Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2591. doi: 10.1107/S1600536811036087

5-Cyclo­pentyl-2-(4-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzofuran

Pil Ja Seo a, Hong Dae Choi a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3201219  PMID: 22065539

Abstract

In the title compound, C20H19FO2S, the cyclo­pentyl ring adopts an envelope conformation. The 4-fluoro­phenyl ring makes a dihedral angle of 27.10 (7)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions. In the cyclo­pentyl ring, one C atom is disordered over two orientations with site-occupancy factors of 0.617 (7) and 0.383 (7).

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 2-(4-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2010, 2011).graphic file with name e-67-o2591-scheme1.jpg

Experimental

Crystal data

  • C20H19FO2S

  • M r = 342.41

  • Orthorhombic, Inline graphic

  • a = 20.0254 (13) Å

  • b = 33.197 (2) Å

  • c = 10.0233 (7) Å

  • V = 6663.3 (8) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.35 × 0.26 × 0.19 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.930, T max = 0.961

  • 16962 measured reflections

  • 4136 independent reflections

  • 3915 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.106

  • S = 1.06

  • 4136 reflections

  • 223 parameters

  • 96 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983), 1949 Friedel pairs

  • Flack parameter: 0.15 (7)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811036087/gk2398sup1.cif

e-67-o2591-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036087/gk2398Isup2.hkl

e-67-o2591-Isup2.hkl (203KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036087/gk2398Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1/C2/C7/O/C8 furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯O2i 0.98 2.29 3.262 (3) 169
C16—H16⋯Cgi 0.95 2.53 3.365 (3) 146

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Many compounds containing a benzofuran ring system have attracted much interest owing to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of the substituent effect on the solid state structures of 2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2010, 2011), we report herein the crystal structure of the title compound.

The title compound crystallizes ins the non-centrosymmetric space group Fdd2. The crystal studied was an inversion twin with a 0.85 (7) : 0.15 (7) domain ratio.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.024 (2) Å from the least-squares plane defined by the nine constituent atoms. The cyclopentyl ring is in the envelope form. In the cyclopentyl ring, the C10 atom is disordered over two positions with site-occupancy factors, from refinement of 0.617 (7) (part A) and 0.383 (7) (part B). The dihedral angle formed by the 4-fluorophenyl ring and the mean plane of the benzofuran fragment is 27.10 (7)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds between a methyl H atom and the O atom of the sulfinyl group (Table 1; C20—H20B···O2i). The crystal packing (Fig. 2) is further stabilized by intermolecular C—H···π interactions between a 4-fluorophenyl H atom and the furan ring (Table 1; C16—H16···Cgi, Cg is the centroid of the C1/C2/C7/O1/C8 furan ring).

Experimental

77% 3-chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-cyclopentyl-2-(4-fluorophenyl)-3-methylsulfanyl-1-benzofuran (293 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 72%, m.p. 419-420 K; Rf = 0.67 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008). All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, and 0.99 Å for methylene and methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine, methylene, and 1.5Ueq(C) for methyl H atoms. One of the C atoms of the cyclopentyl ring is disordered over two positions with site occupancy factors, from refinement of 0.617 (7) (part A) and 0.383 (7) (part B). The distances of equivalent C9—C10A and C9—C10B, and C11—C10A and C11—C10B pairs were restrained to 1.525 (3) Å, 0.001 Å and 0.001 Å using command DFIX, SADI and DELU respectively, and displacement ellipsoids of C10 set were restrained to 0.01 using command ISOR.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The C10 atom of the cyclopentyl ring is disordered over two positions with site occupancy factors, from refinement of 0.617 (7 ) (part A) and 0.383 (7) (part B).

Fig. 2.

Fig. 2.

A view of the C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x -1/4 , - y + 1/4 , z - 1/4; (ii) x - 1/4, - y + 1/4, z - 1/4..]

Crystal data

C20H19FO2S F(000) = 2880
Mr = 342.41 Dx = 1.365 Mg m3
Orthorhombic, Fdd2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 6619 reflections
a = 20.0254 (13) Å θ = 2.4–27.7°
b = 33.197 (2) Å µ = 0.21 mm1
c = 10.0233 (7) Å T = 173 K
V = 6663.3 (8) Å3 Block, colourless
Z = 16 0.35 × 0.26 × 0.19 mm

Data collection

Bruker SMART APEXII CCD diffractometer 4136 independent reflections
Radiation source: rotating anode 3915 reflections with I > 2σ(I)
graphite multilayer Rint = 0.034
Detector resolution: 10.0 pixels mm-1 θmax = 28.3°, θmin = 2.4°
φ and ω scans h = −26→23
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −44→42
Tmin = 0.930, Tmax = 0.961 l = −13→13
16962 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0576P)2 + 8.9505P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
4136 reflections Δρmax = 0.48 e Å3
223 parameters Δρmin = −0.37 e Å3
96 restraints Absolute structure: Flack (1983), 1949 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.15 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.28603 (2) 0.120706 (14) 0.30091 (12) 0.02721 (11)
F1 0.22523 (7) 0.07977 (4) −0.34573 (18) 0.0441 (3)
O1 0.31307 (7) 0.21374 (4) 0.06022 (18) 0.0312 (3)
O2 0.33631 (8) 0.11882 (5) 0.4113 (2) 0.0370 (4)
C1 0.29639 (10) 0.16799 (6) 0.2227 (2) 0.0262 (4)
C2 0.32275 (10) 0.20417 (6) 0.2840 (2) 0.0290 (4)
C3 0.34184 (12) 0.21599 (7) 0.4113 (2) 0.0357 (5)
H3 0.3357 0.1984 0.4851 0.043*
C4 0.37027 (13) 0.25424 (8) 0.4294 (3) 0.0404 (5)
C5 0.37902 (12) 0.27952 (7) 0.3188 (3) 0.0396 (5)
H5 0.3988 0.3052 0.3320 0.048*
C6 0.36010 (12) 0.26866 (7) 0.1916 (3) 0.0374 (5)
H6 0.3658 0.2862 0.1175 0.045*
C7 0.33230 (11) 0.23083 (6) 0.1784 (2) 0.0305 (4)
C8 0.29208 (10) 0.17501 (6) 0.0893 (2) 0.0274 (4)
C9 0.39134 (15) 0.26922 (8) 0.5643 (3) 0.0533 (7)
H9A 0.4160 0.2951 0.5521 0.064* 0.617 (7)
H9B 0.4273 0.2883 0.5361 0.064* 0.383 (7)
C10A 0.33241 (16) 0.27685 (18) 0.6576 (2) 0.0594 (11) 0.617 (7)
H10A 0.3050 0.2997 0.6255 0.071* 0.617 (7)
H10B 0.3038 0.2526 0.6644 0.071* 0.617 (7)
C10B 0.3491 (5) 0.2980 (3) 0.64769 (16) 0.0594 (11) 0.383 (7)
H10C 0.3011 0.2945 0.6278 0.071* 0.383 (7)
H10D 0.3617 0.3263 0.6298 0.071* 0.383 (7)
C11 0.3643 (2) 0.28668 (11) 0.79210 (19) 0.0710 (10)
H11A 0.3745 0.3158 0.7992 0.085* 0.617 (7)
H11B 0.3346 0.2789 0.8667 0.085* 0.617 (7)
H11C 0.3704 0.3113 0.8466 0.085* 0.383 (7)
H11D 0.3269 0.2709 0.8301 0.085* 0.383 (7)
C12 0.42736 (18) 0.26191 (9) 0.7924 (3) 0.0585 (7)
H12A 0.4253 0.2407 0.8618 0.070*
H12B 0.4669 0.2791 0.8092 0.070*
C13 0.4306 (2) 0.24326 (13) 0.6533 (4) 0.0819 (13)
H13A 0.4775 0.2418 0.6223 0.098*
H13B 0.4118 0.2157 0.6546 0.098*
C14 0.27300 (10) 0.15066 (6) −0.0241 (2) 0.0271 (4)
C15 0.22789 (11) 0.11913 (7) −0.0111 (2) 0.0312 (4)
H15 0.2076 0.1141 0.0730 0.037*
C16 0.21211 (11) 0.09501 (7) −0.1192 (2) 0.0338 (4)
H16 0.1819 0.0731 −0.1099 0.041*
C17 0.24099 (11) 0.10340 (7) −0.2402 (2) 0.0318 (4)
C18 0.28529 (11) 0.13457 (7) −0.2591 (2) 0.0349 (5)
H18 0.3042 0.1397 −0.3443 0.042*
C19 0.30136 (11) 0.15821 (7) −0.1500 (2) 0.0326 (4)
H19 0.3320 0.1798 −0.1602 0.039*
C20 0.20733 (10) 0.13041 (8) 0.3791 (3) 0.0356 (5)
H20A 0.1952 0.1075 0.4359 0.053*
H20B 0.1730 0.1342 0.3105 0.053*
H20C 0.2107 0.1548 0.4337 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0302 (2) 0.0261 (2) 0.0254 (2) 0.00067 (19) −0.00003 (18) 0.00238 (18)
F1 0.0492 (8) 0.0511 (8) 0.0321 (7) −0.0062 (6) −0.0020 (6) −0.0098 (6)
O1 0.0371 (8) 0.0276 (7) 0.0290 (7) −0.0008 (6) 0.0008 (6) 0.0027 (6)
O2 0.0312 (8) 0.0433 (9) 0.0365 (8) 0.0021 (7) −0.0056 (6) 0.0111 (7)
C1 0.0253 (9) 0.0257 (9) 0.0277 (9) 0.0004 (7) 0.0014 (8) 0.0018 (7)
C2 0.0262 (9) 0.0265 (9) 0.0344 (10) 0.0029 (7) 0.0022 (8) −0.0022 (7)
C3 0.0411 (12) 0.0342 (11) 0.0319 (10) −0.0022 (9) 0.0019 (9) −0.0036 (9)
C4 0.0419 (13) 0.0368 (11) 0.0425 (12) −0.0004 (9) 0.0001 (10) −0.0133 (9)
C5 0.0400 (12) 0.0279 (10) 0.0510 (14) −0.0023 (9) 0.0008 (10) −0.0085 (10)
C6 0.0383 (12) 0.0247 (9) 0.0492 (13) 0.0006 (8) 0.0032 (10) 0.0004 (8)
C7 0.0301 (10) 0.0277 (9) 0.0336 (10) 0.0036 (8) 0.0002 (7) −0.0022 (8)
C8 0.0239 (9) 0.0288 (9) 0.0294 (10) 0.0018 (7) 0.0029 (7) 0.0033 (7)
C9 0.0850 (19) 0.0369 (11) 0.0381 (11) −0.0150 (12) 0.0014 (12) −0.0100 (10)
C10A 0.086 (2) 0.053 (3) 0.0391 (13) 0.0215 (19) −0.0073 (13) 0.0017 (14)
C10B 0.086 (2) 0.053 (3) 0.0391 (13) 0.0215 (19) −0.0073 (13) 0.0017 (14)
C11 0.108 (3) 0.071 (2) 0.0337 (10) 0.0304 (18) −0.0064 (14) −0.0035 (12)
C12 0.087 (2) 0.0503 (15) 0.0382 (13) 0.0047 (14) −0.0166 (15) 0.0034 (12)
C13 0.086 (3) 0.096 (3) 0.064 (2) 0.046 (2) −0.032 (2) −0.032 (2)
C14 0.0247 (9) 0.0303 (9) 0.0261 (9) 0.0018 (7) −0.0001 (7) 0.0017 (7)
C15 0.0275 (10) 0.0405 (11) 0.0256 (10) −0.0026 (8) 0.0026 (8) −0.0002 (8)
C16 0.0300 (10) 0.0366 (11) 0.0348 (11) −0.0049 (8) −0.0005 (8) −0.0014 (9)
C17 0.0287 (10) 0.0396 (11) 0.0271 (10) 0.0032 (8) −0.0026 (8) −0.0040 (8)
C18 0.0359 (11) 0.0436 (12) 0.0253 (10) 0.0000 (9) 0.0018 (8) 0.0016 (9)
C19 0.0324 (11) 0.0368 (10) 0.0284 (9) −0.0028 (8) 0.0031 (8) 0.0054 (8)
C20 0.0258 (10) 0.0486 (12) 0.0324 (11) −0.0019 (9) 0.0010 (8) 0.0075 (9)

Geometric parameters (Å, °)

S1—O2 1.4973 (16) C10B—C11 1.5258 (14)
S1—C1 1.767 (2) C10B—H10C 0.9900
S1—C20 1.789 (2) C10B—H10D 0.9900
F1—C17 1.354 (2) C11—C12 1.507 (5)
O1—C7 1.369 (3) C11—H11A 0.9900
O1—C8 1.384 (2) C11—H11B 0.9900
C1—C8 1.360 (3) C11—H11C 0.9900
C1—C2 1.449 (3) C11—H11D 0.9900
C2—C3 1.388 (3) C12—C13 1.527 (4)
C2—C7 1.393 (3) C12—H12A 0.9900
C3—C4 1.403 (3) C12—H12B 0.9900
C3—H3 0.9500 C13—H13A 0.9900
C4—C5 1.402 (4) C13—H13B 0.9900
C4—C9 1.501 (4) C14—C15 1.389 (3)
C5—C6 1.378 (4) C14—C19 1.406 (3)
C5—H5 0.9500 C15—C16 1.384 (3)
C6—C7 1.380 (3) C15—H15 0.9500
C6—H6 0.9500 C16—C17 1.373 (3)
C8—C14 1.447 (3) C16—H16 0.9500
C9—C13 1.469 (5) C17—C18 1.376 (3)
C9—C10B 1.5249 (14) C18—C19 1.384 (3)
C9—C10A 1.5272 (14) C18—H18 0.9500
C9—H9A 1.0000 C19—H19 0.9500
C9—H9B 1.0000 C20—H20A 0.9800
C10A—C11 1.5266 (14) C20—H20B 0.9800
C10A—H10A 0.9900 C20—H20C 0.9800
C10A—H10B 0.9900
O2—S1—C1 106.63 (9) C12—C11—C10A 103.6 (3)
O2—S1—C20 106.03 (10) C12—C11—H11A 111.0
C1—S1—C20 97.93 (10) C10B—C11—H11A 82.5
C7—O1—C8 106.75 (15) C10A—C11—H11A 111.0
C8—C1—C2 107.34 (18) C12—C11—H11B 111.0
C8—C1—S1 125.54 (16) C10B—C11—H11B 131.4
C2—C1—S1 126.22 (16) C10A—C11—H11B 111.0
C3—C2—C7 118.73 (19) H11A—C11—H11B 109.0
C3—C2—C1 136.4 (2) C12—C11—H11C 110.2
C7—C2—C1 104.73 (18) C10B—C11—H11C 110.2
C2—C3—C4 119.1 (2) C10A—C11—H11C 135.7
C2—C3—H3 120.4 H11B—C11—H11C 82.8
C4—C3—H3 120.4 C12—C11—H11D 110.2
C5—C4—C3 119.3 (2) C10B—C11—H11D 110.2
C5—C4—C9 118.6 (2) C10A—C11—H11D 84.9
C3—C4—C9 122.0 (2) H11A—C11—H11D 130.1
C6—C5—C4 122.7 (2) H11C—C11—H11D 108.5
C6—C5—H5 118.6 C11—C12—C13 104.8 (2)
C4—C5—H5 118.6 C11—C12—H12A 110.8
C5—C6—C7 116.0 (2) C13—C12—H12A 110.8
C5—C6—H6 122.0 C11—C12—H12B 110.8
C7—C6—H6 122.0 C13—C12—H12B 110.8
O1—C7—C6 125.0 (2) H12A—C12—H12B 108.9
O1—C7—C2 110.83 (17) C9—C13—C12 107.1 (3)
C6—C7—C2 124.1 (2) C9—C13—H13A 110.3
C1—C8—O1 110.33 (18) C12—C13—H13A 110.3
C1—C8—C14 133.92 (19) C9—C13—H13B 110.3
O1—C8—C14 115.71 (17) C12—C13—H13B 110.3
C13—C9—C4 120.2 (2) H13A—C13—H13B 108.6
C13—C9—C10B 109.4 (2) C15—C14—C19 118.79 (19)
C4—C9—C10B 123.1 (3) C15—C14—C8 121.27 (18)
C13—C9—C10A 98.0 (3) C19—C14—C8 119.93 (18)
C4—C9—C10A 112.9 (2) C16—C15—C14 120.7 (2)
C13—C9—H9A 108.3 C16—C15—H15 119.6
C4—C9—H9A 108.3 C14—C15—H15 119.6
C10B—C9—H9A 78.6 C17—C16—C15 118.6 (2)
C10A—C9—H9A 108.3 C17—C16—H16 120.7
C13—C9—H9B 99.1 C15—C16—H16 120.7
C4—C9—H9B 99.1 F1—C17—C16 118.3 (2)
C10B—C9—H9B 99.1 F1—C17—C18 118.61 (18)
C10A—C9—H9B 128.7 C16—C17—C18 123.1 (2)
C11—C10A—C9 104.7 (2) C17—C18—C19 117.9 (2)
C11—C10A—H10A 110.8 C17—C18—H18 121.1
C9—C10A—H10A 110.8 C19—C18—H18 121.1
C11—C10A—H10B 110.8 C18—C19—C14 120.9 (2)
C9—C10A—H10B 110.8 C18—C19—H19 119.5
H10A—C10A—H10B 108.9 C14—C19—H19 119.5
C9—C10B—C11 104.8 (2) S1—C20—H20A 109.5
C9—C10B—H10C 110.8 S1—C20—H20B 109.5
C11—C10B—H10C 110.8 H20A—C20—H20B 109.5
C9—C10B—H10D 110.8 S1—C20—H20C 109.5
C11—C10B—H10D 110.8 H20A—C20—H20C 109.5
H10C—C10B—H10D 108.9 H20B—C20—H20C 109.5
C12—C11—C10B 107.6 (3)
O2—S1—C1—C8 141.47 (18) C5—C4—C9—C10A 111.4 (3)
C20—S1—C1—C8 −109.11 (19) C3—C4—C9—C10A −68.1 (4)
O2—S1—C1—C2 −26.3 (2) C13—C9—C10A—C11 45.6 (4)
C20—S1—C1—C2 83.13 (19) C4—C9—C10A—C11 173.3 (3)
C8—C1—C2—C3 −176.1 (2) C10B—C9—C10A—C11 −69.7 (3)
S1—C1—C2—C3 −6.5 (4) C13—C9—C10B—C11 −1.6 (8)
C8—C1—C2—C7 0.1 (2) C4—C9—C10B—C11 148.3 (4)
S1—C1—C2—C7 169.66 (15) C10A—C9—C10B—C11 69.9 (3)
C7—C2—C3—C4 −0.2 (3) C9—C10B—C11—C12 16.7 (8)
C1—C2—C3—C4 175.5 (2) C9—C10B—C11—C10A −70.0 (3)
C2—C3—C4—C5 −0.3 (4) C9—C10A—C11—C12 −32.1 (4)
C2—C3—C4—C9 179.3 (2) C9—C10A—C11—C10B 69.6 (3)
C3—C4—C5—C6 0.8 (4) C10B—C11—C12—C13 −25.0 (6)
C9—C4—C5—C6 −178.8 (2) C10A—C11—C12—C13 5.7 (4)
C4—C5—C6—C7 −0.7 (4) C4—C9—C13—C12 −164.7 (3)
C8—O1—C7—C6 176.1 (2) C10B—C9—C13—C12 −13.9 (6)
C8—O1—C7—C2 −1.3 (2) C10A—C9—C13—C12 −42.3 (4)
C5—C6—C7—O1 −176.9 (2) C11—C12—C13—C9 23.9 (4)
C5—C6—C7—C2 0.2 (3) C1—C8—C14—C15 28.6 (3)
C3—C2—C7—O1 177.75 (19) O1—C8—C14—C15 −154.06 (19)
C1—C2—C7—O1 0.8 (2) C1—C8—C14—C19 −150.1 (2)
C3—C2—C7—C6 0.3 (3) O1—C8—C14—C19 27.3 (3)
C1—C2—C7—C6 −176.7 (2) C19—C14—C15—C16 1.3 (3)
C2—C1—C8—O1 −0.9 (2) C8—C14—C15—C16 −177.3 (2)
S1—C1—C8—O1 −170.58 (14) C14—C15—C16—C17 −1.2 (3)
C2—C1—C8—C14 176.6 (2) C15—C16—C17—F1 −179.84 (19)
S1—C1—C8—C14 6.9 (3) C15—C16—C17—C18 0.4 (4)
C7—O1—C8—C1 1.4 (2) F1—C17—C18—C19 −179.4 (2)
C7—O1—C8—C14 −176.61 (17) C16—C17—C18—C19 0.4 (3)
C5—C4—C9—C13 −133.7 (3) C17—C18—C19—C14 −0.3 (3)
C3—C4—C9—C13 46.8 (4) C15—C14—C19—C18 −0.5 (3)
C5—C4—C9—C10B 79.6 (6) C8—C14—C19—C18 178.1 (2)
C3—C4—C9—C10B −100.0 (6)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1/C2/C7/O/C8 furan ring.
D—H···A D—H H···A D···A D—H···A
C20—H20B···O2i 0.98 2.29 3.262 (3) 169.
C16—H16···Cgi 0.95 2.53 3.365 (3) 146.

Symmetry codes: (i) x−1/4, −y+1/4, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2398).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res., 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1167. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o470. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  10. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811036087/gk2398sup1.cif

e-67-o2591-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036087/gk2398Isup2.hkl

e-67-o2591-Isup2.hkl (203KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036087/gk2398Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES