Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 2;67(Pt 9):m1174–m1175. doi: 10.1107/S1600536811030509

catena-Poly[[aqua­[1,4-bis­(1H-imidazol-4-yl)benzene]cadmium]-μ3-5-methyl­isophthalato]

Sen-Lin Yang a, De-Hai Wang a, Shui-Sheng Chen a,*
PMCID: PMC3200974  PMID: 22065019

Abstract

In the title coordination polymer, [Cd(C9H6O4)(C12H10N4)(H2O)]n, the CdII atom has a NO6 donor set and is coord­inated by five carboxyl­ate O atoms from three different 5-methyl-1,3-phenyl­enediacetate (pda2−) anions, one O atom from a water mol­ecule and one N atom from a 1,4-bis­(1H-imidazol-4-yl)benzene (L) ligand, displaying a highly distorted penta­gonal–bipyramidal geometry. Each pda2− anion acts as a μ3-bridge, linking CdII atoms to form one-dimensional slabs extending parallel to [010]. In the crystal, adjacent mol­ecules are linked through N—H⋯N and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For background to metal-organic hybrid materials, see: Bradshaw et al. (2005); Ockwig et al. (2005). For structures containing mixed ligands, see: Liu et al. (2007); Chen et al. (2006); Choi & Jeon (2003). For related structures, see: Chen et al. (2010; 2011).graphic file with name e-67-m1174-scheme1.jpg

Experimental

Crystal data

  • [Cd(C9H6O4)(C12H10N4)(H2O)]

  • M r = 518.80

  • Triclinic, Inline graphic

  • a = 6.9407 (9) Å

  • b = 9.8231 (13) Å

  • c = 15.506 (2) Å

  • α = 74.091 (2)°

  • β = 85.963 (2)°

  • γ = 70.707 (2)°

  • V = 959.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.12 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.815, T max = 0.871

  • 15863 measured reflections

  • 4376 independent reflections

  • 4161 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.128

  • S = 1.09

  • 4376 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030509/wm2517sup1.cif

e-67-m1174-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030509/wm2517Isup2.hkl

e-67-m1174-Isup2.hkl (214.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N1 2.222 (3)
Cd1—O1i 2.315 (3)
Cd1—O3ii 2.380 (3)
Cd1—O4ii 2.404 (2)
Cd1—O2i 2.473 (3)
Cd1—O5 2.520 (3)
Cd1—O3 2.539 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N4iii 0.86 2.17 2.975 (4) 157
N3—H3⋯O4iv 0.86 2.03 2.815 (4) 151

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Provincial Education Commission (No. KJ2011B128).

supplementary crystallographic information

Comment

The rational design and synthesis of metal-organic frameworks (MOFs) has attracted considerable attention, which is stimulated by their intriguing aesthetic structures and topological features as well as their potential applications as materials (Bradshaw et al., 2005; Ockwig et al., 2005). The choice of suitable ligands is a key factor that greatly affects the structure and stabilization of the coordination architecture (Choi & Jeon 2003). For a more tunable ligand design mixed polycarboxylate and N-containing compounds (Liu et al., 2007; Chen et al., 2006) are favourable. Therefore we have focused on constructing complexes based on the organic ligand 1,4-di(1H-imidazol-4-yl)benzene (L) and polycarboxylate anions (Chen et al., 2010; 2011). As an extension of our work, we report the synthesis and structure of a new CdII complex (I), which was obtained by solvothermal reaction of CdI2 with L and 5-methylisophthalic acid (H2pda).

The asymmetric unit of (I) consists of one CdII atom, one L ligaqnd, one pda2- anion and one coordinated water molecule. Each CdII atom has a NO6 donor set and is coordinated by five carboxylate oxygen atoms from three different pda2- anions, one water oxygen atom and one nitrogen atom from L, displaying a highly distorted pentagonal-bipyramidal geometry (Fig. 1). The pda2- ligand acts as a µ3– bridge with two monodentate carboxylate groups to form one-dimensional slabs parellel to [010] (Fig. 2). In the crystal, adjacent molecules are linked through N—H···N and N—H···O hydrogen bonding interactions into a three-dimensional network (Fig. 3).

Experimental

All reagents and solvents were used as obtained commercially without further purification. A mixture containing CdI2 (36.6 mg, 0.1 mmol), L (21.0 mg, 0.1 mmol), H2pda (18.0 mg, 0.1 mmol), DMF (N:N'- dimethylformamide, 1 ml), 10 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated at 453 K for 72 h. After cooling to room temperature within 12 h, colorless crystals of (I) suitable for X-ray diffraction analysis were obtained in 48% Yield.

Refinement

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93 Å and 0.96 Å for aryl and methyl type H-atoms, respectively with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). The amide H atoms were located from difference maps and refined with the N—H distances restrained to 0.86 Å and Uiso(H) = 1.2Ueq(N). The hydrogen atoms of the coordinated water molecule could not be located and thus were not included in the refinement.

Figures

Fig. 1.

Fig. 1.

The coordination of the metal atom in compound (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, -y, 2 - z (ii) x, 1 + y, z (iii) 1 - x, -1 - y, 2 - z.]

Fig. 2.

Fig. 2.

The slab formed from CdII atoms and pda2- anions. Displacement ellipsoids are drawn at 30% probability level.

Fig. 3.

Fig. 3.

The three-dimensional network formed by hydrogen bonding interactions in the structure of compound (I).

Crystal data

[Cd(C9H6O4)(C12H10N4)(H2O)] Z = 2
Mr = 518.80 F(000) = 516
Triclinic, P1 Dx = 1.789 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9407 (9) Å Cell parameters from 9986 reflections
b = 9.8231 (13) Å θ = 2.7–27.6°
c = 15.506 (2) Å µ = 1.18 mm1
α = 74.091 (2)° T = 296 K
β = 85.963 (2)° Block, colorless
γ = 70.707 (2)° 0.18 × 0.16 × 0.12 mm
V = 959.4 (2) Å3

Data collection

Bruker APEXII CCD diffractometer 4376 independent reflections
Radiation source: fine-focus sealed tube 4161 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −5→9
Tmin = 0.815, Tmax = 0.871 k = −12→12
15863 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.098P)2 + 0.8397P] where P = (Fo2 + 2Fc2)/3
4376 reflections (Δ/σ)max = 0.002
281 parameters Δρmax = 0.86 e Å3
0 restraints Δρmin = −0.80 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.70159 (3) −0.20380 (2) 1.035182 (12) 0.02480 (12)
C1 0.9950 (5) 0.1669 (4) 0.5262 (2) 0.0261 (6)
H1 1.0841 0.1400 0.4815 0.031*
C2 0.9908 (5) 0.0593 (4) 0.6057 (2) 0.0267 (6)
H2 1.0746 −0.0391 0.6127 0.032*
C3 0.8630 (5) 0.0969 (3) 0.6747 (2) 0.0241 (6)
C4 0.7404 (5) 0.2448 (4) 0.6627 (2) 0.0311 (7)
H4 0.6565 0.2726 0.7087 0.037*
C5 0.7415 (6) 0.3520 (4) 0.5827 (2) 0.0328 (7)
H5 0.6569 0.4503 0.5756 0.039*
C6 0.8676 (5) 0.3143 (3) 0.5130 (2) 0.0243 (6)
C7 0.8556 (4) −0.0187 (3) 0.7570 (2) 0.0226 (5)
C8 0.7980 (5) −0.0084 (3) 0.8415 (2) 0.0262 (6)
H8 0.7546 0.0796 0.8597 0.031*
C9 0.8833 (5) −0.2419 (3) 0.8451 (2) 0.0254 (6)
H9 0.9102 −0.3448 0.8648 0.031*
C10 0.8657 (5) 0.4250 (3) 0.4273 (2) 0.0246 (6)
C11 0.7830 (6) 0.5769 (4) 0.4057 (2) 0.0338 (7)
H11 0.7115 0.6347 0.4433 0.041*
C12 0.9308 (6) 0.5092 (4) 0.2888 (2) 0.0350 (7)
H12 0.9784 0.5146 0.2308 0.042*
C13 0.3642 (4) −0.1324 (3) 0.83307 (19) 0.0197 (5)
C14 0.3608 (4) −0.2719 (3) 0.88386 (19) 0.0213 (5)
H14 0.3291 −0.2864 0.9443 0.026*
C15 0.4045 (4) −0.3895 (3) 0.8449 (2) 0.0212 (5)
C16 0.4601 (5) −0.3674 (3) 0.7544 (2) 0.0248 (6)
H16 0.4972 −0.4477 0.7290 0.030*
C17 0.4607 (5) −0.2279 (3) 0.7021 (2) 0.0236 (6)
C18 0.4118 (4) −0.1095 (3) 0.7421 (2) 0.0216 (5)
H18 0.4110 −0.0152 0.7081 0.026*
C19 0.3244 (4) −0.0102 (3) 0.8788 (2) 0.0219 (5)
C20 0.3822 (5) −0.5364 (3) 0.8978 (2) 0.0263 (6)
C21 0.5132 (6) −0.2039 (4) 0.6041 (2) 0.0337 (7)
H21A 0.5255 −0.1060 0.5810 0.050*
H21B 0.4073 −0.2125 0.5714 0.050*
H21C 0.6403 −0.2780 0.5977 0.050*
N1 0.8142 (4) −0.1499 (3) 0.89632 (18) 0.0255 (5)
N2 0.9098 (4) −0.1684 (3) 0.76096 (17) 0.0245 (5)
H2A 0.9531 −0.2078 0.7172 0.029*
N3 0.8263 (5) 0.6276 (3) 0.3174 (2) 0.0344 (6)
H3 0.7919 0.7195 0.2862 0.041*
N4 0.9599 (5) 0.3820 (3) 0.35234 (18) 0.0317 (6)
O1 0.4754 (5) −0.6519 (3) 0.87238 (19) 0.0408 (6)
O2 0.2711 (4) −0.5384 (3) 0.9641 (2) 0.0344 (6)
O3 0.3531 (4) −0.0476 (3) 0.96292 (17) 0.0282 (5)
O4 0.2703 (4) 0.1241 (3) 0.83420 (17) 0.0345 (5)
O5 1.0670 (4) −0.3593 (3) 1.07976 (18) 0.0375 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.04272 (18) 0.01512 (16) 0.01673 (15) −0.01121 (11) 0.00698 (10) −0.00380 (10)
C1 0.0299 (14) 0.0252 (15) 0.0192 (13) −0.0072 (12) 0.0048 (11) −0.0026 (11)
C2 0.0300 (14) 0.0203 (14) 0.0218 (14) −0.0019 (11) 0.0034 (11) −0.0013 (11)
C3 0.0292 (14) 0.0218 (14) 0.0177 (13) −0.0080 (11) 0.0024 (11) −0.0004 (11)
C4 0.0399 (17) 0.0245 (15) 0.0242 (15) −0.0078 (13) 0.0128 (13) −0.0051 (12)
C5 0.0430 (17) 0.0196 (14) 0.0275 (16) −0.0039 (13) 0.0088 (13) −0.0028 (12)
C6 0.0289 (14) 0.0229 (14) 0.0190 (13) −0.0095 (11) −0.0005 (11) −0.0007 (11)
C7 0.0247 (13) 0.0199 (13) 0.0205 (13) −0.0078 (10) 0.0034 (10) −0.0013 (11)
C8 0.0343 (15) 0.0197 (14) 0.0225 (14) −0.0081 (11) 0.0046 (11) −0.0042 (11)
C9 0.0303 (14) 0.0192 (13) 0.0212 (14) −0.0040 (11) 0.0037 (11) −0.0022 (11)
C10 0.0309 (14) 0.0219 (14) 0.0207 (14) −0.0108 (11) 0.0008 (11) −0.0023 (11)
C11 0.0473 (19) 0.0228 (15) 0.0242 (15) −0.0069 (13) 0.0038 (13) −0.0013 (12)
C12 0.053 (2) 0.0300 (17) 0.0193 (15) −0.0135 (15) 0.0011 (14) −0.0014 (13)
C13 0.0239 (12) 0.0148 (12) 0.0210 (13) −0.0068 (10) −0.0010 (10) −0.0047 (10)
C14 0.0256 (13) 0.0186 (13) 0.0170 (12) −0.0055 (10) 0.0010 (10) −0.0027 (10)
C15 0.0270 (13) 0.0142 (12) 0.0230 (14) −0.0098 (10) −0.0012 (10) −0.0017 (10)
C16 0.0302 (14) 0.0202 (14) 0.0239 (14) −0.0060 (11) 0.0038 (11) −0.0088 (11)
C17 0.0280 (13) 0.0233 (14) 0.0192 (13) −0.0074 (11) 0.0011 (10) −0.0063 (11)
C18 0.0271 (13) 0.0170 (12) 0.0205 (13) −0.0090 (10) 0.0001 (10) −0.0021 (10)
C19 0.0268 (13) 0.0170 (13) 0.0237 (14) −0.0083 (10) 0.0015 (10) −0.0071 (11)
C20 0.0380 (16) 0.0144 (13) 0.0265 (15) −0.0121 (11) −0.0059 (12) 0.0006 (11)
C21 0.0416 (17) 0.0353 (18) 0.0250 (16) −0.0131 (14) 0.0069 (13) −0.0104 (13)
N1 0.0338 (13) 0.0205 (12) 0.0194 (12) −0.0088 (10) 0.0043 (10) −0.0019 (10)
N2 0.0289 (12) 0.0222 (12) 0.0177 (11) −0.0036 (10) 0.0036 (9) −0.0043 (9)
N3 0.0479 (16) 0.0234 (13) 0.0248 (14) −0.0109 (12) −0.0001 (12) 0.0040 (11)
N4 0.0429 (15) 0.0265 (14) 0.0190 (12) −0.0070 (11) 0.0041 (11) −0.0014 (11)
O1 0.0698 (18) 0.0153 (11) 0.0350 (13) −0.0136 (11) 0.0124 (13) −0.0058 (10)
O2 0.0423 (13) 0.0209 (12) 0.0370 (14) −0.0133 (10) 0.0063 (11) −0.0004 (10)
O3 0.0406 (13) 0.0226 (11) 0.0226 (12) −0.0102 (9) 0.0013 (9) −0.0081 (9)
O4 0.0589 (15) 0.0151 (10) 0.0270 (12) −0.0103 (10) 0.0033 (11) −0.0042 (9)
O5 0.0406 (13) 0.0366 (14) 0.0313 (13) −0.0107 (11) 0.0052 (10) −0.0063 (11)

Geometric parameters (Å, °)

Cd1—N1 2.222 (3) C11—H11 0.9300
Cd1—O1i 2.315 (3) C12—N3 1.325 (5)
Cd1—O3ii 2.380 (3) C12—N4 1.326 (4)
Cd1—O4ii 2.404 (2) C12—H12 0.9300
Cd1—O2i 2.473 (3) C13—C14 1.388 (4)
Cd1—O5 2.520 (3) C13—C18 1.399 (4)
Cd1—O3 2.539 (3) C13—C19 1.497 (4)
Cd1—C20i 2.716 (3) C14—C15 1.384 (4)
Cd1—C19ii 2.735 (3) C14—H14 0.9300
C1—C6 1.392 (4) C15—C16 1.407 (4)
C1—C2 1.392 (4) C15—C20 1.503 (4)
C1—H1 0.9300 C16—C17 1.389 (4)
C2—C3 1.391 (4) C16—H16 0.9300
C2—H2 0.9300 C17—C18 1.399 (4)
C3—C4 1.388 (4) C17—C21 1.510 (4)
C3—C7 1.469 (4) C18—H18 0.9300
C4—C5 1.391 (5) C19—O4 1.252 (4)
C4—H4 0.9300 C19—O3 1.266 (4)
C5—C6 1.394 (5) C19—Cd1ii 2.735 (3)
C5—H5 0.9300 C20—O2 1.241 (5)
C6—C10 1.465 (4) C20—O1 1.260 (4)
C7—C8 1.364 (4) C20—Cd1i 2.716 (3)
C7—N2 1.377 (4) C21—H21A 0.9600
C8—N1 1.389 (4) C21—H21B 0.9600
C8—H8 0.9300 C21—H21C 0.9600
C9—N1 1.315 (4) N2—H2A 0.8600
C9—N2 1.340 (4) N3—H3 0.8600
C9—H9 0.9300 O1—Cd1i 2.315 (3)
C10—C11 1.362 (5) O2—Cd1i 2.473 (3)
C10—N4 1.392 (4) O3—Cd1ii 2.380 (3)
C11—N3 1.371 (5) O4—Cd1ii 2.404 (2)
N1—Cd1—O1i 142.24 (10) N2—C9—H9 124.3
N1—Cd1—O3ii 88.65 (10) C11—C10—N4 109.0 (3)
O1i—Cd1—O3ii 121.73 (9) C11—C10—C6 129.7 (3)
N1—Cd1—O4ii 133.01 (10) N4—C10—C6 121.3 (3)
O1i—Cd1—O4ii 84.74 (9) C10—C11—N3 106.4 (3)
O3ii—Cd1—O4ii 54.72 (8) C10—C11—H11 126.8
N1—Cd1—O2i 93.84 (10) N3—C11—H11 126.8
O1i—Cd1—O2i 54.45 (9) N3—C12—N4 112.3 (3)
O3ii—Cd1—O2i 175.37 (8) N3—C12—H12 123.8
O4ii—Cd1—O2i 125.04 (9) N4—C12—H12 123.8
N1—Cd1—O5 86.01 (9) C14—C13—C18 120.3 (3)
O1i—Cd1—O5 101.86 (10) C14—C13—C19 118.4 (3)
O3ii—Cd1—O5 109.61 (10) C18—C13—C19 121.2 (3)
O4ii—Cd1—O5 81.20 (9) C15—C14—C13 120.2 (3)
O2i—Cd1—O5 74.49 (10) C15—C14—H14 119.9
N1—Cd1—O3 84.46 (9) C13—C14—H14 119.9
O1i—Cd1—O3 84.22 (10) C14—C15—C16 119.2 (3)
O3ii—Cd1—O3 72.80 (10) C14—C15—C20 120.1 (3)
O4ii—Cd1—O3 107.31 (9) C16—C15—C20 120.6 (3)
O2i—Cd1—O3 103.55 (9) C17—C16—C15 121.3 (3)
O5—Cd1—O3 170.12 (9) C17—C16—H16 119.4
N1—Cd1—C20i 119.82 (10) C15—C16—H16 119.4
O1i—Cd1—C20i 27.56 (10) C16—C17—C18 118.7 (3)
O3ii—Cd1—C20i 149.23 (10) C16—C17—C21 120.9 (3)
O4ii—Cd1—C20i 104.05 (9) C18—C17—C21 120.5 (3)
O2i—Cd1—C20i 27.15 (10) C13—C18—C17 120.2 (3)
O5—Cd1—C20i 85.50 (10) C13—C18—H18 119.9
O3—Cd1—C20i 96.99 (9) C17—C18—H18 119.9
N1—Cd1—C19ii 112.60 (10) O4—C19—O3 121.7 (3)
O1i—Cd1—C19ii 103.13 (9) O4—C19—C13 120.5 (3)
O3ii—Cd1—C19ii 27.54 (9) O3—C19—C13 117.8 (3)
O4ii—Cd1—C19ii 27.23 (9) O4—C19—Cd1ii 61.48 (16)
O2i—Cd1—C19ii 151.79 (10) O3—C19—Cd1ii 60.39 (17)
O5—Cd1—C19ii 96.88 (9) C13—C19—Cd1ii 173.5 (2)
O3—Cd1—C19ii 89.19 (8) O2—C20—O1 122.8 (3)
C20i—Cd1—C19ii 127.55 (10) O2—C20—C15 118.6 (3)
C6—C1—C2 120.8 (3) O1—C20—C15 118.6 (3)
C6—C1—H1 119.6 O2—C20—Cd1i 65.48 (18)
C2—C1—H1 119.6 O1—C20—Cd1i 58.25 (17)
C3—C2—C1 120.9 (3) C15—C20—Cd1i 168.7 (2)
C3—C2—H2 119.5 C17—C21—H21A 109.5
C1—C2—H2 119.5 C17—C21—H21B 109.5
C4—C3—C2 118.4 (3) H21A—C21—H21B 109.5
C4—C3—C7 121.3 (3) C17—C21—H21C 109.5
C2—C3—C7 120.3 (3) H21A—C21—H21C 109.5
C3—C4—C5 120.7 (3) H21B—C21—H21C 109.5
C3—C4—H4 119.6 C9—N1—C8 105.8 (3)
C5—C4—H4 119.6 C9—N1—Cd1 127.0 (2)
C4—C5—C6 121.0 (3) C8—N1—Cd1 126.6 (2)
C4—C5—H5 119.5 C9—N2—C7 107.9 (3)
C6—C5—H5 119.5 C9—N2—H2A 126.1
C1—C6—C5 118.1 (3) C7—N2—H2A 126.1
C1—C6—C10 120.3 (3) C12—N3—C11 107.5 (3)
C5—C6—C10 121.6 (3) C12—N3—H3 126.3
C8—C7—N2 105.6 (3) C11—N3—H3 126.3
C8—C7—C3 131.0 (3) C12—N4—C10 104.8 (3)
N2—C7—C3 123.3 (3) C20—O1—Cd1i 94.2 (2)
C7—C8—N1 109.3 (3) C20—O2—Cd1i 87.4 (2)
C7—C8—H8 125.4 C19—O3—Cd1ii 92.07 (19)
N1—C8—H8 125.4 C19—O3—Cd1 121.7 (2)
N1—C9—N2 111.4 (3) Cd1ii—O3—Cd1 107.20 (10)
N1—C9—H9 124.3 C19—O4—Cd1ii 91.29 (19)
C6—C1—C2—C3 −1.6 (5) O3ii—Cd1—N1—C9 178.6 (3)
C1—C2—C3—C4 −0.4 (5) O4ii—Cd1—N1—C9 142.9 (2)
C1—C2—C3—C7 178.2 (3) O2i—Cd1—N1—C9 −5.3 (3)
C2—C3—C4—C5 1.6 (5) O5—Cd1—N1—C9 68.9 (3)
C7—C3—C4—C5 −176.9 (3) O3—Cd1—N1—C9 −108.5 (3)
C3—C4—C5—C6 −0.9 (6) C20i—Cd1—N1—C9 −13.6 (3)
C2—C1—C6—C5 2.3 (5) C19ii—Cd1—N1—C9 164.7 (3)
C2—C1—C6—C10 −176.8 (3) O1i—Cd1—N1—C8 134.4 (3)
C4—C5—C6—C1 −1.1 (5) O3ii—Cd1—N1—C8 −11.6 (3)
C4—C5—C6—C10 178.0 (3) O4ii—Cd1—N1—C8 −47.3 (3)
C4—C3—C7—C8 −24.4 (5) O2i—Cd1—N1—C8 164.5 (3)
C2—C3—C7—C8 157.1 (3) O5—Cd1—N1—C8 −121.4 (3)
C4—C3—C7—N2 155.1 (3) O3—Cd1—N1—C8 61.3 (3)
C2—C3—C7—N2 −23.4 (5) C20i—Cd1—N1—C8 156.2 (3)
N2—C7—C8—N1 −0.8 (4) C19ii—Cd1—N1—C8 −25.5 (3)
C3—C7—C8—N1 178.8 (3) N1—C9—N2—C7 0.3 (4)
C1—C6—C10—C11 −167.0 (4) C8—C7—N2—C9 0.3 (3)
C5—C6—C10—C11 13.8 (6) C3—C7—N2—C9 −179.3 (3)
C1—C6—C10—N4 12.0 (5) N4—C12—N3—C11 0.2 (5)
C5—C6—C10—N4 −167.2 (3) C10—C11—N3—C12 −0.1 (4)
N4—C10—C11—N3 0.0 (4) N3—C12—N4—C10 −0.2 (4)
C6—C10—C11—N3 179.1 (3) C11—C10—N4—C12 0.1 (4)
C18—C13—C14—C15 0.0 (4) C6—C10—N4—C12 −179.0 (3)
C19—C13—C14—C15 −177.5 (3) O2—C20—O1—Cd1i 11.8 (4)
C13—C14—C15—C16 2.5 (4) C15—C20—O1—Cd1i −167.5 (2)
C13—C14—C15—C20 −174.4 (3) O1—C20—O2—Cd1i −11.0 (3)
C14—C15—C16—C17 −3.7 (5) C15—C20—O2—Cd1i 168.3 (2)
C20—C15—C16—C17 173.2 (3) O4—C19—O3—Cd1ii −5.0 (3)
C15—C16—C17—C18 2.3 (5) C13—C19—O3—Cd1ii 172.9 (2)
C15—C16—C17—C21 −177.8 (3) O4—C19—O3—Cd1 −116.8 (3)
C14—C13—C18—C17 −1.4 (4) C13—C19—O3—Cd1 61.2 (3)
C19—C13—C18—C17 176.1 (3) Cd1ii—C19—O3—Cd1 −111.7 (2)
C16—C17—C18—C13 0.2 (4) N1—Cd1—O3—C19 13.3 (2)
C21—C17—C18—C13 −179.7 (3) O1i—Cd1—O3—C19 −130.6 (2)
C14—C13—C19—O4 −160.2 (3) O3ii—Cd1—O3—C19 103.6 (3)
C18—C13—C19—O4 22.3 (4) O4ii—Cd1—O3—C19 146.8 (2)
C14—C13—C19—O3 21.8 (4) O2i—Cd1—O3—C19 −79.3 (3)
C18—C13—C19—O3 −155.7 (3) C20i—Cd1—O3—C19 −106.1 (2)
C14—C15—C20—O2 20.9 (4) C19ii—Cd1—O3—C19 126.1 (2)
C16—C15—C20—O2 −156.0 (3) N1—Cd1—O3—Cd1ii −90.31 (11)
C14—C15—C20—O1 −159.8 (3) O1i—Cd1—O3—Cd1ii 125.78 (11)
C16—C15—C20—O1 23.3 (4) O3ii—Cd1—O3—Cd1ii 0.0
C14—C15—C20—Cd1i 129.5 (11) O4ii—Cd1—O3—Cd1ii 43.14 (12)
C16—C15—C20—Cd1i −47.4 (13) O2i—Cd1—O3—Cd1ii 177.06 (8)
N2—C9—N1—C8 −0.8 (4) C20i—Cd1—O3—Cd1ii 150.26 (11)
N2—C9—N1—Cd1 170.7 (2) C19ii—Cd1—O3—Cd1ii 22.49 (11)
C7—C8—N1—C9 1.0 (4) O3—C19—O4—Cd1ii 5.0 (3)
C7—C8—N1—Cd1 −170.6 (2) C13—C19—O4—Cd1ii −172.9 (2)
O1i—Cd1—N1—C9 −35.4 (4)

Symmetry codes: (i) −x+1, −y−1, −z+2; (ii) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···N4iii 0.86 2.17 2.975 (4) 157.
N3—H3···O4iv 0.86 2.03 2.815 (4) 151.

Symmetry codes: (iii) −x+2, −y, −z+1; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2517).

References

  1. Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282. [DOI] [PubMed]
  2. Brandenburg, K. (2000). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, P. K., Che, Y. X., Xue, L. & Zheng, J. M. (2006). Cryst. Growth Des. 6, 2517–2522.
  5. Chen, S. S., Fan, J., Okamura, T. A. & Chen, M. S. (2010). Cryst. Growth Des. 10, 812–822.
  6. Chen, S.-S., Yang, S.-L. & Zhang, S.-P. (2011). Acta Cryst. E67, m1031–m1032. [DOI] [PMC free article] [PubMed]
  7. Choi, K. Y. & Jeon, Y. M. (2003). Inorg. Chem. Commun. 6, 1294–1296.
  8. Liu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Inorg. Chem. 46, 3027–3037. [DOI] [PubMed]
  9. Ockwig, N. W., Delgado-Friedrichs, O., O’Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182. [DOI] [PubMed]
  10. Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030509/wm2517sup1.cif

e-67-m1174-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030509/wm2517Isup2.hkl

e-67-m1174-Isup2.hkl (214.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES