Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2673. doi: 10.1107/S1600536811037196

Methyl rac-(2R,11S,12R)-12-(2-chloro­phen­yl)-22-oxo-9,13,21-trioxapenta­cyclo­[12.8.0.02,11.03,8.015,20]docosa-1(14),3,5,7,15(20),16,18-hepta­ene-11-carboxyl­ate

K Swaminathan a, K Sethusankar a,*, G Sivakumar b, M Bakthadoss b
PMCID: PMC3201225  PMID: 22065629

Abstract

In the title compound C27H19ClO6, the coumarin ring system is not exactly planar, with a dihedral angle of 4.12 (7)° between its benzene and lactone rings. The cis-fused pyran rings adopt half-chair conformations. The carbometh­oxy and chloro­phenyl groups are in a trans configuration. The crystal packing is stabilized by inter­molecular C—H⋯O interactions, which produce a centrosymmetric R 2 2(14) dimer and two centrosymmetric R 2 2(18) dimers connecting the mol­ecules in a two-dimensional fashion.

Related literature

For uses of coumarins, see: Kayser & Kolodziej (1997); Fan et al. (2001); Wang et al. (2002). For related structures, see: Kanchanadevi et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-o2673-scheme1.jpg

Experimental

Crystal data

  • C27H19ClO6

  • M r = 474.87

  • Triclinic, Inline graphic

  • a = 8.4441 (3) Å

  • b = 9.7556 (3) Å

  • c = 13.8546 (5) Å

  • α = 73.831 (2)°

  • β = 82.858 (2)°

  • γ = 87.962 (2)°

  • V = 1087.65 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.25 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • 26685 measured reflections

  • 6336 independent reflections

  • 4968 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.143

  • S = 1.01

  • 6336 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037196/ld2025sup1.cif

e-67-o2673-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037196/ld2025Isup2.hkl

e-67-o2673-Isup2.hkl (310.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037196/ld2025Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.93 2.59 3.271 (2) 130
C12—H12⋯O4ii 0.98 2.53 3.3316 (16) 139
C23—H23⋯O5iii 0.93 2.47 3.355 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

K. Swaminathan and K. Sethusankar thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.

supplementary crystallographic information

Comment

The title compound C27H19Cl O6 was synthesized using domino Knoevenagel intramolecular hetero-Diels-Alder reaction, used extensively in the synthesis of heterocyclic and polycyclic compounds. Coumarin derivatives find applications as active components in pesticides and additives in the manufacture of pharmaceuticals and cosmetics. They are also known to posses antibacterial (Kayser & Kolodziej, 1997), anticancer (Wang et al., 2002) and steroid 5a-reductase inhibitory (Fan et al., 2001) activities.

The title compound C27H19ClO6 comprises a chromene ring and a coumarin ring fused to alternate sides of a pyran ring. A chlorobenzene ring and a carboxylate group are also trans-attached to the same pyran ring in adjacent positions. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig.1.

The chlorine atom Cl1 deviates from the least square plane of the phenyl ring (C20-C25) by 0.0568 Å and the deviation of atom O4 from the least square plane of the coumarin ring (O3,C10,C11,C13-C19) is 0.3315 (12) Å. Also, the dihedral angle between the least square planes of the pyran ring (O2,C8-C12) and the carboxylate side chain is 56.47 (6)°. The title compound exhibits sturctural similarities with a reported structure (Kanchanadevi et al., 2011).

The crystal packing is stabilized by C—H..O intermolecular ineractions, which include a R22(14) dimer and two R22(18) dimers formed through a bifurcated hydrogen bond between a carboxylate O atom and two C atoms, one each from the nearby chromene and chlorobenzene rings, respectively (Bernstein et al.. 1995). (Table 1). The symmetry codes are: (i) 1 - x,1 - y,1 - z; (ii) 1 - x,1 - y,-z and (iii) -x,-y,1 - z. The packing arrangement of the title compound is shown in Fig.2.

Experimental

A mixture of (E)-methyl 2-((2-formylphenoxy)methyl)-3-(2-chlorophenyl) acrylate (0.330 g, 1 mmol) and 4-hydroxy-2H-chromen-2-one (0.162 g, 1 mmol) was placed in a round bottom flask and melted at 180°C for 1 h. After completion of the reaction as indicated by TLC, the crude product was washed with 5 ml of ethylacetate:hexane mixture (1:49 ratio) which successfully provided the pure product, methyl rac-(2R,11S,12R)- 12-(2-chlorophenyl)-22-oxo-9,13,21-trioxapentacyclo [12.8.0.02,11.03,8.015,20]docosa-1(14),3,5,7,15 (20),16,18- heptaene-11-carboxylate, as colourless solid in 92% yield.

Refinement

Positions of hydrogen atoms were localized from the difference electron density maps and their distances were geometically constrained. The hydrogen atoms bound to the C atoms were treated as riding atoms, with d(C—H)=0.93 Å and Uiso(H)=1.2Ueq(C) for aromatic, d(C—H)=0.98 Å and Uiso(H)=1.2Ueq(C) for methyne, d(C—H)=0.97 Å and Uiso(H)=1.2Ueq(C) for methylene and d(C—H)=0.96 Å and Uiso(H)=1.5Ueq(C) for methyl groups. The rotation angles for methyl group were optimized by least squares.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound viewed down c axis, showing the formation of R22(14) and R22(18) dimers. C—H···O intermolecular interactions are indicated by dashed lines. Symmetry code: (i) 1 - x,1 - y,1 - z; (ii) 1 - x,1 - y,-z and (iii) -x,-y,1 - z.

Crystal data

C27H19ClO6 Z = 2
Mr = 474.87 F(000) = 492
Triclinic, P1 Dx = 1.450 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4441 (3) Å Cell parameters from 6336 reflections
b = 9.7556 (3) Å θ = 2.2–30.0°
c = 13.8546 (5) Å µ = 0.22 mm1
α = 73.831 (2)° T = 293 K
β = 82.858 (2)° Block, colourless
γ = 87.962 (2)° 0.30 × 0.25 × 0.25 mm
V = 1087.65 (6) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 4968 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
graphite θmax = 30.0°, θmin = 2.2°
ω scans h = −11→11
26685 measured reflections k = −12→13
6336 independent reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.3227P] where P = (Fo2 + 2Fc2)/3
6336 reflections (Δ/σ)max < 0.001
308 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.65779 (17) 0.56358 (17) 0.40142 (11) 0.0427 (3)
H1 0.6784 0.5199 0.4674 0.051*
C2 0.6817 (2) 0.70748 (18) 0.36081 (13) 0.0485 (4)
H2 0.7199 0.7612 0.3989 0.058*
C3 0.6491 (2) 0.77270 (17) 0.26310 (13) 0.0493 (4)
H3 0.6674 0.8699 0.2349 0.059*
C4 0.58945 (19) 0.69331 (15) 0.20757 (11) 0.0424 (3)
H4 0.5632 0.7389 0.1431 0.051*
C5 0.56753 (15) 0.54613 (14) 0.24582 (9) 0.0331 (3)
C6 0.60257 (15) 0.48263 (14) 0.34399 (10) 0.0345 (3)
C7 0.51941 (16) 0.25398 (14) 0.33923 (10) 0.0355 (3)
H7A 0.4668 0.1716 0.3874 0.043*
H7B 0.6078 0.2197 0.3004 0.043*
C8 0.40116 (14) 0.33317 (13) 0.26765 (9) 0.0302 (2)
C9 0.48878 (14) 0.45976 (13) 0.18856 (9) 0.0301 (2)
H9 0.4088 0.5205 0.1515 0.036*
C10 0.59876 (14) 0.40135 (13) 0.11382 (9) 0.0311 (2)
C11 0.58170 (14) 0.26821 (14) 0.10487 (9) 0.0323 (2)
C12 0.33567 (14) 0.23433 (14) 0.21156 (9) 0.0322 (2)
H12 0.2696 0.2912 0.1614 0.039*
C13 0.71735 (16) 0.49406 (15) 0.04264 (9) 0.0369 (3)
C14 0.81399 (16) 0.29644 (16) −0.01975 (10) 0.0391 (3)
C15 0.68874 (15) 0.21021 (15) 0.03630 (9) 0.0347 (3)
C16 0.67418 (18) 0.07365 (17) 0.02455 (11) 0.0432 (3)
H16 0.5907 0.0146 0.0615 0.052*
C17 0.7832 (2) 0.0264 (2) −0.04158 (14) 0.0546 (4)
H17 0.7722 −0.0637 −0.0505 0.066*
C18 0.9098 (2) 0.1137 (2) −0.09498 (14) 0.0590 (4)
H18 0.9841 0.0806 −0.1387 0.071*
C19 0.92701 (19) 0.2478 (2) −0.08424 (12) 0.0531 (4)
H19 1.0128 0.3051 −0.1195 0.064*
C20 0.23943 (16) 0.10893 (14) 0.27860 (10) 0.0362 (3)
C21 0.3141 (2) −0.01302 (16) 0.33065 (13) 0.0484 (4)
H21 0.4247 −0.0198 0.3203 0.058*
C22 0.2274 (3) −0.12563 (19) 0.39802 (15) 0.0646 (5)
H22 0.2798 −0.2062 0.4331 0.078*
C23 0.0635 (3) −0.1172 (2) 0.41250 (16) 0.0699 (6)
H23 0.0051 −0.1916 0.4584 0.084*
C24 −0.0138 (2) −0.0002 (2) 0.35981 (15) 0.0619 (5)
H24 −0.1246 0.0045 0.3690 0.074*
C25 0.07359 (17) 0.11175 (18) 0.29258 (12) 0.0454 (3)
C26 0.26076 (15) 0.38165 (15) 0.33110 (10) 0.0352 (3)
C27 0.0578 (3) 0.5498 (3) 0.33678 (18) 0.0788 (7)
H27A −0.0335 0.4941 0.3363 0.118*
H27B 0.0379 0.6486 0.3049 0.118*
H27C 0.0771 0.5384 0.4054 0.118*
O1 0.57971 (13) 0.34145 (11) 0.39277 (7) 0.0437 (2)
O2 0.46794 (11) 0.17495 (10) 0.15960 (7) 0.0386 (2)
O3 0.82713 (12) 0.43425 (12) −0.01572 (8) 0.0439 (2)
O4 0.72725 (15) 0.62092 (12) 0.02839 (8) 0.0514 (3)
O5 0.21355 (14) 0.31564 (13) 0.41573 (8) 0.0511 (3)
O6 0.19620 (14) 0.50185 (13) 0.28202 (9) 0.0556 (3)
Cl1 −0.03104 (5) 0.25730 (6) 0.22616 (5) 0.07724 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0385 (7) 0.0535 (8) 0.0382 (7) −0.0064 (6) −0.0058 (5) −0.0149 (6)
C2 0.0478 (8) 0.0524 (9) 0.0516 (8) −0.0101 (7) −0.0021 (6) −0.0251 (7)
C3 0.0576 (9) 0.0389 (7) 0.0524 (9) −0.0087 (6) 0.0015 (7) −0.0165 (6)
C4 0.0510 (8) 0.0350 (7) 0.0385 (7) −0.0050 (6) −0.0011 (6) −0.0068 (5)
C5 0.0313 (6) 0.0350 (6) 0.0319 (6) −0.0047 (5) −0.0005 (4) −0.0081 (5)
C6 0.0290 (5) 0.0388 (6) 0.0342 (6) −0.0039 (5) −0.0029 (4) −0.0076 (5)
C7 0.0352 (6) 0.0341 (6) 0.0331 (6) −0.0027 (5) −0.0057 (5) −0.0017 (5)
C8 0.0277 (5) 0.0324 (6) 0.0271 (5) −0.0046 (4) −0.0006 (4) −0.0034 (4)
C9 0.0291 (5) 0.0307 (5) 0.0274 (5) −0.0034 (4) −0.0031 (4) −0.0028 (4)
C10 0.0285 (5) 0.0365 (6) 0.0255 (5) −0.0065 (4) −0.0017 (4) −0.0036 (4)
C11 0.0286 (5) 0.0379 (6) 0.0276 (5) −0.0062 (5) −0.0005 (4) −0.0050 (5)
C12 0.0282 (5) 0.0355 (6) 0.0307 (6) −0.0062 (4) 0.0013 (4) −0.0070 (5)
C13 0.0361 (6) 0.0446 (7) 0.0270 (5) −0.0118 (5) −0.0015 (5) −0.0046 (5)
C14 0.0335 (6) 0.0520 (8) 0.0312 (6) −0.0056 (5) −0.0007 (5) −0.0109 (5)
C15 0.0317 (6) 0.0432 (7) 0.0285 (5) −0.0025 (5) −0.0029 (4) −0.0090 (5)
C16 0.0424 (7) 0.0480 (8) 0.0405 (7) −0.0034 (6) −0.0032 (6) −0.0149 (6)
C17 0.0566 (9) 0.0605 (10) 0.0527 (9) 0.0029 (8) −0.0030 (7) −0.0275 (8)
C18 0.0516 (9) 0.0769 (12) 0.0530 (9) 0.0047 (8) 0.0062 (7) −0.0312 (9)
C19 0.0396 (7) 0.0755 (11) 0.0428 (8) −0.0071 (7) 0.0084 (6) −0.0190 (8)
C20 0.0349 (6) 0.0387 (6) 0.0339 (6) −0.0119 (5) 0.0037 (5) −0.0100 (5)
C21 0.0486 (8) 0.0377 (7) 0.0531 (9) −0.0091 (6) 0.0019 (7) −0.0051 (6)
C22 0.0836 (13) 0.0398 (8) 0.0603 (10) −0.0189 (8) 0.0015 (9) 0.0005 (7)
C23 0.0819 (13) 0.0590 (11) 0.0600 (11) −0.0388 (10) 0.0225 (10) −0.0105 (9)
C24 0.0466 (9) 0.0712 (12) 0.0680 (11) −0.0298 (8) 0.0193 (8) −0.0268 (10)
C25 0.0360 (7) 0.0533 (8) 0.0483 (8) −0.0140 (6) 0.0025 (6) −0.0177 (7)
C26 0.0306 (6) 0.0418 (7) 0.0335 (6) −0.0060 (5) −0.0007 (5) −0.0113 (5)
C27 0.0661 (12) 0.0860 (15) 0.0753 (13) 0.0301 (11) 0.0142 (10) −0.0209 (12)
O1 0.0515 (6) 0.0415 (5) 0.0361 (5) −0.0080 (4) −0.0168 (4) −0.0013 (4)
O2 0.0364 (5) 0.0369 (5) 0.0401 (5) −0.0104 (4) 0.0090 (4) −0.0114 (4)
O3 0.0380 (5) 0.0518 (6) 0.0385 (5) −0.0139 (4) 0.0087 (4) −0.0108 (4)
O4 0.0623 (7) 0.0433 (6) 0.0423 (6) −0.0195 (5) 0.0093 (5) −0.0061 (4)
O5 0.0472 (6) 0.0628 (7) 0.0355 (5) −0.0051 (5) 0.0094 (4) −0.0065 (5)
O6 0.0474 (6) 0.0591 (7) 0.0499 (6) 0.0164 (5) 0.0078 (5) −0.0059 (5)
Cl1 0.0375 (2) 0.0878 (4) 0.1006 (4) −0.0003 (2) −0.0181 (2) −0.0121 (3)

Geometric parameters (Å, °)

C1—C2 1.371 (2) C13—O3 1.3753 (17)
C1—C6 1.3938 (19) C14—O3 1.3700 (18)
C1—H1 0.9300 C14—C15 1.3873 (18)
C2—C3 1.383 (2) C14—C19 1.388 (2)
C2—H2 0.9300 C15—C16 1.398 (2)
C3—C4 1.379 (2) C16—C17 1.376 (2)
C3—H3 0.9300 C16—H16 0.9300
C4—C5 1.3955 (18) C17—C18 1.390 (3)
C4—H4 0.9300 C17—H17 0.9300
C5—C6 1.3925 (18) C18—C19 1.372 (3)
C5—C9 1.5247 (17) C18—H18 0.9300
C6—O1 1.3634 (16) C19—H19 0.9300
C7—O1 1.4195 (17) C20—C21 1.384 (2)
C7—C8 1.5304 (17) C20—C25 1.3900 (19)
C7—H7A 0.9700 C21—C22 1.389 (2)
C7—H7B 0.9700 C21—H21 0.9300
C8—C26 1.5279 (17) C22—C23 1.376 (3)
C8—C9 1.5436 (16) C22—H22 0.9300
C8—C12 1.5497 (17) C23—C24 1.365 (3)
C9—C10 1.5203 (17) C23—H23 0.9300
C9—H9 0.9800 C24—C25 1.387 (2)
C10—C11 1.3530 (18) C24—H24 0.9300
C10—C13 1.4545 (16) C25—Cl1 1.7404 (18)
C11—O2 1.3499 (14) C26—O5 1.1959 (16)
C11—C15 1.4455 (18) C26—O6 1.3180 (18)
C12—O2 1.4449 (15) C27—O6 1.449 (2)
C12—C20 1.5067 (17) C27—H27A 0.9600
C12—H12 0.9800 C27—H27B 0.9600
C13—O4 1.2021 (18) C27—H27C 0.9600
C2—C1—C6 120.12 (14) O3—C13—C10 118.33 (12)
C2—C1—H1 119.9 O3—C14—C15 120.97 (12)
C6—C1—H1 119.9 O3—C14—C19 117.76 (13)
C1—C2—C3 119.92 (14) C15—C14—C19 121.24 (14)
C1—C2—H2 120.0 C14—C15—C16 118.92 (13)
C3—C2—H2 120.0 C14—C15—C11 117.02 (12)
C4—C3—C2 119.88 (14) C16—C15—C11 124.05 (12)
C4—C3—H3 120.1 C17—C16—C15 120.10 (14)
C2—C3—H3 120.1 C17—C16—H16 120.0
C3—C4—C5 121.53 (14) C15—C16—H16 120.0
C3—C4—H4 119.2 C16—C17—C18 119.80 (16)
C5—C4—H4 119.2 C16—C17—H17 120.1
C6—C5—C4 117.51 (12) C18—C17—H17 120.1
C6—C5—C9 120.32 (11) C19—C18—C17 121.11 (15)
C4—C5—C9 121.74 (12) C19—C18—H18 119.4
O1—C6—C5 123.90 (12) C17—C18—H18 119.4
O1—C6—C1 115.05 (12) C18—C19—C14 118.78 (15)
C5—C6—C1 120.98 (12) C18—C19—H19 120.6
O1—C7—C8 112.52 (11) C14—C19—H19 120.6
O1—C7—H7A 109.1 C21—C20—C25 117.39 (13)
C8—C7—H7A 109.1 C21—C20—C12 120.77 (12)
O1—C7—H7B 109.1 C25—C20—C12 121.82 (13)
C8—C7—H7B 109.1 C20—C21—C22 121.45 (16)
H7A—C7—H7B 107.8 C20—C21—H21 119.3
C26—C8—C7 108.02 (10) C22—C21—H21 119.3
C26—C8—C9 112.31 (10) C23—C22—C21 119.55 (19)
C7—C8—C9 108.42 (10) C23—C22—H22 120.2
C26—C8—C12 108.12 (10) C21—C22—H22 120.2
C7—C8—C12 111.28 (10) C24—C23—C22 120.32 (15)
C9—C8—C12 108.71 (9) C24—C23—H23 119.8
C10—C9—C5 116.45 (10) C22—C23—H23 119.8
C10—C9—C8 108.37 (10) C23—C24—C25 119.77 (17)
C5—C9—C8 107.63 (9) C23—C24—H24 120.1
C10—C9—H9 108.0 C25—C24—H24 120.1
C5—C9—H9 108.0 C24—C25—C20 121.43 (17)
C8—C9—H9 108.0 C24—C25—Cl1 117.87 (14)
C11—C10—C13 117.87 (11) C20—C25—Cl1 120.70 (11)
C11—C10—C9 122.10 (10) O5—C26—O6 123.95 (13)
C13—C10—C9 119.78 (11) O5—C26—C8 123.17 (13)
O2—C11—C10 124.46 (11) O6—C26—C8 112.87 (11)
O2—C11—C15 113.05 (11) O6—C27—H27A 109.5
C10—C11—C15 122.47 (11) O6—C27—H27B 109.5
O2—C12—C20 106.06 (10) H27A—C27—H27B 109.5
O2—C12—C8 109.13 (10) O6—C27—H27C 109.5
C20—C12—C8 115.06 (10) H27A—C27—H27C 109.5
O2—C12—H12 108.8 H27B—C27—H27C 109.5
C20—C12—H12 108.8 C6—O1—C7 117.78 (10)
C8—C12—H12 108.8 C11—O2—C12 116.06 (10)
O4—C13—O3 115.96 (11) C14—O3—C13 122.10 (10)
O4—C13—C10 125.69 (13) C26—O6—C27 115.38 (14)
C6—C1—C2—C3 0.8 (2) O2—C11—C15—C14 −177.14 (12)
C1—C2—C3—C4 1.3 (2) C10—C11—C15—C14 1.25 (19)
C2—C3—C4—C5 −3.0 (2) O2—C11—C15—C16 2.06 (19)
C3—C4—C5—C6 2.3 (2) C10—C11—C15—C16 −179.55 (13)
C3—C4—C5—C9 174.80 (14) C14—C15—C16—C17 0.1 (2)
C4—C5—C6—O1 176.77 (12) C11—C15—C16—C17 −179.04 (14)
C9—C5—C6—O1 4.20 (19) C15—C16—C17—C18 1.4 (3)
C4—C5—C6—C1 −0.15 (19) C16—C17—C18—C19 −1.1 (3)
C9—C5—C6—C1 −172.71 (12) C17—C18—C19—C14 −0.9 (3)
C2—C1—C6—O1 −178.59 (13) O3—C14—C19—C18 −175.40 (15)
C2—C1—C6—C5 −1.4 (2) C15—C14—C19—C18 2.5 (2)
O1—C7—C8—C26 −60.63 (13) O2—C12—C20—C21 40.09 (17)
O1—C7—C8—C9 61.33 (13) C8—C12—C20—C21 −80.64 (16)
O1—C7—C8—C12 −179.17 (10) O2—C12—C20—C25 −141.37 (13)
C6—C5—C9—C10 −98.76 (13) C8—C12—C20—C25 97.89 (15)
C4—C5—C9—C10 89.00 (15) C25—C20—C21—C22 −3.0 (2)
C6—C5—C9—C8 23.08 (16) C12—C20—C21—C22 175.57 (16)
C4—C5—C9—C8 −149.17 (12) C20—C21—C22—C23 1.0 (3)
C26—C8—C9—C10 −166.73 (10) C21—C22—C23—C24 1.1 (3)
C7—C8—C9—C10 73.98 (12) C22—C23—C24—C25 −1.0 (3)
C12—C8—C9—C10 −47.12 (12) C23—C24—C25—C20 −1.1 (3)
C26—C8—C9—C5 66.55 (13) C23—C24—C25—Cl1 179.17 (15)
C7—C8—C9—C5 −52.74 (13) C21—C20—C25—C24 3.1 (2)
C12—C8—C9—C5 −173.85 (10) C12—C20—C25—C24 −175.47 (15)
C5—C9—C10—C11 138.72 (12) C21—C20—C25—Cl1 −177.20 (12)
C8—C9—C10—C11 17.27 (16) C12—C20—C25—Cl1 4.2 (2)
C5—C9—C10—C13 −47.09 (15) C7—C8—C26—O5 −32.65 (17)
C8—C9—C10—C13 −168.54 (11) C9—C8—C26—O5 −152.17 (13)
C13—C10—C11—O2 −174.11 (12) C12—C8—C26—O5 87.89 (15)
C9—C10—C11—O2 0.2 (2) C7—C8—C26—O6 148.50 (12)
C13—C10—C11—C15 7.69 (19) C9—C8—C26—O6 28.98 (15)
C9—C10—C11—C15 −178.02 (11) C12—C8—C26—O6 −90.96 (13)
C26—C8—C12—O2 −173.94 (10) C5—C6—O1—C7 1.24 (19)
C7—C8—C12—O2 −55.46 (13) C1—C6—O1—C7 178.32 (12)
C9—C8—C12—O2 63.88 (13) C8—C7—O1—C6 −34.54 (16)
C26—C8—C12—C20 −54.89 (14) C10—C11—O2—C12 15.68 (18)
C7—C8—C12—C20 63.59 (14) C15—C11—O2—C12 −165.96 (11)
C9—C8—C12—C20 −177.08 (10) C20—C12—O2—C11 −171.76 (10)
C11—C10—C13—O4 165.57 (14) C8—C12—O2—C11 −47.26 (14)
C9—C10—C13—O4 −8.9 (2) C15—C14—O3—C13 −0.6 (2)
C11—C10—C13—O3 −13.09 (18) C19—C14—O3—C13 177.27 (13)
C9—C10—C13—O3 172.48 (11) O4—C13—O3—C14 −168.99 (13)
O3—C14—C15—C16 175.70 (13) C10—C13—O3—C14 9.80 (19)
C19—C14—C15—C16 −2.1 (2) O5—C26—O6—C27 −1.6 (2)
O3—C14—C15—C11 −5.06 (19) C8—C26—O6—C27 177.28 (16)
C19—C14—C15—C11 177.12 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O5i 0.93 2.59 3.271 (2) 130
C12—H12···O4ii 0.98 2.53 3.3316 (16) 139
C23—H23···O5iii 0.93 2.47 3.355 (3) 159

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2025).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Fan, G. J., Mar, W., Park, M. K., Wook Choi, E., Kim, K. & Kim, S. (2001). Bioorg. Med. Chem. Lett. 11, 2361–2363. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Kanchanadevi, J., Anbalagan, G., Sivakumar, G., Bakthadoss, M. & Manivannan, V. (2011). Acta Cryst. E67, o1990. [DOI] [PMC free article] [PubMed]
  7. Kayser, O. & Kolodziej, H. (1997). Planta Med. 63, 508–510. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Wang, C. J., Hsieh, Y. J., Chu, C. Y., Lin, Y. L. & Tseng, T. H. (2002). Cancer Lett. 183, 163–168. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037196/ld2025sup1.cif

e-67-o2673-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037196/ld2025Isup2.hkl

e-67-o2673-Isup2.hkl (310.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037196/ld2025Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES