Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1984 Sep 11;12(17):6813–6825. doi: 10.1093/nar/12.17.6813

X-ray structure of cytidine-5'-O-dimethylphosphate. Novel stacking between the ribosyl O(2') hydroxyl oxygen atom and the base.

R G Brennan, N S Kondo, M Sundaralingam
PMCID: PMC320118  PMID: 6548306

Abstract

The anionic oxygen atoms of the phosphodiester backbone of RNA and DNA are particularly susceptible to esterification by many mutagenic and carcinogenic alkylating agents. To better understand the geometric, electronic and conformational properties of the alkylated sugar phosphate moiety, the X-ray structure of the phosphotriesterified nucleotide, cytidine-5'-O-dimethylphosphate (C11H18N3O8P), was undertaken. The compound crystallizes in the monoclinic space group P2, with unit cell parameters of a = 5.741(2), b = 11.625(1), c = 11.425(1)A, beta = 94.43(2) degrees. The structure was solved by direct methods and refined by block-diagonal least-squares technique to an R index of 0.034 (Rw = 0.046). The D-ribofuranosyl ring is in the 3T2 twist conformation (P = 13.1(2) degrees, tau m = 36.7(2) degrees) and the conformation about the C(1')-N(1) glycosyl bond is anti (XCN = 8.3(2) degrees). The four P-O bond lengths are significantly shorter than those of the nonalkylated nucleotides. The three sets of phosphodiester linkages, (omega 'A, omega A), (omega 'B, omega B) and (omega 'C, omega C), take the (g-,t), (t,g) and (g-,t) conformations, respectively. There is no base-base or alkyl-base stacking, however, a novel intermolecular stacking is found between the ribosyl O(2') hydroxyl oxygen atom and a neighboring pyrimidine ring. This hydroxyl-base stacking interaction may have implications in the stabilization of the tertiary and quarternary structure of ribonucleic acids and nucleic acid-protein complexes.

Full text

PDF
6813

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc. 1972 Nov 15;94(23):8205–8212. doi: 10.1021/ja00778a043. [DOI] [PubMed] [Google Scholar]
  2. Bodell W. J., Singer B., Thomas G. H., Cleaver J. E. Evidence for removal at different rates of O-ethyl pyrimidines and ethylphosphotriesters in two human fibroblast cell lines. Nucleic Acids Res. 1979 Jun 25;6(8):2819–2829. doi: 10.1093/nar/6.8.2819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bugg C. E., Thomas J. M., Sundaralingam M., Rao S. T. Stereochemistry of nucleic acids and their constituents. X. Solid-state base-stacking patterns in nucleic acid constituents and polynucleotides. Biopolymers. 1971;10(1):175–219. doi: 10.1002/bip.360100113. [DOI] [PubMed] [Google Scholar]
  4. Camerman N., Fawcett J. K., Cameran A. Molecular structure of a deoxyribose-dinucleotide, sodium thymidylyl-(5' yields to 3')-thymidylate-(5') hydrate (pTpT), and a possible structural model for polythymidylate. J Mol Biol. 1976 Nov 15;107(4):601–621. doi: 10.1016/s0022-2836(76)80086-1. [DOI] [PubMed] [Google Scholar]
  5. Cotton F. A., Gillen R. G., Gohil R. N., Hazen E. E., Jr, Kirchner C. R., Nagyvary J., Rouse J. P., Stanislowski A. G., Stevens J. D., Tucker P. W. Tumor-inhibiting properties of the neutral P-O-ethyl ester of adenosine 3':5'-monophosphate in correlation with its crystal and molecular structure. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1335–1339. doi: 10.1073/pnas.72.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drew H., Takano T., Tanaka S., Itakura K., Dickerson R. E. High-salt d(CpGpCpG), a left-handed Z' DNA double helix. Nature. 1980 Aug 7;286(5773):567–573. doi: 10.1038/286567a0. [DOI] [PubMed] [Google Scholar]
  7. Holbrook S. R., Sussman J. L., Warrant R. W., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J Mol Biol. 1978 Aug 25;123(4):631–660. doi: 10.1016/0022-2836(78)90210-3. [DOI] [PubMed] [Google Scholar]
  8. Jack A., Ladner J. E., Klug A. Crystallographic refinement of yeast phenylalanine transfer RNA at 2-5A resolution. J Mol Biol. 1976 Dec 25;108(4):619–649. doi: 10.1016/s0022-2836(76)80109-x. [DOI] [PubMed] [Google Scholar]
  9. Jensen D. E., Reed D. J. Reaction of DNA with alkylating agents. Quantitation of alkylation by ethylnitrosourea of oxygen and nitrogen sites on poly[dA-dT] including phosphotriester formation. Biochemistry. 1978 Nov 28;17(24):5098–5107. doi: 10.1021/bi00617a005. [DOI] [PubMed] [Google Scholar]
  10. Kan L. S., Barrett J. C., Miller P. S., Ts'o P. O. Proton magnetic resonance studies of the conformational changes of dideoxynucleoside ethyl phosphotriesters. Biopolymers. 1973;12(10):2225–2240. doi: 10.1002/bip.1973.360121004. [DOI] [PubMed] [Google Scholar]
  11. Miller P. S., Barrett J. C., Ts'o P. O. Synthesis of oligodeoxyribonucleotide ethyl phosphotriesters and their specific complex formation with transfer ribonucleic acid. Biochemistry. 1974 Nov 19;13(24):4887–4896. doi: 10.1021/bi00721a003. [DOI] [PubMed] [Google Scholar]
  12. Miller P. S., Braiterman L. T., Ts'o P. O. Effects of a trinucleotide ethyl phosphotriester, Gmp(Et)Gmp(Et)U, on mammalian cells in culture. Biochemistry. 1977 May 3;16(9):1988–1996. doi: 10.1021/bi00628a036. [DOI] [PubMed] [Google Scholar]
  13. Miller P. S., Chandrasegaran S., Dow D. L., Pulford S. M., Kan L. S. Synthesis and template properties of an ethyl phosphotriester modified decadeoxyribonucleotide. Biochemistry. 1982 Oct 26;21(22):5468–5474. doi: 10.1021/bi00265a014. [DOI] [PubMed] [Google Scholar]
  14. Miller P. S., Fang K. N., Kondo N. S., Ts'o P. O. Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. J Am Chem Soc. 1971 Dec;93(24):6657–6665. doi: 10.1021/ja00753a054. [DOI] [PubMed] [Google Scholar]
  15. Parthasarathy R., Malik M., Fridey S. M. X-ray structure of a dinucleoside monophosphate A2'p5'C that contains a 2'-5' link found in (2'-5')oligo(A)s induced by interferons: single-stranded helical conformation of 2'-5'-linked oligonucleotides. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7292–7296. doi: 10.1073/pnas.79.23.7292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rhaese H. J., Freese E. Chemical analysis of DNA alterations. IV. Reactions of oligodeoxynucleotides with monofunctional alkylating agents leading to backbone breakage. Biochim Biophys Acta. 1969 Oct 22;190(2):418–433. doi: 10.1016/0005-2787(69)90091-4. [DOI] [PubMed] [Google Scholar]
  17. Rubin J., Brennan T., Sundaralingam M. Crystal and molecular structure of a naturally occurring dinucleoside monophosphate. Uridylyl-(3'-5')-adenosine hemihydrate. Conformational "rigidity" of the nucleotide unit and models for polynucleotide chain folding. Biochemistry. 1972 Aug 1;11(16):3112–3128. doi: 10.1021/bi00766a027. [DOI] [PubMed] [Google Scholar]
  18. Singer B., Bodell W. J., Cleaver J. E., Thomas G. H., Rajewsky M. F., Thon W. Oxygens in DNA are main targets for ethylnitrosourea in normal and xeroderma pigmentosum fibroblasts and fetal rat brain cells. Nature. 1978 Nov 2;276(5683):85–88. doi: 10.1038/276085a0. [DOI] [PubMed] [Google Scholar]
  19. Sun L., Singer B. The specificity of different classes of ethylating agents toward various sites of HeLa cell DNA in vitro and in vivo. Biochemistry. 1975 Apr 22;14(8):1795–1802. doi: 10.1021/bi00679a036. [DOI] [PubMed] [Google Scholar]
  20. TSinger B., Fraenkel-Conrat H. The specificity of different classes of ethylating agents toward various sites in RNA. Biochemistry. 1975 Feb 25;14(4):772–782. doi: 10.1021/bi00675a020. [DOI] [PubMed] [Google Scholar]
  21. Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES