Abstract
In the title compound, C16H16, the central benzene ring adopts a boat conformation, with a dihedral angle of 34.7 (9)° between the mean planes of the two fused benzene rings. The two methyl groups at the apex of the central benzene ring are in axial and equatorial conformations. The crystal packing is stabilized by weak C—H⋯π intermolecular interactions.
Related literature
For analytical applications of anthrone, see: Trevelyan (1952 ▶). For related structures, see: Destro et al. (1973 ▶); Fun et al. (2010 ▶); Ghosh et al. (1993 ▶); Iball & Low (1974 ▶); Srivastava (1964 ▶); Zhou et al. (2004 ▶, 2005 ▶, 2007 ▶).
Experimental
Crystal data
C16H16
M r = 208.29
Monoclinic,
a = 12.7042 (15) Å
b = 7.4882 (7) Å
c = 13.177 (2) Å
β = 107.787 (14)°
V = 1193.7 (3) Å3
Z = 4
Mo Kα radiation
μ = 0.07 mm−1
T = 173 K
0.38 × 0.32 × 0.25 mm
Data collection
Oxford Xcalibur Eos Gemini diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010 ▶) T min = 0.976, T max = 0.984
10733 measured reflections
2958 independent reflections
2447 reflections with I > 2σ(I)
R int = 0.023
Refinement
R[F 2 > 2σ(F 2)] = 0.050
wR(F 2) = 0.144
S = 1.01
2958 reflections
147 parameters
H-atom parameters constrained
Δρmax = 0.19 e Å−3
Δρmin = −0.21 e Å−3
Data collection: CrysAlis PRO (Oxford Diffraction, 2010 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033526/bt5616sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033526/bt5616Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811033526/bt5616Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg3 is the centroid of the C8–C13 benzene ring.
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C10—H10A⋯Cg3i | 0.95 | 2.75 | 3.7072 (16) | 177 |
Symmetry code: (i) .
Acknowledgments
BPS thanks the University of Mysore for research facilities. JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.
supplementary crystallographic information
Comment
Anthracene and its derivatives are long known polycyclic aromatic compounds showing a high potential for use in materials science (e.g. fluorescence probing, photochromic systems, electroluminescence) and several reviews have been published. Anthrone is a tricyclic aromatic hydrocarbon which is used for a popular cellulose assay and in the colorometric determination of carbohydrates (Trevelyan, 1952) and anthracene itself is used in the production of red dye alizarin. The crystal structures of anthrone (Srivastava, 1964), 10-bromoanthrone (Destro et al., 1973), 9,10-dimethylanthracene (Iball & Low, 1974), benzylideneanthrone at 193 K (Ghosh et al., 1993), 10-(2-methylbenzylidene)anthrone (Zhou et al., 2004), 10-(3,4-dimethoxybenzylidene)anthrone (Zhou et al., 2005), 10-(4-hydroxy-3-nitrobenzylidene)anthrone (Zhou et al., 2007) and 10,10-dimethylanthrone (Fun et al., 2010) have been reported. In view of the importance of anthracene derivatives, this paper reports the crystal structure of the title compound, (I), C16H16.
In the title compound, C16H16, the center benzene ring (C1/C6–C8/C13/C14) with puckering parameters, Q, θ, φ, of 0.4930 (13) Å, 92.27 (15)°, 120.13 (15)°, adopts a boat conformation with a dihedral angle of 34.7 (9)° between the mean planes of the two fused benzene rings (Fig. 1). The two methyl groups at the apex of the center benzene ring are in axial and equatorial conformations. The crystal packing is stabilized by weak C—H···Cgπ-ring intermolecular interactions (Fig. 2).
Experimental
The title compound was obtained as a gift sample from R. L. Fine Chemicals, Bangalore. X-ray quality crystals were grown from toluene solution by slow evaporation (320–322 K).
Refinement
All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95 Å (CH), 0.99 Å (CH) or 0.98 Å (CH3). The isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH), 1.2 (CH2) or 1.49 (CH3) times Ueq of the parent atom.
Figures
Fig. 1.
Molecular structure of the title co-crystal salt showing the atom labeling scheme and 50% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the title co-crystal salt viewed down the b axis.
Crystal data
C16H16 | F(000) = 448 |
Mr = 208.29 | Dx = 1.159 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4436 reflections |
a = 12.7042 (15) Å | θ = 3.3–32.2° |
b = 7.4882 (7) Å | µ = 0.07 mm−1 |
c = 13.177 (2) Å | T = 173 K |
β = 107.787 (14)° | Block, colourless |
V = 1193.7 (3) Å3 | 0.38 × 0.32 × 0.25 mm |
Z = 4 |
Data collection
Oxford Xcalibur Eos Gemini diffractometer | 2958 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2447 reflections with I > 2σ(I) |
graphite | Rint = 0.023 |
Detector resolution: 16.1500 pixels mm-1 | θmax = 28.3°, θmin = 3.4° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | k = −9→9 |
Tmin = 0.976, Tmax = 0.984 | l = −17→17 |
10733 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0778P)2 + 0.2041P] where P = (Fo2 + 2Fc2)/3 |
2958 reflections | (Δ/σ)max < 0.001 |
147 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
C1 | 0.39240 (10) | 0.13364 (15) | 0.28673 (10) | 0.0417 (3) | |
C2 | 0.28419 (11) | 0.07383 (19) | 0.26861 (15) | 0.0597 (4) | |
H2A | 0.2447 | 0.0248 | 0.2012 | 0.072* | |
C3 | 0.23363 (14) | 0.0853 (2) | 0.34811 (18) | 0.0743 (5) | |
H3A | 0.1599 | 0.0440 | 0.3347 | 0.089* | |
C4 | 0.28927 (16) | 0.1558 (2) | 0.44566 (17) | 0.0736 (5) | |
H4A | 0.2541 | 0.1644 | 0.4996 | 0.088* | |
C5 | 0.39589 (14) | 0.2141 (2) | 0.46526 (13) | 0.0605 (4) | |
H5A | 0.4345 | 0.2623 | 0.5331 | 0.073* | |
C6 | 0.44818 (10) | 0.20332 (16) | 0.38678 (10) | 0.0439 (3) | |
C7 | 0.56538 (11) | 0.26594 (18) | 0.41022 (9) | 0.0465 (3) | |
H7A | 0.5811 | 0.3571 | 0.4673 | 0.056* | |
H7B | 0.6160 | 0.1640 | 0.4364 | 0.056* | |
C8 | 0.58672 (9) | 0.34389 (15) | 0.31365 (9) | 0.0361 (3) | |
C9 | 0.66134 (9) | 0.48356 (17) | 0.32422 (10) | 0.0451 (3) | |
H9A | 0.6981 | 0.5294 | 0.3932 | 0.054* | |
C10 | 0.68302 (10) | 0.55675 (18) | 0.23709 (12) | 0.0518 (3) | |
H10A | 0.7340 | 0.6525 | 0.2454 | 0.062* | |
C11 | 0.62997 (11) | 0.48946 (19) | 0.13806 (12) | 0.0539 (4) | |
H11A | 0.6445 | 0.5386 | 0.0772 | 0.065* | |
C12 | 0.55516 (10) | 0.35000 (18) | 0.12576 (10) | 0.0463 (3) | |
H12A | 0.5192 | 0.3050 | 0.0564 | 0.056* | |
C13 | 0.53167 (8) | 0.27457 (15) | 0.21306 (8) | 0.0352 (3) | |
C14 | 0.45293 (9) | 0.11660 (16) | 0.20299 (9) | 0.0400 (3) | |
C15 | 0.37195 (13) | 0.1028 (2) | 0.09028 (11) | 0.0622 (4) | |
H15A | 0.3270 | 0.2114 | 0.0737 | 0.093* | |
H15B | 0.3237 | −0.0010 | 0.0859 | 0.093* | |
H15C | 0.4133 | 0.0890 | 0.0390 | 0.093* | |
C16 | 0.52239 (12) | −0.05675 (18) | 0.22602 (12) | 0.0536 (4) | |
H16A | 0.5754 | −0.0507 | 0.2978 | 0.080* | |
H16B | 0.5624 | −0.0698 | 0.1736 | 0.080* | |
H16C | 0.4734 | −0.1595 | 0.2213 | 0.080* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0379 (6) | 0.0300 (5) | 0.0586 (7) | 0.0032 (4) | 0.0167 (5) | 0.0062 (5) |
C2 | 0.0446 (7) | 0.0415 (7) | 0.0949 (11) | −0.0046 (6) | 0.0242 (7) | 0.0008 (7) |
C3 | 0.0569 (9) | 0.0455 (8) | 0.1372 (17) | 0.0005 (7) | 0.0545 (11) | 0.0164 (10) |
C4 | 0.0899 (12) | 0.0467 (8) | 0.1113 (15) | 0.0097 (8) | 0.0710 (12) | 0.0189 (9) |
C5 | 0.0819 (10) | 0.0480 (8) | 0.0647 (9) | 0.0075 (7) | 0.0419 (8) | 0.0132 (7) |
C6 | 0.0509 (7) | 0.0366 (6) | 0.0482 (6) | 0.0054 (5) | 0.0210 (5) | 0.0103 (5) |
C7 | 0.0496 (7) | 0.0496 (7) | 0.0363 (6) | 0.0001 (6) | 0.0070 (5) | 0.0027 (5) |
C8 | 0.0306 (5) | 0.0364 (6) | 0.0394 (6) | 0.0052 (4) | 0.0080 (4) | 0.0013 (4) |
C9 | 0.0353 (6) | 0.0404 (6) | 0.0560 (7) | 0.0008 (5) | 0.0086 (5) | −0.0044 (5) |
C10 | 0.0394 (6) | 0.0400 (6) | 0.0797 (10) | 0.0008 (5) | 0.0239 (6) | 0.0057 (6) |
C11 | 0.0516 (7) | 0.0534 (8) | 0.0663 (9) | 0.0096 (6) | 0.0323 (7) | 0.0182 (7) |
C12 | 0.0464 (6) | 0.0536 (7) | 0.0400 (6) | 0.0088 (6) | 0.0148 (5) | 0.0043 (5) |
C13 | 0.0305 (5) | 0.0356 (6) | 0.0388 (5) | 0.0060 (4) | 0.0094 (4) | 0.0016 (4) |
C14 | 0.0368 (6) | 0.0373 (6) | 0.0426 (6) | −0.0001 (4) | 0.0074 (5) | −0.0036 (5) |
C15 | 0.0559 (8) | 0.0667 (10) | 0.0526 (8) | −0.0121 (7) | −0.0005 (6) | −0.0092 (7) |
C16 | 0.0547 (7) | 0.0363 (6) | 0.0711 (9) | 0.0043 (6) | 0.0210 (7) | −0.0059 (6) |
Geometric parameters (Å, °)
C1—C6 | 1.3935 (18) | C9—C10 | 1.3739 (19) |
C1—C2 | 1.3953 (18) | C9—H9A | 0.9500 |
C1—C14 | 1.5309 (17) | C10—C11 | 1.369 (2) |
C2—C3 | 1.389 (2) | C10—H10A | 0.9500 |
C2—H2A | 0.9500 | C11—C12 | 1.388 (2) |
C3—C4 | 1.370 (3) | C11—H11A | 0.9500 |
C3—H3A | 0.9500 | C12—C13 | 1.3933 (16) |
C4—C5 | 1.370 (2) | C12—H12A | 0.9500 |
C4—H4A | 0.9500 | C13—C14 | 1.5285 (16) |
C5—C6 | 1.3917 (18) | C14—C15 | 1.5301 (17) |
C5—H5A | 0.9500 | C14—C16 | 1.5467 (17) |
C6—C7 | 1.5004 (18) | C15—H15A | 0.9800 |
C7—C8 | 1.4981 (16) | C15—H15B | 0.9800 |
C7—H7A | 0.9900 | C15—H15C | 0.9800 |
C7—H7B | 0.9900 | C16—H16A | 0.9800 |
C8—C9 | 1.3897 (17) | C16—H16B | 0.9800 |
C8—C13 | 1.3962 (15) | C16—H16C | 0.9800 |
C6—C1—C2 | 118.15 (13) | C11—C10—C9 | 118.94 (12) |
C6—C1—C14 | 119.40 (10) | C11—C10—H10A | 120.5 |
C2—C1—C14 | 122.38 (12) | C9—C10—H10A | 120.5 |
C3—C2—C1 | 120.64 (16) | C10—C11—C12 | 120.56 (12) |
C3—C2—H2A | 119.7 | C10—C11—H11A | 119.7 |
C1—C2—H2A | 119.7 | C12—C11—H11A | 119.7 |
C4—C3—C2 | 120.46 (15) | C11—C12—C13 | 121.37 (12) |
C4—C3—H3A | 119.8 | C11—C12—H12A | 119.3 |
C2—C3—H3A | 119.8 | C13—C12—H12A | 119.3 |
C3—C4—C5 | 119.77 (15) | C12—C13—C8 | 117.49 (11) |
C3—C4—H4A | 120.1 | C12—C13—C14 | 122.80 (11) |
C5—C4—H4A | 120.1 | C8—C13—C14 | 119.66 (10) |
C4—C5—C6 | 120.68 (16) | C13—C14—C15 | 111.39 (11) |
C4—C5—H5A | 119.7 | C13—C14—C1 | 109.41 (9) |
C6—C5—H5A | 119.7 | C15—C14—C1 | 111.62 (10) |
C5—C6—C1 | 120.30 (13) | C13—C14—C16 | 108.27 (9) |
C5—C6—C7 | 119.85 (12) | C15—C14—C16 | 107.92 (11) |
C1—C6—C7 | 119.85 (11) | C1—C14—C16 | 108.10 (10) |
C8—C7—C6 | 111.87 (10) | C14—C15—H15A | 109.5 |
C8—C7—H7A | 109.2 | C14—C15—H15B | 109.5 |
C6—C7—H7A | 109.2 | H15A—C15—H15B | 109.5 |
C8—C7—H7B | 109.2 | C14—C15—H15C | 109.5 |
C6—C7—H7B | 109.2 | H15A—C15—H15C | 109.5 |
H7A—C7—H7B | 107.9 | H15B—C15—H15C | 109.5 |
C9—C8—C13 | 120.23 (11) | C14—C16—H16A | 109.5 |
C9—C8—C7 | 120.20 (11) | C14—C16—H16B | 109.5 |
C13—C8—C7 | 119.57 (10) | H16A—C16—H16B | 109.5 |
C10—C9—C8 | 121.42 (12) | C14—C16—H16C | 109.5 |
C10—C9—H9A | 119.3 | H16A—C16—H16C | 109.5 |
C8—C9—H9A | 119.3 | H16B—C16—H16C | 109.5 |
C6—C1—C2—C3 | 0.6 (2) | C10—C11—C12—C13 | 0.06 (19) |
C14—C1—C2—C3 | 177.46 (12) | C11—C12—C13—C8 | −0.35 (17) |
C1—C2—C3—C4 | 0.1 (2) | C11—C12—C13—C14 | −177.76 (11) |
C2—C3—C4—C5 | −0.6 (2) | C9—C8—C13—C12 | 0.34 (16) |
C3—C4—C5—C6 | 0.4 (2) | C7—C8—C13—C12 | −179.27 (10) |
C4—C5—C6—C1 | 0.3 (2) | C9—C8—C13—C14 | 177.83 (10) |
C4—C5—C6—C7 | −179.33 (13) | C7—C8—C13—C14 | −1.78 (16) |
C2—C1—C6—C5 | −0.75 (18) | C12—C13—C14—C15 | −22.82 (16) |
C14—C1—C6—C5 | −177.72 (11) | C8—C13—C14—C15 | 159.83 (11) |
C2—C1—C6—C7 | 178.86 (12) | C12—C13—C14—C1 | −146.71 (11) |
C14—C1—C6—C7 | 1.88 (17) | C8—C13—C14—C1 | 35.93 (13) |
C5—C6—C7—C8 | −146.93 (12) | C12—C13—C14—C16 | 95.69 (13) |
C1—C6—C7—C8 | 33.46 (16) | C8—C13—C14—C16 | −81.66 (13) |
C6—C7—C8—C9 | 146.92 (11) | C6—C1—C14—C13 | −35.94 (14) |
C6—C7—C8—C13 | −33.47 (16) | C2—C1—C14—C13 | 147.22 (12) |
C13—C8—C9—C10 | −0.04 (18) | C6—C1—C14—C15 | −159.70 (12) |
C7—C8—C9—C10 | 179.56 (11) | C2—C1—C14—C15 | 23.46 (17) |
C8—C9—C10—C11 | −0.25 (19) | C6—C1—C14—C16 | 81.76 (13) |
C9—C10—C11—C12 | 0.24 (19) | C2—C1—C14—C16 | −95.08 (14) |
Hydrogen-bond geometry (Å, °)
Cg3 is the centroid of the C8–C13 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···Cg3i | 0.95 | 2.75 | 3.7072 (16) | 177 |
Symmetry codes: (i) −x+5/2, y+1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5616).
References
- Destro, R., D’Alfonso, T. B. & Simonetta, M. (1973). Acta Cryst. B29, 2214–2220.
- Fun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Siddegowda, M. S. (2010). Acta Cryst. E66, o808–o809. [DOI] [PMC free article] [PubMed]
- Ghosh, R., Lynch, V. M., Simonsen, S. H., Prasad, R. S. & Roberts, R. M. (1993). Acta Cryst. C49, 1013–1015.
- Iball, J. & Low, J. M. (1974). Acta Cryst. B30, 2203–2205.
- Oxford Diffraction (2010). CrysAlis PRO (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Srivastava, S. N. (1964). Acta Cryst. 17, 851–856.
- Trevelyan, W. E. (1952). Nature (London), 170, 626–627. [DOI] [PubMed]
- Zhou, W., Hu, W.-X. & Rao, G.-W. (2004). Acta Cryst. E60, o1234–o1235.
- Zhou, W., Hu, W. & Xia, C. (2005). Acta Cryst. E61, o3433–o3434.
- Zhou, W., Hu, W.-X. & Xia, C.-N. (2007). Acta Cryst. E63, o51–o53.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033526/bt5616sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033526/bt5616Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811033526/bt5616Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report