Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2313–o2314. doi: 10.1107/S1600536811031850

tert-Butyl N-[3-hy­droxy-1-phenyl-4-(pyrimidin-2-ylsulfan­yl)butan-2-yl]carbamate monohydrate

Claudia R B Gomes a, Thatyana R A Vasconcelos b, Walcimar T Vellasco Jr a,b, James L Wardell c,, Solange M S V Wardell d, Edward R T Tiekink c,*
PMCID: PMC3200972  PMID: 22064897

Abstract

In the title hydrate, C19H25N3O3S·H2O, the configuration at each chiral centre in the organic mol­ecule is S, with the hy­droxy and carbamate substituents being anti [O—C—C—N torsion angle = −179.3 (3)°]. The thio­pyrimidyl and carbamate residues lie to one side of the pseudo-mirror plane defined by the C5S backbone of the mol­ecule; this plane approximately bis­ects the benzene ring at the 1- and 4-C atoms. The dihedral angle formed between the terminal rings is 5.06 (18)°. In the crystal, supra­molecular tubes aligned along the b axis are found: these are sustained by a combination of O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For background to the use of hy­droxy­ethyl­amine derivatives in medicinal chemistry, see: Brik & Wong (2003); Ghosh et al. (2001); Marcin et al. (2011); Trudel et al. (2008); Cunico et al. (2009a ,b ,c , 2011).graphic file with name e-67-o2313-scheme1.jpg

Experimental

Crystal data

  • C19H25N3O3S·H2O

  • M r = 393.50

  • Monoclinic, Inline graphic

  • a = 19.4238 (7) Å

  • b = 5.1275 (2) Å

  • c = 22.4815 (8) Å

  • β = 114.319 (2)°

  • V = 2040.38 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 120 K

  • 0.30 × 0.02 × 0.02 mm

Data collection

  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.801, T max = 1.000

  • 11781 measured reflections

  • 4032 independent reflections

  • 3409 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.112

  • S = 1.04

  • 4032 reflections

  • 259 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983), 1442 Friedel pairs

  • Flack parameter: 0.11 (11)

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031850/hb6348sup1.cif

e-67-o2313-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031850/hb6348Isup2.hkl

e-67-o2313-Isup2.hkl (193.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031850/hb6348Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O1wi 0.83 (2) 2.00 (2) 2.813 (4) 168 (4)
O1w—H1w⋯N1ii 0.85 (2) 2.12 (2) 2.958 (4) 174 (4)
O1w—H2w⋯O1 0.84 (3) 2.06 (3) 2.893 (4) 170 (4)
N3—H3n⋯O2i 0.86 (2) 2.13 (2) 2.910 (3) 152 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

Compounds having a hydroxyethylamine core play important roles in the medicinal chemistry field. They inhibit aspartyl protease enzymes and are widely used as anti-HIV agents (Brik & Wong, 2003; Ghosh et al., 2001), as inhibitors of BACE-1 to combat Alzheimer's disease (Marcin, et al., 2011) and have also been considered in the treatment of leishmania/HIV-1 co-infections (Trudel et al., 2008). Cunico and co-workers have reported on the in vitro activity of hydroxyethylamine derivatives as anti-malarial agents (Cunico et al., 2009a, 2009b, 2009c, 2011) and in this article we report the structure of the title molecule, isolated from ethanol solution as a monohydrate, (I).

The structure analysis of (I) confirms the stereochemistry at each of the C1 and C7 atoms to be S, Fig. 1, as anticipated from the synthesis. The O1 and N3 substituents on C1 and C7, respectively, have an anti disposition [the O1—C1—C7—N3 torsion angle = -179.3 (3) °]. With reference to the C5S backbone of the molecule, i.e. comprising the C1/C2/C7/C13/C14/S1 atoms, the benzene ring occupies a position that is approximately bisected by the pseudo mirror plane through these atoms [the C7—C13—C14···C17 torsion angle = -17.1 (5) °] whereas the thiopyrimidyl group lies to one side of the plane [the C3—S1—C2—C1 torsion angle = 89.9 (2) °]. The terminal rings of the C5S backbone are almost parallel forming a dihedral angle of 5.06 (18) °. The carbamate residue lies to the same side of the C5S plane as does the thiopyrimidyl group with the t-BuO atoms being directed away from the rest of the molecule.

In the crystal, the water molecules serve to link translationally related hydroxy groups by forming both donor and acceptor interactions, and at the same time the water molecule forms a donor interaction to one of the pyrimidyl-N atoms, Table 1. The resultant supramolecular assembly, a tube, is further stabilized by amine-H···O(carbonyl) interactions. Side-on and end-on views of the supramolecular tube are shown in Figs 2 and 3, respectively. The tubes are aligned along the b direction as seen in Fig. 4.

Experimental

A solution of (2S,3S)-boc-phenylalanine epoxide (1.6 mmol) (Cunico et al., 2009a), mercaptopyrimidine (1.5 mmol) and triethylamine (1.6 mmol) in methanol (10 ml) was stirred at room temperature for 2 h, rotary evaporated and HCl (5%) added to the residue. The mixture was extracted with CH2Cl2 and the combined organic extracts were washed with brine, dried over anhydrous Na2SO4 and evaporated, giving the title molecule in 95% yield. The crude product was purified by crystallization in methanol/water (7:3) to yield colourless needles of (I); M.pt.: 371–373 K.. EI—MS (m/z) (%): 398.2 (M++Na, 52%). 1H NMR [400.00 MHz, DMSO-d6] δ: 8.59 (d, 2H, J = 4.8 Hz, H3' and H5'); 7.18 (t, 1H, J = 4.7 Hz, H4'); 7.19–7.13 (m, 5H, Ph); 6.70 (d, 1H, J = 8.7 Hz, NH); 5.33 (d, 1H, J = 6.0 Hz, OH); 3.66–3.58 (m, 2H, H3 and H2); 3.52 (dd, 1H, 1J = 13.6 Hz, 2J = 3.2 Hz, H1b); 3.08 (dd, 1H, 1J = 13.6, 2J = 8.0 Hz, H1a); 3.03 (dd, 1H, 1J = 13.5, 2J = 2.6 Hz, H4b); 2.56 (dd, 1H, 1J = 13.7, 2 J = 10.0 Hz, H4a); 1.26 (s, 9H, Boc) p.p.m.. 13C NMR [100.0 MHz, DMSO-d6] δ: 171.4; 157.6; 155.3; 139.5; 129.1; 127.9; 125.7; 117.0; 77.5; 72.1; 56.3; 35.8; 35.0; 28.2 p.p.m.. IR (cm-1; KBr): νmax: 3358 (OH); 3030 (NH); 1686 (C═O); 640 (C—S). The crystals used in the structure determination were grown from moist EtOH solution explaining the presence of water in the title structure, (I).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraints O–H = 0.84 ± 0.01 and N–H = 0.86±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A side-on view of the supramolecular tube in (I) sustained by O—H···O, O—H···N (orange dashed lines) and N—H···O (blue dashed lines) hydrogen bonds.

Fig. 3.

Fig. 3.

End-on view of the supramolecular tube in (I) sustained by O—H···O, O—H···N (orange dashed lines) and N—H···O (blue dashed lines) hydrogen bonds.

Fig. 4.

Fig. 4.

A view in projection down the b axis of the packing of supramolecular tubes in (I). The O—H···O, O—H···N (orange) and N—H···O (blue) hydrogen bonds are shown as dashed lines.

Crystal data

C19H25N3O3S·H2O F(000) = 840
Mr = 393.50 Dx = 1.281 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2y Cell parameters from 31450 reflections
a = 19.4238 (7) Å θ = 2.9–27.5°
b = 5.1275 (2) Å µ = 0.19 mm1
c = 22.4815 (8) Å T = 120 K
β = 114.319 (2)° Needle, colourless
V = 2040.38 (13) Å3 0.30 × 0.02 × 0.02 mm
Z = 4

Data collection

Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer 4032 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode 3409 reflections with I > 2σ(I)
graphite Rint = 0.048
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 2.9°
φ and ω scans h = −24→24
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −6→5
Tmin = 0.801, Tmax = 1.000 l = −29→28
11781 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0169P)2 + 4.9933P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4032 reflections Δρmax = 0.27 e Å3
259 parameters Δρmin = −0.26 e Å3
6 restraints Absolute structure: Flack (1983), 1442 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.11 (11)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.38657 (5) 0.93234 (19) 0.94519 (4) 0.0274 (2)
O1 0.51141 (12) 0.8689 (5) 0.89189 (11) 0.0260 (6)
H1O 0.526 (2) 1.023 (3) 0.898 (2) 0.039*
O2 0.33859 (13) 0.2943 (4) 0.71553 (11) 0.0262 (6)
O3 0.25342 (12) 0.5902 (4) 0.64894 (11) 0.0230 (5)
N1 0.29924 (15) 1.2998 (6) 0.95196 (13) 0.0263 (7)
N2 0.27041 (16) 1.1435 (6) 0.84405 (13) 0.0274 (7)
N3 0.35124 (14) 0.7325 (5) 0.73525 (13) 0.0195 (6)
H3N 0.3325 (17) 0.881 (3) 0.7189 (14) 0.023*
C1 0.43449 (16) 0.8764 (7) 0.84546 (14) 0.0212 (7)
H1 0.4184 1.0614 0.8337 0.025*
C2 0.38603 (18) 0.7501 (7) 0.87609 (15) 0.0247 (7)
H2A 0.4049 0.5714 0.8905 0.030*
H2B 0.3334 0.7358 0.8428 0.030*
C3 0.31002 (17) 1.1467 (7) 0.90796 (16) 0.0228 (7)
C4 0.24166 (18) 1.4693 (7) 0.92708 (16) 0.0300 (8)
H4 0.2315 1.5825 0.9560 0.036*
C5 0.19690 (19) 1.4849 (8) 0.86141 (17) 0.0337 (9)
H5 0.1561 1.6048 0.8445 0.040*
C6 0.21382 (19) 1.3195 (8) 0.82139 (17) 0.0324 (9)
H6 0.1844 1.3292 0.7757 0.039*
C7 0.42887 (16) 0.7273 (7) 0.78451 (14) 0.0203 (7)
H7 0.4438 0.5418 0.7969 0.024*
C8 0.31684 (17) 0.5180 (6) 0.70118 (15) 0.0187 (7)
C9 0.20689 (17) 0.3927 (7) 0.60200 (15) 0.0232 (7)
C10 0.16727 (19) 0.2235 (7) 0.63384 (17) 0.0282 (8)
H10A 0.1391 0.3348 0.6514 0.042*
H10B 0.2049 0.1222 0.6693 0.042*
H10C 0.1323 0.1045 0.6013 0.042*
C11 0.15008 (19) 0.5600 (7) 0.54834 (17) 0.0292 (8)
H11A 0.1767 0.6684 0.5286 0.044*
H11B 0.1231 0.6722 0.5669 0.044*
H11C 0.1138 0.4472 0.5149 0.044*
C12 0.25420 (18) 0.2360 (7) 0.57476 (16) 0.0260 (8)
H12A 0.2829 0.1024 0.6064 0.039*
H12B 0.2892 0.3529 0.5665 0.039*
H12C 0.2208 0.1520 0.5338 0.039*
C13 0.48159 (17) 0.8439 (7) 0.75607 (15) 0.0241 (7)
H13A 0.4615 1.0151 0.7361 0.029*
H13B 0.5320 0.8734 0.7919 0.029*
C14 0.48983 (18) 0.6690 (7) 0.70518 (16) 0.0227 (7)
C15 0.44298 (19) 0.6935 (7) 0.63926 (16) 0.0274 (8)
H15 0.4064 0.8291 0.6250 0.033*
C16 0.44908 (19) 0.5222 (7) 0.59414 (17) 0.0298 (8)
H16 0.4163 0.5397 0.5492 0.036*
C17 0.50219 (19) 0.3270 (8) 0.61384 (17) 0.0316 (8)
H17 0.5059 0.2091 0.5827 0.038*
C18 0.55023 (19) 0.3022 (7) 0.67897 (18) 0.0321 (8)
H18 0.5876 0.1693 0.6926 0.038*
C19 0.54376 (18) 0.4719 (7) 0.72444 (17) 0.0279 (8)
H19 0.5766 0.4532 0.7693 0.033*
O1W 0.58202 (13) 0.3603 (5) 0.91425 (12) 0.0322 (6)
H1W 0.6181 (15) 0.351 (8) 0.9517 (9) 0.048*
H2W 0.561 (2) 0.506 (4) 0.912 (2) 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0276 (4) 0.0302 (5) 0.0216 (4) 0.0040 (4) 0.0071 (3) −0.0014 (4)
O1 0.0206 (11) 0.0223 (15) 0.0251 (11) −0.0019 (10) −0.0008 (9) −0.0033 (10)
O2 0.0275 (12) 0.0122 (13) 0.0316 (13) 0.0011 (10) 0.0048 (10) 0.0004 (10)
O3 0.0217 (11) 0.0167 (12) 0.0227 (12) 0.0003 (9) 0.0010 (9) −0.0035 (10)
N1 0.0276 (14) 0.0291 (18) 0.0228 (14) −0.0027 (13) 0.0111 (12) −0.0029 (13)
N2 0.0272 (15) 0.0315 (18) 0.0207 (14) −0.0017 (13) 0.0071 (12) 0.0004 (13)
N3 0.0167 (13) 0.0118 (14) 0.0244 (14) −0.0006 (11) 0.0028 (11) 0.0003 (12)
C1 0.0180 (14) 0.0200 (19) 0.0212 (15) 0.0024 (13) 0.0037 (12) −0.0025 (13)
C2 0.0270 (17) 0.0200 (19) 0.0257 (17) −0.0012 (14) 0.0093 (14) −0.0035 (15)
C3 0.0209 (16) 0.023 (2) 0.0247 (17) −0.0023 (14) 0.0099 (14) −0.0002 (15)
C4 0.0286 (17) 0.029 (2) 0.0355 (19) 0.0004 (16) 0.0169 (15) −0.0036 (17)
C5 0.0227 (17) 0.033 (2) 0.039 (2) 0.0037 (16) 0.0057 (15) 0.0045 (18)
C6 0.0254 (17) 0.034 (2) 0.0289 (18) −0.0038 (16) 0.0022 (15) 0.0032 (17)
C7 0.0180 (15) 0.0166 (18) 0.0217 (16) 0.0020 (13) 0.0037 (13) 0.0001 (14)
C8 0.0185 (15) 0.0191 (18) 0.0176 (15) 0.0009 (13) 0.0066 (13) 0.0010 (13)
C9 0.0248 (15) 0.0193 (19) 0.0221 (15) −0.0017 (14) 0.0063 (12) −0.0032 (15)
C10 0.0291 (18) 0.025 (2) 0.0348 (19) −0.0047 (15) 0.0175 (15) −0.0048 (16)
C11 0.0272 (18) 0.023 (2) 0.0296 (19) −0.0005 (15) 0.0042 (15) −0.0018 (16)
C12 0.0252 (16) 0.027 (2) 0.0249 (17) −0.0017 (15) 0.0098 (14) −0.0024 (15)
C13 0.0212 (16) 0.0188 (19) 0.0308 (18) −0.0029 (14) 0.0091 (14) −0.0026 (14)
C14 0.0219 (16) 0.0178 (17) 0.0307 (18) −0.0031 (14) 0.0132 (14) −0.0008 (15)
C15 0.0252 (17) 0.026 (2) 0.0315 (18) −0.0002 (15) 0.0122 (15) 0.0014 (16)
C16 0.0263 (18) 0.032 (2) 0.0299 (19) −0.0056 (16) 0.0104 (15) −0.0006 (16)
C17 0.0345 (19) 0.032 (2) 0.038 (2) −0.0106 (17) 0.0241 (17) −0.0103 (17)
C18 0.0280 (18) 0.0231 (19) 0.052 (2) 0.0039 (16) 0.0233 (17) 0.0039 (18)
C19 0.0279 (17) 0.026 (2) 0.0324 (18) −0.0028 (16) 0.0156 (14) 0.0031 (16)
O1W 0.0281 (13) 0.0268 (16) 0.0327 (13) −0.0001 (11) 0.0033 (10) −0.0008 (11)

Geometric parameters (Å, °)

S1—C3 1.759 (3) C9—C11 1.521 (5)
S1—C2 1.809 (3) C9—C12 1.526 (5)
O1—C1 1.428 (3) C10—H10A 0.9800
O1—H1O 0.833 (10) C10—H10B 0.9800
O2—C8 1.219 (4) C10—H10C 0.9800
O3—C8 1.357 (4) C11—H11A 0.9800
O3—C9 1.473 (4) C11—H11B 0.9800
N1—C4 1.343 (4) C11—H11C 0.9800
N1—C3 1.345 (4) C12—H12A 0.9800
N2—C3 1.321 (4) C12—H12B 0.9800
N2—C6 1.349 (5) C12—H12C 0.9800
N3—C8 1.350 (4) C13—C14 1.513 (5)
N3—C7 1.458 (4) C13—H13A 0.9900
N3—H3N 0.856 (10) C13—H13B 0.9900
C1—C2 1.521 (4) C14—C15 1.389 (5)
C1—C7 1.533 (4) C14—C19 1.390 (5)
C1—H1 1.0000 C15—C16 1.383 (5)
C2—H2A 0.9900 C15—H15 0.9500
C2—H2B 0.9900 C16—C17 1.373 (5)
C4—C5 1.373 (5) C16—H16 0.9500
C4—H4 0.9500 C17—C18 1.381 (5)
C5—C6 1.371 (5) C17—H17 0.9500
C5—H5 0.9500 C18—C19 1.387 (5)
C6—H6 0.9500 C18—H18 0.9500
C7—C13 1.534 (4) C19—H19 0.9500
C7—H7 1.0000 O1W—H1W 0.846 (10)
C9—C10 1.520 (5) O1W—H2W 0.842 (10)
C3—S1—C2 102.08 (16) C10—C9—C12 113.2 (3)
C1—O1—H1O 107 (3) C11—C9—C12 109.8 (3)
C8—O3—C9 120.2 (2) C9—C10—H10A 109.5
C4—N1—C3 115.3 (3) C9—C10—H10B 109.5
C3—N2—C6 114.9 (3) H10A—C10—H10B 109.5
C8—N3—C7 122.1 (3) C9—C10—H10C 109.5
C8—N3—H3N 117 (2) H10A—C10—H10C 109.5
C7—N3—H3N 118 (2) H10B—C10—H10C 109.5
O1—C1—C2 108.3 (2) C9—C11—H11A 109.5
O1—C1—C7 107.9 (2) C9—C11—H11B 109.5
C2—C1—C7 111.3 (3) H11A—C11—H11B 109.5
O1—C1—H1 109.8 C9—C11—H11C 109.5
C2—C1—H1 109.8 H11A—C11—H11C 109.5
C7—C1—H1 109.8 H11B—C11—H11C 109.5
C1—C2—S1 112.5 (2) C9—C12—H12A 109.5
C1—C2—H2A 109.1 C9—C12—H12B 109.5
S1—C2—H2A 109.1 H12A—C12—H12B 109.5
C1—C2—H2B 109.1 C9—C12—H12C 109.5
S1—C2—H2B 109.1 H12A—C12—H12C 109.5
H2A—C2—H2B 107.8 H12B—C12—H12C 109.5
N2—C3—N1 127.6 (3) C14—C13—C7 112.4 (3)
N2—C3—S1 120.6 (3) C14—C13—H13A 109.1
N1—C3—S1 111.8 (2) C7—C13—H13A 109.1
N1—C4—C5 122.4 (3) C14—C13—H13B 109.1
N1—C4—H4 118.8 C7—C13—H13B 109.1
C5—C4—H4 118.8 H13A—C13—H13B 107.9
C6—C5—C4 116.9 (3) C15—C14—C19 118.5 (3)
C6—C5—H5 121.5 C15—C14—C13 121.7 (3)
C4—C5—H5 121.5 C19—C14—C13 119.7 (3)
N2—C6—C5 123.0 (3) C16—C15—C14 120.6 (3)
N2—C6—H6 118.5 C16—C15—H15 119.7
C5—C6—H6 118.5 C14—C15—H15 119.7
N3—C7—C1 109.9 (2) C17—C16—C15 120.4 (3)
N3—C7—C13 109.6 (2) C17—C16—H16 119.8
C1—C7—C13 111.4 (3) C15—C16—H16 119.8
N3—C7—H7 108.6 C16—C17—C18 119.9 (3)
C1—C7—H7 108.6 C16—C17—H17 120.0
C13—C7—H7 108.6 C18—C17—H17 120.0
O2—C8—N3 125.5 (3) C17—C18—C19 119.8 (3)
O2—C8—O3 125.3 (3) C17—C18—H18 120.1
N3—C8—O3 109.3 (3) C19—C18—H18 120.1
O3—C9—C10 109.6 (2) C18—C19—C14 120.8 (3)
O3—C9—C11 102.2 (3) C18—C19—H19 119.6
C10—C9—C11 110.7 (3) C14—C19—H19 119.6
O3—C9—C12 110.9 (2) H1W—O1W—H2W 107 (4)
O1—C1—C2—S1 65.2 (3) C7—N3—C8—O2 15.8 (5)
C7—C1—C2—S1 −176.4 (2) C7—N3—C8—O3 −165.2 (3)
C3—S1—C2—C1 89.9 (2) C9—O3—C8—O2 −3.5 (5)
C6—N2—C3—N1 1.4 (5) C9—O3—C8—N3 177.5 (2)
C6—N2—C3—S1 −179.2 (3) C8—O3—C9—C10 70.1 (3)
C4—N1—C3—N2 −0.6 (5) C8—O3—C9—C11 −172.5 (3)
C4—N1—C3—S1 179.9 (2) C8—O3—C9—C12 −55.5 (4)
C2—S1—C3—N2 −0.9 (3) N3—C7—C13—C14 −70.4 (3)
C2—S1—C3—N1 178.6 (2) C1—C7—C13—C14 167.8 (3)
C3—N1—C4—C5 0.1 (5) C7—C13—C14—C15 91.7 (4)
N1—C4—C5—C6 −0.5 (5) C7—C13—C14—C19 −86.0 (4)
C3—N2—C6—C5 −1.7 (5) C19—C14—C15—C16 1.2 (5)
C4—C5—C6—N2 1.4 (6) C13—C14—C15—C16 −176.5 (3)
C8—N3—C7—C1 −135.6 (3) C14—C15—C16—C17 −0.7 (5)
C8—N3—C7—C13 101.7 (3) C15—C16—C17—C18 −0.5 (5)
O1—C1—C7—N3 −179.3 (3) C16—C17—C18—C19 1.1 (5)
C2—C1—C7—N3 62.0 (3) C17—C18—C19—C14 −0.6 (5)
O1—C1—C7—C13 −57.7 (3) C15—C14—C19—C18 −0.5 (5)
C2—C1—C7—C13 −176.3 (3) C13—C14—C19—C18 177.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1o···O1wi 0.83 (2) 2.00 (2) 2.813 (4) 168 (4)
O1w—H1w···N1ii 0.85 (2) 2.12 (2) 2.958 (4) 174 (4)
O1w—H2w···O1 0.84 (3) 2.06 (3) 2.893 (4) 170 (4)
N3—H3n···O2i 0.859 (19) 2.126 (16) 2.910 (3) 152 (3)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6348).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Brik, A. & Wong, C.-H. (2003). Org. Biomol. Chem. 1, 5–14. [DOI] [PubMed]
  3. Cunico, W., Gomes, C. R. B., Facchinetti, V., Moreth, M., Penido, C., Henriques, M. G. M. O., Varotti, F. P., Krettli, L. G., Krettli, A. U., da Silva, F. S., Caffarena, E. R. & de Magalhães, C. S. (2009b). Eur. J. Med. Chem. 44, 3816–3820. [DOI] [PubMed]
  4. Cunico, W., Gomes, C. R. B., Ferreira, M. L. G., Ferreira, T. G., Cardinot, D., de Souza, M. V. N. & Lourenço, M. C. S. (2011). Eur. J. Med. Chem. 46, 974–978. [DOI] [PubMed]
  5. Cunico, W., Gomes, C. R. B., Harrison, W. T. A., Moreth, M., Wardell, J. L. & Wardell, S. M. S. C. (2009c). Z. Kristallogr. 224, 461–470.
  6. Cunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009a). Eur. J. Med. Chem. 44, 1363–1368. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Ghosh, A. K., Bilcer, G. & Schiltz, G. (2001). Synthesis, pp. 2203–2229. [DOI] [PMC free article] [PubMed]
  10. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  11. Marcin, L. R., Higgins, M. A., Zusi, F. C., Zhang, Y., Dee, M. F., Parker, M. F., Muckelbauer, J. K., Camac, D. M., Morin, P. E., Ramamurthy, V., Tebben, A. J., Lentz, K. A., Grace, J. E., Marcinkeviciene, J. A., Kopcho, L. M., Burton, C. R., Barten, D. M., Toyn, J. H., Meredith, J. E., Albright, C. F., Bronson, J. J., Macor, J. E. & Thompson, L. A. (2011). Bioorg. Med. Chem. Lett. 21, 537–541. [DOI] [PubMed]
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Trudel, N., Garg, R., Messier, N., Sundar, S., Ouellette, M. & Tremblay, M. J. (2008). J. Infect. Dis. 198, 1292–1299. [DOI] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031850/hb6348sup1.cif

e-67-o2313-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031850/hb6348Isup2.hkl

e-67-o2313-Isup2.hkl (193.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031850/hb6348Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES