Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2442. doi: 10.1107/S160053681103368X

5-Hy­droxy-3-phenyl-5-trifluoro­meth­yl-4,5-dihydro-1H-pyrazole

Abdullah M Asiri a,b, Abdulrahman O Al-Youbi a, Hassan M Faidallah a, Seik Weng Ng c,*
PMCID: PMC3200976  PMID: 22065118

Abstract

The five-membered dihydro­pyrazole ring in the title compound, C10H9F3N2O, is approximately planar (r.m.s. deviation 0.111 Å for all non-H atoms) and its phenyl substituent is aligned at an angle of 14.7 (2)°. Adjacent mol­ecules are linked by N—H⋯O and O—H⋯N hydrogen bonds, generating ribbons running along the b axis of the monoclinic unit cell.

Related literature

For the synthesis, see: Yakimovich et al. (2002); Zelenin et al. (1995). For two related structures, see: Dias & Goh (2004); Yang & Raptis (2003).graphic file with name e-67-o2442-scheme1.jpg

Experimental

Crystal data

  • C10H9F3N2O

  • M r = 230.19

  • Monoclinic, Inline graphic

  • a = 9.1000 (6) Å

  • b = 5.4032 (3) Å

  • c = 10.4515 (7) Å

  • β = 108.139 (7)°

  • V = 488.35 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.972, T max = 0.986

  • 4222 measured reflections

  • 1230 independent reflections

  • 1060 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.087

  • S = 1.05

  • 1230 reflections

  • 153 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103368X/bt5617sup1.cif

e-67-o2442-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103368X/bt5617Isup2.hkl

e-67-o2442-Isup2.hkl (60.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103368X/bt5617Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.84 (1) 2.03 (2) 2.833 (3) 162 (4)
N2—H2⋯O1ii 0.88 (1) 2.13 (2) 2.974 (3) 161 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

We had intended to synthesize 5-phenyl-3-(trifluoromethyl)pyrazole, whose crystal structure has been reported (Dias & Goh, 2004). However, the strongly electron-withdrawing nature of the α,β-diketone used in the synthesis led to the isolation of a stable intermediate, a dihydropyrazole (Scheme I), that when dehydrated, should furnish the pyrazole. The synthesis of the dihydropyrazole has previously been reported (Yakimovich et al., 2002; Zelenin et al., 1995). The five-membered dihydropyrazole ring of C10H9F3N2O is approximately planar, the ring being buckled at the methylene carbon, and its phenyl substituent is aligned at 14.7 (2)° (Fig. 1). Adjacent molecules are linked by N—H···O and O—H···N hydrogen bonds (Table 1) to generate a helical chain running along the b axis of the monoclinic unit cell (Fig. 2).

The crystal structure of the 2-naphthyl substituted analog has been reported (Yang & Raptis, 2003); both compounds should similar hydrogen-bonding features.

Experimental

4,4,4-Trifluoro-1-phenyl-1,3-butanedione (10 mmol) in ethanol (50 ml) was refluxed with hydrazine hydrate (10 mmol) for 4 h. Water was added to precipitate the product, which was collected and recrystallized from ethanol; m.p. 415–416 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined isotropically with distance restraints of N—H 0.88 (1) Å and O—H 0.84 (1) Å.

In the absence of anomalous scatterers, 727 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C10H9F3N2O at the 70% probability level; H atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Hydrogen-bonded ribbon structure.

Crystal data

C10H9F3N2O F(000) = 236
Mr = 230.19 Dx = 1.565 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1825 reflections
a = 9.1000 (6) Å θ = 2.4–29.2°
b = 5.4032 (3) Å µ = 0.14 mm1
c = 10.4515 (7) Å T = 100 K
β = 108.139 (7)° Prism, colourless
V = 488.35 (5) Å3 0.20 × 0.15 × 0.10 mm
Z = 2

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 1230 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1060 reflections with I > 2σ(I)
Mirror Rint = 0.039
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.4°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −6→6
Tmin = 0.972, Tmax = 0.986 l = −13→13
4222 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.1359P] where P = (Fo2 + 2Fc2)/3
1230 reflections (Δ/σ)max = 0.001
153 parameters Δρmax = 0.29 e Å3
3 restraints Δρmin = −0.26 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.15155 (18) 0.5006 (3) 0.41240 (17) 0.0224 (4)
F2 0.07047 (18) 0.8747 (4) 0.36876 (17) 0.0275 (4)
F3 0.27744 (19) 0.7556 (3) 0.32684 (15) 0.0239 (4)
O1 0.4291 (2) 0.6574 (4) 0.59470 (19) 0.0147 (4)
H1 0.407 (4) 0.534 (5) 0.634 (4) 0.045 (12)*
N1 0.3514 (3) 1.1846 (4) 0.6715 (2) 0.0148 (5)
N2 0.3409 (3) 1.0670 (4) 0.5493 (2) 0.0147 (5)
H2 0.425 (2) 1.094 (6) 0.526 (3) 0.026 (9)*
C1 0.2622 (3) 1.1255 (5) 0.8657 (3) 0.0147 (6)
C2 0.1637 (3) 0.9892 (6) 0.9190 (3) 0.0177 (6)
H2A 0.1048 0.8565 0.8688 0.021*
C3 0.1519 (3) 1.0472 (6) 1.0446 (3) 0.0209 (6)
H3 0.0860 0.9528 1.0807 0.025*
C4 0.2358 (3) 1.2421 (6) 1.1175 (3) 0.0226 (7)
H4 0.2278 1.2809 1.2037 0.027*
C5 0.3317 (3) 1.3813 (6) 1.0650 (3) 0.0212 (6)
H5 0.3879 1.5167 1.1148 0.025*
C6 0.3455 (3) 1.3230 (5) 0.9398 (3) 0.0188 (6)
H6 0.4119 1.4179 0.9045 0.023*
C7 0.2782 (3) 1.0531 (5) 0.7351 (3) 0.0144 (6)
C8 0.2110 (3) 0.8206 (5) 0.6601 (3) 0.0141 (6)
H8A 0.0979 0.8347 0.6169 0.017*
H8B 0.2338 0.6738 0.7197 0.017*
C9 0.2974 (3) 0.8121 (5) 0.5561 (3) 0.0140 (6)
C10 0.1981 (3) 0.7364 (5) 0.4152 (3) 0.0167 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0249 (9) 0.0185 (9) 0.0224 (8) −0.0067 (7) 0.0054 (7) −0.0054 (7)
F2 0.0243 (9) 0.0285 (10) 0.0233 (9) 0.0091 (8) −0.0019 (7) 0.0000 (8)
F3 0.0318 (9) 0.0273 (10) 0.0154 (8) −0.0024 (8) 0.0116 (7) −0.0015 (7)
O1 0.0157 (9) 0.0121 (10) 0.0179 (10) 0.0015 (8) 0.0073 (8) 0.0027 (8)
N1 0.0202 (12) 0.0116 (11) 0.0136 (11) 0.0025 (9) 0.0068 (9) 0.0018 (9)
N2 0.0204 (12) 0.0094 (11) 0.0181 (11) −0.0013 (10) 0.0116 (9) −0.0008 (9)
C1 0.0162 (12) 0.0127 (14) 0.0148 (13) 0.0027 (11) 0.0045 (10) 0.0019 (11)
C2 0.0196 (13) 0.0168 (14) 0.0181 (13) 0.0000 (12) 0.0079 (11) −0.0017 (11)
C3 0.0241 (14) 0.0242 (17) 0.0173 (14) 0.0020 (13) 0.0107 (12) 0.0030 (13)
C4 0.0278 (15) 0.0247 (17) 0.0151 (13) 0.0054 (14) 0.0065 (11) −0.0013 (13)
C5 0.0220 (14) 0.0196 (15) 0.0212 (15) 0.0026 (13) 0.0054 (12) −0.0042 (12)
C6 0.0190 (13) 0.0170 (15) 0.0202 (14) 0.0016 (12) 0.0059 (11) 0.0000 (12)
C7 0.0138 (12) 0.0120 (13) 0.0173 (13) 0.0011 (11) 0.0048 (10) −0.0003 (11)
C8 0.0163 (12) 0.0129 (15) 0.0156 (13) −0.0001 (11) 0.0086 (10) 0.0000 (11)
C9 0.0145 (12) 0.0130 (15) 0.0155 (13) 0.0013 (11) 0.0061 (10) 0.0002 (11)
C10 0.0209 (14) 0.0141 (15) 0.0154 (13) 0.0002 (12) 0.0061 (10) 0.0007 (12)

Geometric parameters (Å, °)

F1—C10 1.340 (3) C2—H2A 0.9500
F2—C10 1.338 (3) C3—C4 1.382 (4)
F3—C10 1.342 (3) C3—H3 0.9500
O1—C9 1.413 (3) C4—C5 1.387 (4)
O1—H1 0.836 (10) C4—H4 0.9500
N1—C7 1.290 (3) C5—C6 1.389 (4)
N1—N2 1.403 (3) C5—H5 0.9500
N2—C9 1.441 (4) C6—H6 0.9500
N2—H2 0.882 (10) C7—C8 1.505 (4)
C1—C6 1.396 (4) C8—C9 1.528 (4)
C1—C2 1.403 (4) C8—H8A 0.9900
C1—C7 1.471 (4) C8—H8B 0.9900
C2—C3 1.386 (4) C9—C10 1.524 (4)
C9—O1—H1 107 (3) C1—C6—H6 119.9
C7—N1—N2 108.6 (2) N1—C7—C1 123.2 (3)
N1—N2—C9 109.3 (2) N1—C7—C8 112.5 (2)
N1—N2—H2 111 (2) C1—C7—C8 124.3 (2)
C9—N2—H2 116 (2) C7—C8—C9 100.4 (2)
C6—C1—C2 119.0 (3) C7—C8—H8A 111.7
C6—C1—C7 121.7 (3) C9—C8—H8A 111.7
C2—C1—C7 119.3 (3) C7—C8—H8B 111.7
C3—C2—C1 120.4 (3) C9—C8—H8B 111.7
C3—C2—H2A 119.8 H8A—C8—H8B 109.5
C1—C2—H2A 119.8 O1—C9—N2 111.0 (2)
C4—C3—C2 120.1 (3) O1—C9—C10 108.2 (2)
C4—C3—H3 120.0 N2—C9—C10 107.4 (2)
C2—C3—H3 120.0 O1—C9—C8 113.2 (2)
C3—C4—C5 120.2 (3) N2—C9—C8 102.5 (2)
C3—C4—H4 119.9 C10—C9—C8 114.4 (2)
C5—C4—H4 119.9 F2—C10—F1 106.9 (2)
C4—C5—C6 120.1 (3) F2—C10—F3 107.4 (2)
C4—C5—H5 119.9 F1—C10—F3 107.0 (2)
C6—C5—H5 119.9 F2—C10—C9 112.8 (2)
C5—C6—C1 120.2 (3) F1—C10—C9 111.4 (2)
C5—C6—H6 119.9 F3—C10—C9 111.1 (2)
C7—N1—N2—C9 −18.0 (3) C1—C7—C8—C9 −166.2 (2)
C6—C1—C2—C3 −1.3 (4) N1—N2—C9—O1 −95.1 (2)
C7—C1—C2—C3 177.2 (2) N1—N2—C9—C10 146.8 (2)
C1—C2—C3—C4 0.8 (4) N1—N2—C9—C8 25.9 (3)
C2—C3—C4—C5 0.3 (4) C7—C8—C9—O1 96.5 (2)
C3—C4—C5—C6 −1.0 (4) C7—C8—C9—N2 −23.0 (2)
C4—C5—C6—C1 0.5 (4) C7—C8—C9—C10 −138.9 (2)
C2—C1—C6—C5 0.6 (4) O1—C9—C10—F2 −179.4 (2)
C7—C1—C6—C5 −177.8 (2) N2—C9—C10—F2 −59.5 (3)
N2—N1—C7—C1 −178.3 (2) C8—C9—C10—F2 53.5 (3)
N2—N1—C7—C8 1.3 (3) O1—C9—C10—F1 60.5 (3)
C6—C1—C7—N1 −10.1 (4) N2—C9—C10—F1 −179.7 (2)
C2—C1—C7—N1 171.5 (2) C8—C9—C10—F1 −66.7 (3)
C6—C1—C7—C8 170.4 (2) O1—C9—C10—F3 −58.7 (3)
C2—C1—C7—C8 −8.0 (4) N2—C9—C10—F3 61.1 (3)
N1—C7—C8—C9 14.3 (3) C8—C9—C10—F3 174.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.84 (1) 2.03 (2) 2.833 (3) 162 (4)
N2—H2···O1ii 0.88 (1) 2.13 (2) 2.974 (3) 161 (3)

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5617).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Dias, H. V. R. & Goh, T. K. H. H. (2004). Polyhedron, 23, 273–282.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  6. Yakimovich, S. I., Alekseev, V. V. & Zerova, E. V. (2002). Chem. Heterocycl. Compd. 38, 668–676.
  7. Yang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem. 40, 659–664.
  8. Zelenin, K. N., Alekseyev, V. V., Tygysheva, A. R. & Yakimovitch, S. I. (1995). Tetrahedron, 51, 11251–11256.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103368X/bt5617sup1.cif

e-67-o2442-sup1.cif (15KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103368X/bt5617Isup2.hkl

e-67-o2442-Isup2.hkl (60.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103368X/bt5617Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES