) 0.8128 (5) 0.0666 (4) 0.0393 (17)
O11 0.3996 (4) 0.0804 (4) −0.4828 (4) 0.0262 (14)
O12 0.3094 (5) 0.2114 (5) −0.6006 (4) 0.0374 (17)
O13 0.5983 (5) 0.1647 (5) 0.3240 (4) 0.0423 (17)
O14 0.6366 (5) −0.0113 (5) 0.1893 (4) 0.0446 (17)
O15 0.3833 (7) 0.3857 (5) 0.2021 (4) 0.051 (2)
O16 0.5634 (7) 0.1192 (5) −0.0243 (5) 0.053 (2)
N1 0.1958 (5) −0.0293 (5) 0.3519 (4) 0.0275 (17)
N2 0.4329 (5) 0.2539 (5) −0.3812 (4) 0.0236 (17)
N3 0.7679 (6) 0.5744 (5) 0.0726 (5) 0.0294 (17)
C1 0.1846 (7) −0.1889 (7) 0.5121 (6) 0.032 (2)
C2 0.1188 (7) −0.1139 (6) 0.4260 (6) 0.031 (2)
C3 −0.0104 (8) −0.1294 (8) 0.4229 (7) 0.049 (3)
C4 −0.0596 (8) −0.0556 (10) 0.3409 (8) 0.061 (3)
C5 0.0167 (8) 0.0337 (9) 0.2682 (7) 0.048 (3)
C6 0.1450 (7) 0.0440 (7) 0.2754 (6) 0.029 (2)
C7 0.2362 (7) 0.1378 (6) 0.1992 (5) 0.028 (2)
C8 0.5249 (7) 0.2914 (7) −0.2401 (6) 0.031 (2)
C9 0.4483 (7) 0.3385 (7) −0.3250 (6) 0.029 (2)
C10 0.3945 (8) 0.4592 (7) −0.3418 (6) 0.041 (3)
C11 0.3248 (10) 0.4928 (8) −0.4212 (8) 0.057 (3)
C12 0.3085 (9) 0.4063 (7) −0.4800 (7) 0.045 (3)
C13 0.3647 (7) 0.2886 (7) −0.4586 (6) 0.029 (2)
C14 0.3545 (6) 0.1889 (6) −0.5189 (5) 0.0235 (19)
C15 0.6790 (7) 0.3836 (6) 0.0665 (5) 0.031 (2)
C16 0.7822 (7) 0.4492 (7) 0.0935 (6) 0.034 (2)
C17 0.8816 (8) 0.3878 (8) 0.1402 (7) 0.047 (3)
C18 0.9714 (9) 0.4597 (9) 0.1617 (9) 0.057 (3)
C19 0.9565 (8) 0.5869 (8) 0.1416 (8) 0.049 (3)
C20 0.8519 (8) 0.6423 (7) 0.0988 (6) 0.037 (2)
C21 0.8212 (8) 0.7801 (8) 0.0811 (7) 0.043 (3)
O17 0.1654 (11) 0.9097 (12) 0.0235 (15) 0.203 (8)
O18 0.0497 (18) 0.4499 (17) 0.4043 (14) 0.262 (11)
H3 −0.06240 −0.18810 0.47480 0.0590*
H4 −0.14450 −0.06660 0.33500 0.0730*
H5 −0.01690 0.08680 0.21480 0.0570*
H10 0.40520 0.51580 −0.30040 0.0490*
H11 0.28900 0.57330 −0.43500 0.0680*
H12 0.26060 0.42700 −0.53310 0.0530*
H13A 0.60750 0.22650 0.27140 0.0510*
H13B 0.63440 0.18290 0.37070 0.0510*
H14A 0.67250 0.07070 0.18120 0.0670*
H14B 0.70090 −0.05880 0.17820 0.0670*
H15A 0.38940 0.46430 0.19540 0.0620*
H15B 0.32620 0.35990 0.25900 0.0620*
H16A 0.55550 0.09510 −0.08010 0.0640*
H16B 0.64370 0.13440 −0.03160 0.0640*
H17 0.88720 0.30080 0.15640 0.0560*
H18 1.04150 0.42180 0.18960 0.0690*
H19 1.01600 0.63630 0.15650 0.0590*
H17A 0.15910 0.98620 0.01620 0.3010*
H17B 0.12280 0.88870 −0.01490 0.3010*
H18A 0.00000 0.44490 0.36500 0.3970*
H18B 0.01520 0.40770 0.46880 0.3970*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
La1 0.0260 (3) 0.0196 (2) 0.0178 (3) 0.0006 (2) −0.0064 (2) −0.0041 (2)
La2 0.0369 (3) 0.0184 (3) 0.0199 (3) −0.0007 (2) −0.0063 (2) −0.0032 (2)
O1 0.033 (3) 0.031 (3) 0.037 (3) −0.008 (2) −0.018 (2) 0.007 (2)
O2 0.040 (3) 0.046 (3) 0.047 (4) −0.008 (3) −0.002 (3) 0.017 (3)
O3 0.027 (2) 0.028 (3) 0.026 (3) 0.001 (2) −0.0075 (19) −0.003 (2)
O4 0.037 (3) 0.037 (3) 0.037 (3) 0.010 (2) −0.008 (2) 0.008 (2)
O5 0.074 (4) 0.021 (3) 0.044 (3) −0.005 (3) −0.021 (3) 0.003 (2)
O6 0.046 (3) 0.024 (3) 0.031 (3) −0.001 (2) −0.017 (2) −0.002 (2)
O7 0.051 (3) 0.033 (3) 0.028 (3) −0.004 (2) −0.012 (2) −0.013 (2)
O8 0.046 (3) 0.028 (3) 0.028 (3) 0.006 (2) −0.018 (2) −0.011 (2)
O9 0.060 (4) 0.046 (4) 0.148 (8) −0.008 (3) −0.043 (5) −0.022 (4)
O10 0.044 (3) 0.030 (3) 0.049 (3) −0.001 (2) −0.012 (3) −0.017 (2)
O11 0.029 (2) 0.029 (3) 0.022 (2) −0.001 (2) −0.005 (2) −0.009 (2)
O12 0.046 (3) 0.040 (3) 0.030 (3) 0.003 (2) −0.020 (2) −0.004 (2)
O13 0.058 (3) 0.047 (3) 0.024 (3) −0.025 (3) −0.012 (2) −0.001 (2)
O14 0.049 (3) 0.041 (3) 0.037 (3) −0.001 (3) 0.008 (3) −0.012 (3)
O15 0.097 (5) 0.028 (3) 0.026 (3) −0.013 (3) −0.002 (3) −0.007 (2)
O16 0.087 (5) 0.043 (3) 0.040 (3) 0.023 (3) −0.030 (3) −0.021 (3)
N1 0.029 (3) 0.026 (3) 0.026 (3) −0.001 (2) −0.004 (2) −0.004 (2)
N2 0.030 (3) 0.021 (3) 0.021 (3) 0.001 (2) −0.007 (2) −0.006 (2)
N3 0.038 (3) 0.024 (3) 0.027 (3) 0.005 (3) −0.009 (3) −0.007 (3)
C1 0.044 (4) 0.023 (4) 0.024 (4) 0.004 (3) −0.004 (3) −0.001 (3)
C2 0.026 (3) 0.027 (4) 0.035 (4) −0.001 (3) −0.003 (3) 0.000 (3)
C3 0.035 (4) 0.046 (5) 0.057 (6) −0.005 (4) −0.012 (4) 0.013 (4)
C4 0.022 (4) 0.073 (6) 0.078 (7) −0.013 (4) −0.020 (4) 0.022 (5)
C5 0.035 (4) 0.054 (5) 0.048 (5) 0.006 (4) −0.015 (4) 0.010 (4)
C6 0.029 (4) 0.025 (4) 0.032 (4) 0.006 (3) −0.009 (3) −0.001 (3)
C7 0.035 (4) 0.025 (4) 0.024 (4) 0.004 (3) −0.011 (3) −0.002 (3)
C8 0.041 (4) 0.028 (4) 0.025 (4) −0.010 (3) −0.003 (3) −0.011 (3)
C9 0.032 (4) 0.028 (4) 0.027 (4) 0.001 (3) −0.001 (3) −0.010 (3)
C10 0.061 (5) 0.025 (4) 0.037 (4) 0.007 (4) −0.012 (4) −0.010 (3)
C11 0.092 (7) 0.025 (4) 0.060 (6) 0.025 (4) −0.033 (5) −0.016 (4)
C12 0.060 (5) 0.034 (4) 0.043 (5) 0.016 (4) −0.024 (4) −0.005 (4)
C13 0.032 (4) 0.030 (4) 0.025 (4) 0.004 (3) −0.007 (3) −0.008 (3)
C14 0.023 (3) 0.026 (4) 0.021 (3) 0.002 (3) −0.006 (3) −0.003 (3)
C15 0.045 (4) 0.024 (4) 0.021 (4) −0.001 (3) −0.003 (3) −0.006 (3)
C16 0.036 (4) 0.034 (4) 0.032 (4) 0.005 (3) −0.006 (3) −0.008 (3)
C17 0.057 (5) 0.030 (4) 0.055 (5) 0.011 (4) −0.024 (4) −0.004 (4)
C18 0.051 (5) 0.047 (5) 0.083 (7) 0.014 (4) −0.038 (5) −0.014 (5)
C19 0.044 (5) 0.047 (5) 0.064 (6) 0.001 (4) −0.022 (4) −0.016 (4)
C20 0.041 (4) 0.039 (4) 0.035 (4) 0.003 (3) −0.011 (3) −0.012 (4)
C21 0.041 (4) 0.039 (4) 0.053 (5) −0.009 (4) −0.010 (4) −0.014 (4)
O17 0.079 (7) 0.110 (9) 0.37 (2) 0.004 (6) 0.030 (10) −0.030 (12)
O18 0.26 (2) 0.29 (2) 0.244 (18) −0.205 (18) −0.175 (17) 0.126 (17)

Geometric parameters (Å, °)

La1—N1 2.644 (5) O16—H16B 0.8500
La1—N2i 2.728 (6) O17—H17A 0.8200
La1—O1 2.502 (5) O17—H17B 0.8200
La1—O3 2.614 (5) O18—H18A 0.8200
La1—O8i 2.575 (5) O18—H18B 0.8800
La1—O11i 2.578 (5) N1—C2 1.347 (9)
La1—O11ii 2.600 (5) N1—C6 1.333 (9)
La1—O13 2.593 (5) N2—C13 1.348 (9)
La1—O14 2.525 (5) N2—C9 1.334 (9)
La2—N3iii 2.688 (6) N3—C16 1.342 (10)
La2—O3 2.674 (5) N3—C20 1.334 (10)
La2—O4 2.605 (5) C1—C2 1.520 (11)
La2—O5 2.865 (6) C2—C3 1.388 (12)
La2—O6 2.591 (5) C3—C4 1.379 (13)
La2—O6iii 2.615 (5) C4—C5 1.366 (14)
La2—O7 2.524 (5) C5—C6 1.385 (12)
La2—O10iii 2.539 (5) C6—C7 1.492 (10)
La2—O15 2.574 (5) C8—C9 1.503 (11)
La2—O16 2.575 (6) C9—C10 1.392 (11)
O1—C1 1.273 (9) C10—C11 1.379 (13)
O2—C1 1.231 (10) C11—C12 1.379 (13)
O3—C7 1.282 (9) C12—C13 1.378 (11)
O4—C7 1.237 (9) C13—C14 1.495 (10)
O5—C15 1.245 (9) C15—C16 1.483 (11)
O6—C15 1.277 (9) C16—C17 1.391 (12)
O7—C8 1.256 (9) C17—C18 1.378 (13)
O8—C8 1.259 (9) C18—C19 1.363 (14)
O9—C21 1.228 (11) C19—C20 1.390 (12)
O10—C21 1.290 (10) C20—C21 1.498 (12)
O11—C14 1.281 (8) C3—H3 0.9300
O12—C14 1.239 (8) C4—H4 0.9300
O13—H13B 0.8500 C5—H5 0.9300
O13—H13A 0.8500 C10—H10 0.9300
O14—H14A 0.9700 C11—H11 0.9300
O14—H14B 0.8300 C12—H12 0.9300
O15—H15B 0.8500 C17—H17 0.9300
O15—H15A 0.8500 C18—H18 0.9300
O16—H16A 0.8500 C19—H19 0.9300
O1—La1—O3 122.79 (16) La1i—O8—C8 127.8 (5)
O1—La1—O13 138.55 (16) La2iii—O10—C21 122.7 (5)
O1—La1—O14 144.85 (18) La1iv—O11—C14 102.4 (4)
O1—La1—N1 61.51 (17) La1i—O11—C14 128.0 (4)
O1—La1—O11ii 72.38 (16) La1iv—O11—La1i 118.03 (17)
O1—La1—O8i 82.61 (17) H13A—O13—H13B 108.00
O1—La1—O11i 79.37 (16) La1—O13—H13A 125.00
O1—La1—N2i 70.50 (17) La1—O13—H13B 126.00
O3—La1—O13 83.61 (15) H14A—O14—H14B 105.00
O3—La1—O14 75.24 (16) La1—O14—H14A 104.00
O3—La1—N1 61.30 (15) La1—O14—H14B 130.00
O3—La1—O11ii 111.02 (14) H15A—O15—H15B 108.00
O3—La1—O8i 78.74 (15) La2—O15—H15A 115.00
O3—La1—O11i 155.18 (14) La2—O15—H15B 126.00
O3—La1—N2i 134.90 (15) H16A—O16—H16B 108.00
O13—La1—O14 66.84 (17) La2—O16—H16A 117.00
O13—La1—N1 130.64 (17) La2—O16—H16B 110.00
O11ii—La1—O13 68.07 (15) H17A—O17—H17B 108.00
O8i—La1—O13 137.30 (16) H18A—O18—H18B 108.00
O11i—La1—O13 71.66 (15) La1—N1—C6 121.0 (4)
O13—La1—N2i 115.33 (17) C2—N1—C6 118.9 (6)
O14—La1—N1 126.86 (16) La1—N1—C2 120.0 (4)
O11ii—La1—O14 133.32 (16) La1i—N2—C13 121.0 (4)
O8i—La1—O14 71.15 (17) La1i—N2—C9 120.7 (4)
O11i—La1—O14 92.63 (16) C9—N2—C13 118.1 (6)
O14—La1—N2i 76.04 (16) La2iii—N3—C20 119.1 (5)
O11ii—La1—N1 92.06 (15) C16—N3—C20 118.4 (7)
O8i—La1—N1 71.66 (17) La2iii—N3—C16 122.5 (5)
O11i—La1—N1 138.66 (15) O2—C1—C2 118.6 (7)
N1—La1—N2i 114.03 (17) O1—C1—O2 125.8 (7)
O8i—La1—O11ii 154.60 (15) O1—C1—C2 115.7 (6)
O11ii—La1—O11i 61.97 (14) N1—C2—C1 114.6 (6)
O11ii—La1—N2i 114.01 (15) N1—C2—C3 121.8 (7)
O8i—La1—O11i 118.28 (15) C1—C2—C3 123.5 (7)
O8i—La1—N2i 59.34 (16) C2—C3—C4 118.3 (8)
O11i—La1—N2i 58.97 (15) C3—C4—C5 119.9 (8)
O3—La2—O4 49.45 (15) C4—C5—C6 118.9 (8)
O3—La2—O5 76.72 (15) C5—C6—C7 122.8 (7)
O3—La2—O6 121.38 (15) N1—C6—C5 122.1 (7)
O3—La2—O7 142.63 (16) N1—C6—C7 115.1 (6)
O3—La2—O15 69.42 (16) O3—C7—O4 122.5 (6)
O3—La2—O16 73.31 (17) O4—C7—C6 120.0 (7)
O3—La2—O6iii 134.20 (15) O3—C7—C6 117.5 (6)
O3—La2—O10iii 85.13 (15) O8—C8—C9 116.5 (7)
O3—La2—N3iii 121.02 (16) O7—C8—O8 125.4 (7)
O4—La2—O5 121.66 (17) O7—C8—C9 118.1 (7)
O4—La2—O6 146.54 (16) N2—C9—C10 122.6 (7)
O4—La2—O7 136.93 (17) N2—C9—C8 114.5 (6)
O4—La2—O15 72.17 (19) C8—C9—C10 122.9 (7)
O4—La2—O16 109.57 (19) C9—C10—C11 118.4 (7)
O4—La2—O6iii 101.96 (17) C10—C11—C12 119.6 (8)
O4—La2—O10iii 66.56 (16) C11—C12—C13 118.7 (8)
O4—La2—N3iii 72.45 (18) C12—C13—C14 122.8 (7)
O5—La2—O6 47.20 (16) N2—C13—C14 114.6 (6)
O5—La2—O7 98.49 (18) N2—C13—C12 122.7 (7)
O5—La2—O15 68.8 (2) O11—C14—C13 115.7 (6)
O5—La2—O16 65.89 (19) O11—C14—O12 122.5 (6)
O5—La2—O6iii 101.06 (16) O12—C14—C13 121.8 (6)
O5—La2—O10iii 137.38 (17) O5—C15—O6 121.2 (7)
O5—La2—N3iii 159.07 (17) O5—C15—C16 122.6 (7)
O6—La2—O7 72.46 (17) O6—C15—C16 116.1 (6)
O6—La2—O15 74.76 (19) C15—C16—C17 123.7 (7)
O6—La2—O16 93.97 (19) N3—C16—C17 122.7 (7)
O6—La2—O6iii 59.73 (16) N3—C16—C15 113.5 (6)
O6—La2—O10iii 145.86 (16) C16—C17—C18 118.1 (8)
O6—La2—N3iii 112.19 (17) C17—C18—C19 119.4 (9)
O7—La2—O15 143.95 (18) C18—C19—C20 119.7 (8)
O7—La2—O16 71.09 (19) C19—C20—C21 123.9 (8)
O6iii—La2—O7 83.17 (17) N3—C20—C21 114.5 (7)
O7—La2—O10iii 73.54 (17) N3—C20—C19 121.7 (7)
O7—La2—N3iii 74.28 (18) O9—C21—C20 119.5 (8)
O15—La2—O16 126.2 (2) O9—C21—O10 124.6 (8)
O6iii—La2—O15 67.46 (16) O10—C21—C20 115.8 (7)
O10iii—La2—O15 138.7 (2) C2—C3—H3 121.00
O15—La2—N3iii 105.3 (2) C4—C3—H3 121.00
O6iii—La2—O16 148.18 (19) C3—C4—H4 120.00
O10iii—La2—O16 72.1 (2) C5—C4—H4 120.00
O16—La2—N3iii 127.1 (2) C4—C5—H5 121.00
O6iii—La2—O10iii 118.78 (17) C6—C5—H5 120.00
O6iii—La2—N3iii 59.01 (17) C11—C10—H10 121.00
O10iii—La2—N3iii 60.36 (17) C9—C10—H10 121.00
La1—O1—C1 127.8 (5) C10—C11—H11 120.00
La1—O3—La2 143.82 (18) C12—C11—H11 120.00
La1—O3—C7 121.3 (4) C11—C12—H12 121.00
La2—O3—C7 91.7 (4) C13—C12—H12 121.00
La2—O4—C7 96.0 (4) C18—C17—H17 121.00
La2—O5—C15 89.2 (5) C16—C17—H17 121.00
La2—O6—C15 101.4 (4) C17—C18—H18 120.00
La2—O6—La2iii 120.3 (2) C19—C18—H18 120.00
La2iii—O6—C15 124.5 (4) C20—C19—H19 120.00
La2—O7—C8 126.9 (5) C18—C19—H19 120.00
O3—La1—O1—C1 2.6 (7) N3iii—La2—O7—C8 −87.9 (6)
O13—La1—O1—C1 124.6 (6) O3—La2—O6iii—La2iii 105.9 (2)
O14—La1—O1—C1 −110.3 (6) O3—La2—O6iii—C15iii −121.3 (5)
N1—La1—O1—C1 4.2 (6) O4—La2—O6iii—La2iii 149.7 (2)
O11ii—La1—O1—C1 106.7 (6) O4—La2—O6iii—C15iii −77.5 (5)
O8i—La1—O1—C1 −68.9 (6) O5—La2—O6iii—La2iii 23.7 (2)
O11i—La1—O1—C1 170.4 (6) O5—La2—O6iii—C15iii 156.5 (5)
N2i—La1—O1—C1 −128.9 (6) O6—La2—O6iii—La2iii 0.02 (17)
O1—La1—O3—La2 168.6 (3) O6—La2—O6iii—C15iii 132.8 (6)
O1—La1—O3—C7 15.8 (5) O7—La2—O6iii—La2iii −73.7 (2)
O13—La1—O3—La2 23.0 (3) O7—La2—O6iii—C15iii 59.1 (5)
O13—La1—O3—C7 −129.8 (5) O15—La2—O6iii—La2iii 85.0 (3)
O14—La1—O3—La2 −44.7 (3) O15—La2—O6iii—C15iii −142.2 (6)
O14—La1—O3—C7 162.6 (5) O16—La2—O6iii—La2iii −38.0 (5)
N1—La1—O3—La2 167.0 (4) O16—La2—O6iii—C15iii 94.8 (6)
N1—La1—O3—C7 14.2 (4) O3—La2—O10iii—C21iii 104.9 (6)
O11ii—La1—O3—La2 86.5 (3) O4—La2—O10iii—C21iii 57.3 (6)
O11ii—La1—O3—C7 −66.2 (5) O5—La2—O10iii—C21iii 169.2 (5)
O8i—La1—O3—La2 −117.9 (3) O6—La2—O10iii—C21iii −111.4 (6)
O8i—La1—O3—C7 89.3 (5) O7—La2—O10iii—C21iii −106.1 (6)
O11i—La1—O3—La2 18.2 (6) O15—La2—O10iii—C21iii 54.0 (7)
O11i—La1—O3—C7 −134.6 (5) O16—La2—O10iii—C21iii 178.9 (6)
N2i—La1—O3—La2 −96.7 (3) O3—La2—N3iii—C16iii 130.4 (5)
N2i—La1—O3—C7 110.5 (5) O3—La2—N3iii—C20iii −47.7 (6)
O1—La1—N1—C2 −6.0 (5) O4—La2—N3iii—C16iii 120.7 (6)
O1—La1—N1—C6 179.1 (6) O4—La2—N3iii—C20iii −57.4 (5)
O3—La1—N1—C2 172.4 (5) O5—La2—N3iii—C16iii −14.9 (9)
O3—La1—N1—C6 −2.5 (5) O5—La2—N3iii—C20iii 167.0 (5)
O13—La1—N1—C2 −137.2 (5) O6—La2—N3iii—C16iii −24.0 (6)
O13—La1—N1—C6 48.0 (6) O6—La2—N3iii—C20iii 157.9 (5)
O14—La1—N1—C2 133.1 (5) O7—La2—N3iii—C16iii −87.1 (6)
O14—La1—N1—C6 −41.8 (6) O7—La2—N3iii—C20iii 94.9 (6)
O11ii—La1—N1—C2 −74.7 (5) O15—La2—N3iii—C16iii 55.5 (6)
O11ii—La1—N1—C6 110.5 (5) O15—La2—N3iii—C20iii −122.6 (5)
O8i—La1—N1—C2 85.5 (5) O16—La2—N3iii—C16iii −137.7 (5)
O8i—La1—N1—C6 −89.4 (5) O16—La2—N3iii—C20iii 44.3 (6)
O11i—La1—N1—C2 −26.8 (6) La1—O1—C1—O2 178.3 (6)
O11i—La1—N1—C6 158.3 (5) La1—O1—C1—C2 −2.2 (9)
N2i—La1—N1—C2 42.9 (5) La1—O3—C7—O4 158.7 (5)
N2i—La1—N1—C6 −132.0 (5) La1—O3—C7—C6 −23.8 (8)
O1—La1—O11ii—C14ii −126.6 (4) La2—O3—C7—O4 −5.6 (7)
O3—La1—O11ii—C14ii −7.4 (4) La2—O3—C7—C6 171.9 (5)
O13—La1—O11ii—C14ii 66.1 (4) La2—O4—C7—O3 5.8 (7)
O14—La1—O11ii—C14ii 81.8 (4) La2—O4—C7—C6 −171.6 (5)
N1—La1—O11ii—C14ii −67.4 (4) La2—O5—C15—O6 −9.7 (7)
O1—La1—O8i—C8i −79.6 (6) La2—O5—C15—C16 166.9 (6)
O3—La1—O8i—C8i 154.8 (6) La2—O6—C15—O5 11.0 (7)
O13—La1—O8i—C8i 87.3 (6) La2—O6—C15—C16 −165.8 (5)
O14—La1—O8i—C8i 76.7 (6) La2iii—O6—C15—O5 150.7 (5)
N1—La1—O8i—C8i −141.9 (6) La2iii—O6—C15—C16 −26.1 (8)
O1—La1—O11i—C14i 61.0 (5) La2—O7—C8—O8 −67.8 (10)
O3—La1—O11i—C14i −144.0 (5) La2—O7—C8—C9 111.4 (7)
O13—La1—O11i—C14i −149.1 (5) La1i—O8—C8—O7 165.7 (5)
O14—La1—O11i—C14i −84.5 (5) La1i—O8—C8—C9 −13.5 (9)
N1—La1—O11i—C14i 79.5 (6) La2iii—O10—C21—O9 150.6 (8)
O1—La1—N2i—C9i 93.4 (5) La2iii—O10—C21—C20 −32.3 (9)
O1—La1—N2i—C13i −81.9 (5) La1iv—O11—C14—O12 20.2 (7)
O3—La1—N2i—C9i −23.9 (6) La1iv—O11—C14—C13 −157.4 (5)
O3—La1—N2i—C13i 160.9 (5) La1i—O11—C14—O12 161.8 (5)
O13—La1—N2i—C9i −131.2 (5) La1i—O11—C14—C13 −15.8 (8)
O13—La1—N2i—C13i 53.5 (5) La1—N1—C2—C1 7.4 (8)
O14—La1—N2i—C9i −75.7 (5) La1—N1—C2—C3 −173.0 (6)
O14—La1—N2i—C13i 109.1 (5) C6—N1—C2—C1 −177.6 (6)
N1—La1—N2i—C9i 48.8 (5) C6—N1—C2—C3 2.0 (10)
N1—La1—N2i—C13i −126.5 (5) La1—N1—C6—C5 173.3 (6)
O4—La2—O3—La1 −154.0 (4) La1—N1—C6—C7 −7.1 (8)
O4—La2—O3—C7 3.0 (4) C2—N1—C6—C5 −1.7 (11)
O5—La2—O3—La1 1.7 (3) C2—N1—C6—C7 178.0 (6)
O5—La2—O3—C7 158.7 (4) C13—N2—C9—C8 179.7 (6)
O6—La2—O3—La1 −14.2 (4) C13—N2—C9—C10 1.4 (11)
O6—La2—O3—C7 142.8 (4) La1i—N2—C9—C8 −4.9 (8)
O7—La2—O3—La1 88.4 (4) La1i—N2—C9—C10 176.8 (6)
O7—La2—O3—C7 −114.7 (4) C9—N2—C13—C12 −1.4 (11)
O15—La2—O3—La1 −70.3 (3) C9—N2—C13—C14 178.9 (6)
O15—La2—O3—C7 86.7 (4) La1i—N2—C13—C12 −176.8 (6)
O16—La2—O3—La1 70.2 (3) La1i—N2—C13—C14 3.5 (8)
O16—La2—O3—C7 −132.8 (4) C20—N3—C16—C15 176.8 (6)
O6iii—La2—O3—La1 −90.9 (4) C20—N3—C16—C17 −0.7 (11)
O6iii—La2—O3—C7 66.1 (4) La2iii—N3—C16—C15 −5.1 (8)
O10iii—La2—O3—La1 142.9 (3) La2iii—N3—C16—C17 177.4 (6)
O10iii—La2—O3—C7 −60.1 (4) C16—N3—C20—C19 3.4 (11)
N3iii—La2—O3—La1 −166.2 (3) C16—N3—C20—C21 −175.0 (7)
N3iii—La2—O3—C7 −9.2 (4) La2iii—N3—C20—C19 −174.8 (6)
O3—La2—O4—C7 −3.1 (4) La2iii—N3—C20—C21 6.9 (9)
O5—La2—O4—C7 −31.1 (5) O1—C1—C2—N1 −3.7 (9)
O6—La2—O4—C7 −90.1 (5) O1—C1—C2—C3 176.6 (7)
O7—La2—O4—C7 125.0 (4) O2—C1—C2—N1 175.9 (7)
O15—La2—O4—C7 −80.9 (4) O2—C1—C2—C3 −3.8 (11)
O16—La2—O4—C7 42.1 (4) N1—C2—C3—C4 0.2 (12)
O6iii—La2—O4—C7 −142.2 (4) C1—C2—C3—C4 179.8 (8)
O10iii—La2—O4—C7 101.4 (4) C2—C3—C4—C5 −2.8 (14)
N3iii—La2—O4—C7 166.0 (4) C3—C4—C5—C6 3.2 (15)
O3—La2—O5—C15 −155.8 (4) C4—C5—C6—N1 −1.0 (13)
O4—La2—O5—C15 −134.3 (4) C4—C5—C6—C7 179.5 (8)
O6—La2—O5—C15 5.6 (4) N1—C6—C7—O3 20.1 (9)
O7—La2—O5—C15 62.0 (4) N1—C6—C7—O4 −162.4 (6)
O15—La2—O5—C15 −83.0 (4) C5—C6—C7—O3 −160.3 (7)
O16—La2—O5—C15 126.8 (5) C5—C6—C7—O4 17.3 (11)
O6iii—La2—O5—C15 −22.7 (4) O7—C8—C9—N2 −168.0 (7)
O10iii—La2—O5—C15 136.9 (4) O7—C8—C9—C10 10.2 (11)
N3iii—La2—O5—C15 −5.9 (8) O8—C8—C9—N2 11.2 (10)
O3—La2—O6—C15 15.8 (4) O8—C8—C9—C10 −170.6 (7)
O3—La2—O6—La2iii −126.1 (2) N2—C9—C10—C11 −1.3 (12)
O4—La2—O6—C15 78.5 (5) C8—C9—C10—C11 −179.4 (8)
O4—La2—O6—La2iii −63.4 (4) C9—C10—C11—C12 1.1 (14)
O5—La2—O6—C15 −5.5 (4) C10—C11—C12—C13 −1.1 (14)
O5—La2—O6—La2iii −147.5 (3) C11—C12—C13—N2 1.3 (13)
O7—La2—O6—C15 −125.8 (4) C11—C12—C13—C14 −179.0 (8)
O7—La2—O6—La2iii 92.3 (2) N2—C13—C14—O11 6.8 (9)
O15—La2—O6—C15 69.4 (4) N2—C13—C14—O12 −170.8 (6)
O15—La2—O6—La2iii −72.5 (2) C12—C13—C14—O11 −172.9 (7)
O16—La2—O6—C15 −57.1 (4) C12—C13—C14—O12 9.5 (11)
O16—La2—O6—La2iii 161.0 (2) O5—C15—C16—N3 −157.5 (7)
O6iii—La2—O6—C15 141.9 (4) O5—C15—C16—C17 19.9 (12)
O6iii—La2—O6—La2iii −0.02 (18) O6—C15—C16—N3 19.3 (9)
O10iii—La2—O6—C15 −120.5 (4) O6—C15—C16—C17 −163.3 (7)
O10iii—La2—O6—La2iii 97.6 (3) N3—C16—C17—C18 −2.6 (13)
N3iii—La2—O6—C15 170.0 (4) C15—C16—C17—C18 −179.8 (8)
N3iii—La2—O6—La2iii 28.1 (3) C16—C17—C18—C19 3.1 (14)
O3—La2—O7—C8 33.0 (7) C17—C18—C19—C20 −0.6 (15)
O4—La2—O7—C8 −47.3 (7) C18—C19—C20—N3 −2.7 (14)
O5—La2—O7—C8 112.3 (6) C18—C19—C20—C21 175.5 (9)
O6—La2—O7—C8 152.1 (6) N3—C20—C21—O9 −167.8 (9)
O15—La2—O7—C8 177.6 (6) N3—C20—C21—O10 15.0 (10)
O16—La2—O7—C8 51.5 (6) C19—C20—C21—O9 13.9 (14)
O6iii—La2—O7—C8 −147.5 (6) C19—C20—C21—O10 −163.3 (8)
O10iii—La2—O7—C8 −24.8 (6)

Symmetry codes: (i) −x+1, −y, −z; (ii) x, y, z+1; (iii) −x+1, −y+1, −z; (iv) x, y, z−1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O13—H13A···O5 0.85 2.04 2.766 (8) 143
O13—H13B···O1v 0.85 1.91 2.721 (7) 160
O14—H14A···O5 0.97 2.23 3.062 (8) 143
O14—H14B···O9vi 0.83 2.44 3.225 (10) 160
O14—H14B···O10vi 0.83 2.22 2.712 (8) 119
O15—H15A···O7iii 0.85 2.14 2.948 (8) 160
O15—H15B···O12ii 0.85 2.16 2.849 (7) 138
O16—H16A···O8 0.85 2.12 2.760 (8) 132
O16—H16B···O17iii 0.85 2.05 2.843 (15) 155
O17—H17A···O9vii 0.82 2.13 2.816 (17) 141
O17—H17B···O9viii 0.82 2.39 2.758 (15) 108
O18—H18A···O2ix 0.82 2.31 2.75 (2) 114
O18—H18B···O18x 0.88 2.46 2.89 (3) 110
C11—H11···O2xi 0.93 2.45 3.320 (11) 155
C12—H12···O18iv 0.93 2.51 3.36 (2) 152

Symmetry codes: (v) −x+1, −y, −z+1; (vi) x, y−1, z; (iii) −x+1, −y+1, −z; (ii) x, y, z+1; (vii) −x+1, −y+2, −z; (viii) x−1, y, z; (ix) −x, −y, −z+1; (x) −x, −y+1, −z+1; (xi) x, y+1, z−1; (iv) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5269).

References

  1. Brouca, C. C., Fernandes, A., Jaud, J. & Costes, J. P. (2002). Inorg. Chim. Acta, 332, 54–60.
  2. Chantal, B. C., Jeannette, D. G., Auguste, F., Joel, J. & Jean, C. T. (2008). Inorg. Chim. Acta, 361, 2909–2917.
  3. Ghosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293–2298. [DOI] [PubMed]
  4. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Yang, L.-R., Song, S., Shao, C.-Y., Zhang, W., Zhang, H.-M., Bu, Z.-W. & Ren, T.-G. (2011). Synth. Met. In the press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030807/xu5269sup1.cif

e-67-m1195-sup1.cif (35.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030807/xu5269Isup2.hkl

e-67-m1195-Isup2.hkl (220.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES