Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2511. doi: 10.1107/S1600536811034623

(E)-N′-(5-Bromo-2-meth­oxy­benzyl­idene)-2-chloro­benzohydrazide

Xiao-Yan Li a,*
PMCID: PMC3200979  PMID: 22065403

Abstract

In the title compound, C15H12BrClN2O2, the dihedral angle between the two substituted aromatic rings is 77.8 (3)°. The mol­ecule exists in a trans conformation with respect to the methyl­idene unit. In the crystal structure, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 8(8) loops.

Related literature

For the crystal structures of some related hydrazone compounds, see: Li (2011a ,b ); Hashemian et al. (2011); Lei (2011); Shalash et al. (2010). For hydrogen-bond notation, see: Bernstein et al. (1995).graphic file with name e-67-o2511-scheme1.jpg

Experimental

Crystal data

  • C15H12BrClN2O2

  • M r = 367.63

  • Monoclinic, Inline graphic

  • a = 11.312 (2) Å

  • b = 7.374 (2) Å

  • c = 17.979 (3) Å

  • β = 91.972 (3)°

  • V = 1499.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.93 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.07 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.720, T max = 0.821

  • 5249 measured reflections

  • 2451 independent reflections

  • 1877 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.094

  • S = 1.04

  • 2451 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034623/hb6337sup1.cif

e-67-o2511-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034623/hb6337Isup2.hkl

e-67-o2511-Isup2.hkl (120.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.89 (1) 1.99 (1) 2.882 (4) 175 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The author acknowledges the Zibo Vocational Institute for supporting this work.

supplementary crystallographic information

Comment

In the last few years, hydrazones have been attracted much attention for their crystal structures (e.g. Li, 2011a; Hashemian et al., 2011; Lei, 2011; Shalash et al., 2010). The author reports herein the crystal structure of the title new hydrazone compound, (I).

In the title compound, Fig. 1, the dihedral angle between the two substituted aromatic rings is 77.8 (3)°. The molecule exists in a trans configuration with respect to the methylidene unit. The bond values are comparable to those observed in a similar compound the author reported recently (Li, 2011b). In the crystal structure, adjacent two molecules are linked through two intermolecular N—H···O hydrogen bonds (Table 1), forming a dimer (Fig. 2).

Experimental

A mixture of 2-chlorobenzhydrazide (0.171 g, 1 mmol) and 5-bromo-2-methoxybenzaldehyde (0.215 g, 1 mmol) in 30 ml of ethanol containing few drops of acetic acid was refluxed for about 1 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from methanol. Colorless blocks of (I) were obtained by slow evaporation of the solution.

Refinement

The N-bound H atom was located from a difference Fourier map and refined isotropically. The rest of H atoms were positioned geometrically [C—H = 0.93 and 0.96 Å] and refined using a riding model [Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15)]. A rotating-group model was applied for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) at 30% probability level. Hydrogen bonds are indicated by dashed lines.

Fig. 2.

Fig. 2.

The packing of (I), viewed along the c axis. Intermolecular hydrogen bonds are drawn as dashed lines.

Crystal data

C15H12BrClN2O2 F(000) = 736
Mr = 367.63 Dx = 1.629 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.312 (2) Å Cell parameters from 1972 reflections
b = 7.374 (2) Å θ = 3.1–24.9°
c = 17.979 (3) Å µ = 2.93 mm1
β = 91.972 (3)° T = 298 K
V = 1499.0 (5) Å3 Block, colourless
Z = 4 0.12 × 0.10 × 0.07 mm

Data collection

Bruker SMART CCD diffractometer 2451 independent reflections
Radiation source: fine-focus sealed tube 1877 reflections with I > 2σ(I)
graphite Rint = 0.050
ω scans θmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→13
Tmin = 0.720, Tmax = 0.821 k = −8→6
5249 measured reflections l = −20→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.678P] where P = (Fo2 + 2Fc2)/3
2451 reflections (Δ/σ)max = 0.001
194 parameters Δρmax = 0.46 e Å3
1 restraint Δρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.68536 (3) 0.08870 (6) 0.13010 (2) 0.05792 (18)
Cl1 0.20872 (10) 0.35802 (17) 0.20909 (7) 0.0738 (4)
N1 0.2386 (2) 0.2805 (4) 0.03030 (15) 0.0362 (6)
N2 0.1252 (2) 0.3513 (4) 0.02797 (16) 0.0405 (7)
O1 0.4312 (2) 0.3783 (4) −0.14532 (14) 0.0534 (7)
O2 −0.05797 (18) 0.3567 (3) 0.07125 (14) 0.0533 (7)
C1 0.4308 (2) 0.2898 (4) −0.02015 (18) 0.0358 (7)
C2 0.4949 (3) 0.3117 (5) −0.08532 (19) 0.0402 (8)
C3 0.6132 (3) 0.2662 (5) −0.0855 (2) 0.0484 (9)
H3 0.6552 0.2811 −0.1287 0.058*
C4 0.6700 (3) 0.1984 (5) −0.0217 (2) 0.0468 (9)
H4 0.7496 0.1668 −0.0221 0.056*
C5 0.6074 (3) 0.1783 (5) 0.04254 (19) 0.0401 (8)
C6 0.4885 (3) 0.2236 (4) 0.04331 (19) 0.0390 (8)
H6 0.4472 0.2093 0.0868 0.047*
C7 0.3058 (3) 0.3422 (4) −0.01972 (19) 0.0375 (8)
H7 0.2752 0.4208 −0.0560 0.045*
C8 0.0425 (2) 0.2909 (4) 0.07350 (18) 0.0362 (7)
C9 0.0717 (2) 0.1349 (4) 0.12478 (18) 0.0348 (8)
C10 0.1435 (3) 0.1509 (5) 0.1879 (2) 0.0445 (9)
C11 0.1611 (3) 0.0055 (7) 0.2367 (2) 0.0578 (11)
H11 0.2078 0.0194 0.2799 0.069*
C12 0.1087 (4) −0.1580 (6) 0.2202 (3) 0.0627 (12)
H12 0.1215 −0.2560 0.2521 0.075*
C13 0.0377 (4) −0.1789 (6) 0.1573 (3) 0.0613 (11)
H13 0.0037 −0.2910 0.1465 0.074*
C14 0.0166 (3) −0.0332 (5) 0.1098 (2) 0.0476 (9)
H14 −0.0338 −0.0464 0.0682 0.057*
C15 0.4912 (4) 0.4085 (6) −0.2124 (2) 0.0649 (12)
H15A 0.5509 0.4995 −0.2042 0.097*
H15B 0.4357 0.4488 −0.2505 0.097*
H15C 0.5276 0.2977 −0.2278 0.097*
H2 0.109 (4) 0.444 (4) −0.0024 (19) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0437 (2) 0.0720 (3) 0.0575 (3) 0.00185 (18) −0.00739 (17) 0.0012 (2)
Cl1 0.0748 (7) 0.0728 (8) 0.0728 (8) −0.0254 (6) −0.0124 (6) −0.0101 (6)
N1 0.0305 (12) 0.0354 (16) 0.0430 (17) 0.0034 (11) 0.0047 (11) 0.0041 (13)
N2 0.0293 (13) 0.0413 (17) 0.051 (2) 0.0057 (11) 0.0055 (12) 0.0133 (14)
O1 0.0489 (14) 0.0648 (18) 0.0473 (16) 0.0000 (12) 0.0109 (12) 0.0140 (13)
O2 0.0318 (12) 0.0558 (16) 0.0728 (19) 0.0101 (11) 0.0087 (11) 0.0244 (14)
C1 0.0330 (15) 0.0330 (18) 0.042 (2) −0.0017 (13) 0.0054 (14) −0.0016 (15)
C2 0.0435 (18) 0.035 (2) 0.042 (2) −0.0066 (15) 0.0062 (15) −0.0031 (16)
C3 0.0410 (18) 0.051 (2) 0.054 (2) −0.0043 (16) 0.0197 (17) −0.0017 (19)
C4 0.0323 (16) 0.048 (2) 0.061 (3) −0.0004 (15) 0.0104 (16) −0.0026 (19)
C5 0.0356 (16) 0.0345 (19) 0.050 (2) −0.0040 (14) 0.0011 (15) −0.0035 (16)
C6 0.0347 (16) 0.0371 (19) 0.046 (2) −0.0060 (14) 0.0086 (15) −0.0037 (16)
C7 0.0392 (17) 0.0310 (18) 0.042 (2) 0.0000 (13) 0.0045 (15) 0.0010 (15)
C8 0.0312 (15) 0.0343 (19) 0.043 (2) −0.0012 (13) −0.0012 (13) 0.0042 (15)
C9 0.0285 (15) 0.0348 (19) 0.042 (2) 0.0046 (12) 0.0089 (14) 0.0051 (15)
C10 0.0339 (16) 0.050 (2) 0.049 (2) 0.0010 (15) 0.0013 (16) −0.0007 (18)
C11 0.047 (2) 0.075 (3) 0.051 (3) 0.014 (2) 0.0002 (17) 0.017 (2)
C12 0.056 (2) 0.062 (3) 0.071 (3) 0.012 (2) 0.012 (2) 0.031 (2)
C13 0.067 (3) 0.039 (2) 0.079 (3) −0.0035 (19) 0.017 (2) 0.010 (2)
C14 0.0476 (19) 0.044 (2) 0.051 (2) −0.0011 (16) 0.0098 (17) 0.0049 (18)
C15 0.066 (2) 0.079 (3) 0.050 (3) −0.011 (2) 0.014 (2) 0.012 (2)

Geometric parameters (Å, °)

Br1—C5 1.897 (3) C5—C6 1.386 (4)
Cl1—C10 1.733 (4) C6—H6 0.9300
N1—C7 1.282 (4) C7—H7 0.9300
N1—N2 1.384 (3) C8—C9 1.504 (4)
N2—C8 1.340 (4) C9—C10 1.377 (5)
N2—H2 0.893 (10) C9—C14 1.409 (5)
O1—C2 1.368 (4) C10—C11 1.395 (5)
O1—C15 1.422 (4) C11—C12 1.371 (6)
O2—C8 1.235 (3) C11—H11 0.9300
C1—C6 1.384 (5) C12—C13 1.373 (6)
C1—C2 1.408 (4) C12—H12 0.9300
C1—C7 1.466 (4) C13—C14 1.388 (5)
C2—C3 1.380 (5) C13—H13 0.9300
C3—C4 1.390 (5) C14—H14 0.9300
C3—H3 0.9300 C15—H15A 0.9600
C4—C5 1.384 (5) C15—H15B 0.9600
C4—H4 0.9300 C15—H15C 0.9600
C7—N1—N2 114.6 (3) O2—C8—C9 120.2 (3)
C8—N2—N1 121.5 (3) N2—C8—C9 119.0 (3)
C8—N2—H2 120 (3) C10—C9—C14 118.5 (3)
N1—N2—H2 119 (3) C10—C9—C8 123.4 (3)
C2—O1—C15 118.1 (3) C14—C9—C8 118.0 (3)
C6—C1—C2 119.0 (3) C9—C10—C11 121.3 (4)
C6—C1—C7 121.1 (3) C9—C10—Cl1 119.4 (3)
C2—C1—C7 119.9 (3) C11—C10—Cl1 119.2 (3)
O1—C2—C3 124.7 (3) C12—C11—C10 119.3 (4)
O1—C2—C1 115.2 (3) C12—C11—H11 120.4
C3—C2—C1 120.1 (3) C10—C11—H11 120.4
C2—C3—C4 120.4 (3) C11—C12—C13 120.8 (4)
C2—C3—H3 119.8 C11—C12—H12 119.6
C4—C3—H3 119.8 C13—C12—H12 119.6
C5—C4—C3 119.5 (3) C12—C13—C14 120.2 (4)
C5—C4—H4 120.2 C12—C13—H13 119.9
C3—C4—H4 120.2 C14—C13—H13 119.9
C4—C5—C6 120.5 (3) C13—C14—C9 119.9 (4)
C4—C5—Br1 119.5 (2) C13—C14—H14 120.1
C6—C5—Br1 120.0 (3) C9—C14—H14 120.1
C1—C6—C5 120.5 (3) O1—C15—H15A 109.5
C1—C6—H6 119.8 O1—C15—H15B 109.5
C5—C6—H6 119.8 H15A—C15—H15B 109.5
N1—C7—C1 120.4 (3) O1—C15—H15C 109.5
N1—C7—H7 119.8 H15A—C15—H15C 109.5
C1—C7—H7 119.8 H15B—C15—H15C 109.5
O2—C8—N2 120.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.89 (1) 1.99 (1) 2.882 (4) 175 (4)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6337).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171. [DOI] [PMC free article] [PubMed]
  4. Lei, Y. (2011). Acta Cryst. E67, o162. [DOI] [PMC free article] [PubMed]
  5. Li, H.-B. (2011a). Acta Cryst. E67, o1532. [DOI] [PMC free article] [PubMed]
  6. Li, X.-Y. (2011b). Acta Cryst. E67, o1798. [DOI] [PMC free article] [PubMed]
  7. Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034623/hb6337sup1.cif

e-67-o2511-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034623/hb6337Isup2.hkl

e-67-o2511-Isup2.hkl (120.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES