Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1363–m1364. doi: 10.1107/S160053681103621X

Tri-μ-chlorido-bis­[(η6-hexa­methyl­benzene)­ruthenium(II)] tetra­chlorido­ferrate(III)

Petr Štěpnička a,*, Jiří Schulz a, Ivana Císařová a
PMCID: PMC3201229  PMID: 22058693

Abstract

The mol­ecular geometry of the complex cation in the title structure, [(μ-Cl)3{RuII6-C6Me6)}2][FeIIICl4], compares very well with that reported earlier for the corresponding PF6 salt [Pandey et al. (1999). J. Organomet. Chem. 592, 278–282]. The [FeCl4] counter ion has a rather regular tetra­hedral geometry with Fe—Cl distances and Cl—Fe—Cl angles in the range 2.1891 (7)–2.2018 (8) Å and 107.10 (3)–110.56 (3)°, respectively. There are no significant inter­molecular inter­actions in the crystal except for some weak C—H⋯Cl contacts, which in turn indicates that the crystal packing is determined predominantly by electrostatic inter­actions between the ionic constituents.

Related literature

Crystals of the title compound were isolated during attempted recrystallization of [(η6-C6Me6)RuCl2{Ph2PfcCON(CH2CH2OH)2}] [fc = ferrocene-1,1′-diyl; for the preparation of this ligand, see Schulz et al. (2009)] from chloro­form–diethyl ether. It is likely a decomposition product as the result of photolytic cleavage of the ferrocene moiety in the halogenated solvent (Brand & Snedden, 1957). For the crystal structure of [(μ-Cl)3{Ru(η6-C6Me6)}2][PF6], see: Pandey et al. (1999); Redwine et al. (2000). For the first structurally characterized compound of this type, [(μ-Cl)3{Ru(η6-C6Me6)}2][BPh4]·CH3OH, see: Tocher & Walkinshaw (1982). For the structures of simple tetra­chloridoferrate(III) salts, see: Wyrzykowski et al. (2006); Jin et al. (2005). graphic file with name e-67-m1363-scheme1.jpg

Experimental

Crystal data

  • [Ru2Cl3(C12H18)2][FeCl4]

  • M r = 830.67

  • Triclinic, Inline graphic

  • a = 8.4490 (2) Å

  • b = 12.8352 (2) Å

  • c = 14.6752 (4) Å

  • α = 106.5767 (12)°

  • β = 90.4341 (9)°

  • γ = 99.7915 (12)°

  • V = 1500.43 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 150 K

  • 0.30 × 0.20 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian using the diffractometer software T min = 0.529, T max = 0.855

  • 27082 measured reflections

  • 6900 independent reflections

  • 6172 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.061

  • S = 1.08

  • 6900 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL (Otwinowski & Minor, 1997) DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103621X/su2311sup1.cif

e-67-m1363-sup1.cif (41.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103621X/su2311Isup2.hkl

e-67-m1363-Isup2.hkl (337.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Cl3i 0.96 2.80 3.629 (3) 145
C11—H11B⋯Cl6ii 0.96 2.71 3.588 (3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported financially by the Grant Agency of Charles University in Prague (project No. 69309), and is a part of a long-term research plan supported by the Ministry of Education, Youth and Sports of the Czech Republic (project No. MSM0021620857).

supplementary crystallographic information

Comment

A view of the molecular structure of the title compound is given in Fig. 1. The geometry of the complex cation in the structure is very similar to that reported for [(µ–Cl)3{Ru(η6-C6Me6)}2][PF6] (Pandey et al., 1999). The Ru—Cl and Ru—C distances range 2.4354 (6) - 2.4615 (6) Å and 2.170 (2) - 2.192 (3) Å, respectively. The distance between the ruthenium atoms is 3.2723 (3) Å and they are symmetrically bridged by the three chloride ligands with Ru—Cl—Ru angles in the range 83.56 (2)–84.18 (2) °. The π-coordinated arene rings are practically coplanar (dihedral angle of their mean planes is 2.31 (12) °) and assume an almost perfect staggered conformation (Fig. 2).

The [FeCl4]- counter ion has a regular tetrahedral geometry with Fe—Cl distances in the range of 2.1890 (8)–2.2018 (10) Å, and interligand angles of 107.10 (3)–110.57 (3) °. These structural data compare well with those observed for simple tetrachloridoferrate(III) salts that have been recently structurally characterized (e.g., quinolinium tetrachloroferrate(III) [Wyrzykowski et al., 2006], and matrinium tetrachloroferrate(III) [Jin et al., 2005]).

In the crystal of the title compound the cations and anions form separate layers that are perpendicular to the crystallographic a-axis direction and regularly alternate at distances determined by their van der Waals envelope. No significant hydrogen-bonding interactions (except for some weak C—H···Cl contacts, Table 1) or π···π stacking interactions were detected in the structure, which suggests that the crystal packing is governed predominantly by electrostatic interactions of the ionic constituents.

Experimental

Burgundy red crystals of the title compound were obtained serendipitously during an attempted crystallization of [(η6-C6Me6)RuCl2{Ph2PfcCON(CH2CH2OH)2P}] (fc = ferrocene-1,1-diyl), which had been prepared by a conventional bridge-cleavage reaction of [(η6-C6Me6)RuCl2]2 with Ph2PfcCON(CH2CH2OH)2 (Schulz et al., 2009), from chloroform–diethyl ether over an extended period (several weeks). The complex is very likely a decomposition product as the result of photolytic cleavage of the ferrocene moiety in the halogenated solvent (Brand & Snedden, 1957). This has produced FeCl3 and chloride ions required for the formation of both the complex cation and complex anion that constitute the title compound.

A few crystals of the product were analysed by electrospray ionization (ESI) mass spectroscopy, which clearly showed signals due to ions [(C6Me6)2Ru2Cl3]+ (m/z 633) and [FeCl4]- (m/z 196) with correct isotopic distribution patterns. High-resolution mass spectra further confirmed the formulation: calculated for [(C6Me6)2102Ru235Cl3]+ 632.9970, found 632.9993; calculated for [56Fe35Cl4]- 195.8109, found 195.8108.

Refinement

All H-atoms were included in their calculated positions and refined as riding atoms: C—H = 0.96 Å, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound, showing the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View along the Ru1···Ru2 line of the complex cation in the title compound.

Crystal data

[Ru2Cl3(C12H18)2][Cl4Fe] Z = 2
Mr = 830.67 F(000) = 826
Triclinic, P1 Dx = 1.839 Mg m3
a = 8.4490 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.8352 (2) Å Cell parameters from 15369 reflections
c = 14.6752 (4) Å θ = 1.0–27.5°
α = 106.5767 (12)° µ = 2.11 mm1
β = 90.4341 (9)° T = 150 K
γ = 99.7915 (12)° Plate, red
V = 1500.43 (6) Å3 0.30 × 0.20 × 0.08 mm

Data collection

Nonius KappaCCD diffractometer 6900 independent reflections
Radiation source: fine-focus sealed tube 6172 reflections with I > 2σ(I)
horizontally mounted graphite crystal Rint = 0.036
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 1.5°
ω and π scans to fill the Ewald sphere h = −10→10
Absorption correction: gaussian (Reference? year?) k = −16→16
Tmin = 0.529, Tmax = 0.855 l = −19→19
27082 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0211P)2 + 1.9353P] where P = (Fo2 + 2Fc2)/3
6900 reflections (Δ/σ)max = 0.001
319 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.68 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement on F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2 σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.02214 (2) 0.229351 (15) 0.359389 (13) 0.01330 (5)
Ru2 −0.10556 (2) 0.289505 (14) 0.172745 (13) 0.01278 (5)
Cl1 0.01161 (7) 0.13405 (5) 0.18933 (4) 0.02091 (12)
Cl3 −0.23873 (7) 0.26089 (5) 0.31265 (4) 0.02071 (12)
Cl2 0.11067 (7) 0.38573 (5) 0.29639 (4) 0.01942 (12)
C1 −0.0309 (3) 0.2545 (2) 0.50855 (17) 0.0179 (5)
C2 0.1257 (3) 0.3123 (2) 0.50368 (17) 0.0179 (5)
C3 0.2415 (3) 0.2553 (2) 0.44795 (17) 0.0175 (5)
C4 0.1993 (3) 0.1418 (2) 0.39726 (18) 0.0186 (5)
C5 0.0393 (3) 0.08221 (19) 0.40182 (18) 0.0185 (5)
C6 −0.0745 (3) 0.1384 (2) 0.45724 (17) 0.0175 (5)
C7 −0.1569 (3) 0.3129 (2) 0.5627 (2) 0.0252 (6)
H7A −0.1180 0.3911 0.5822 0.030*
H7B −0.1795 0.2881 0.6179 0.030*
H7C −0.2535 0.2965 0.5225 0.030*
C8 0.1739 (3) 0.4348 (2) 0.5527 (2) 0.0272 (6)
H8A 0.0814 0.4640 0.5790 0.033*
H8B 0.2166 0.4717 0.5074 0.033*
H8C 0.2544 0.4466 0.6029 0.033*
C9 0.4059 (3) 0.3199 (2) 0.4407 (2) 0.0280 (6)
H9A 0.4670 0.2723 0.3982 0.034*
H9B 0.4611 0.3479 0.5026 0.034*
H9C 0.3940 0.3804 0.4166 0.034*
C10 0.3173 (3) 0.0828 (2) 0.3344 (2) 0.0282 (6)
H10A 0.3854 0.1340 0.3087 0.034*
H10B 0.2593 0.0238 0.2832 0.034*
H10C 0.3819 0.0531 0.3713 0.034*
C11 −0.0095 (3) −0.0368 (2) 0.3438 (2) 0.0270 (6)
H11A −0.0604 −0.0791 0.3834 0.032*
H11B 0.0843 −0.0655 0.3190 0.032*
H11C −0.0832 −0.0418 0.2920 0.032*
C12 −0.2441 (3) 0.0774 (2) 0.4589 (2) 0.0266 (6)
H12A −0.2956 0.0551 0.3961 0.032*
H12B −0.3039 0.1252 0.5020 0.032*
H12C −0.2402 0.0133 0.4795 0.032*
C21 −0.2956 (3) 0.3670 (2) 0.13151 (18) 0.0178 (5)
C22 −0.1436 (3) 0.43297 (19) 0.12874 (17) 0.0167 (5)
C23 −0.0186 (3) 0.38344 (19) 0.07579 (17) 0.0161 (5)
C24 −0.0481 (3) 0.2687 (2) 0.02469 (17) 0.0179 (5)
C25 −0.2022 (3) 0.2026 (2) 0.02849 (17) 0.0186 (5)
C26 −0.3243 (3) 0.2508 (2) 0.08142 (18) 0.0183 (5)
C27 −0.4253 (3) 0.4163 (2) 0.1900 (2) 0.0247 (6)
H27A −0.3818 0.4901 0.2281 0.030*
H27B −0.4642 0.3720 0.2308 0.030*
H27C −0.5123 0.4180 0.1483 0.030*
C28 −0.1085 (3) 0.5541 (2) 0.1839 (2) 0.0255 (6)
H28A −0.1997 0.5734 0.2192 0.031*
H28B −0.0872 0.5976 0.1405 0.031*
H28C −0.0162 0.5683 0.2271 0.031*
C29 0.1449 (3) 0.4543 (2) 0.07921 (19) 0.0234 (5)
H29A 0.2174 0.4095 0.0445 0.028*
H29B 0.1857 0.4862 0.1443 0.028*
H29C 0.1356 0.5120 0.0511 0.028*
C30 0.0826 (3) 0.2148 (2) −0.0284 (2) 0.0266 (6)
H30A 0.1836 0.2649 −0.0119 0.032*
H30B 0.0580 0.1964 −0.0957 0.032*
H30C 0.0895 0.1487 −0.0115 0.032*
C31 −0.2325 (3) 0.0799 (2) −0.0213 (2) 0.0283 (6)
H31A −0.2678 0.0403 0.0235 0.034*
H31B −0.1349 0.0585 −0.0472 0.034*
H31C −0.3141 0.0629 −0.0718 0.034*
C32 −0.4824 (3) 0.1789 (2) 0.0883 (2) 0.0275 (6)
H32A −0.5410 0.1538 0.0274 0.033*
H32B −0.5445 0.2209 0.1347 0.033*
H32C −0.4623 0.1163 0.1070 0.033*
Fe1 0.49209 (4) 0.77416 (3) 0.20266 (3) 0.01901 (8)
Cl4 0.52218 (8) 0.63784 (5) 0.07833 (5) 0.02709 (14)
Cl5 0.58902 (10) 0.75020 (7) 0.33345 (6) 0.03875 (18)
Cl6 0.23261 (7) 0.77493 (5) 0.21100 (5) 0.02774 (14)
Cl7 0.61347 (8) 0.93196 (5) 0.18546 (5) 0.02927 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.01313 (9) 0.01651 (10) 0.01132 (10) 0.00389 (7) 0.00058 (7) 0.00500 (7)
Ru2 0.01294 (9) 0.01399 (9) 0.01185 (10) 0.00173 (7) −0.00050 (7) 0.00489 (7)
Cl1 0.0317 (3) 0.0190 (3) 0.0137 (3) 0.0112 (2) 0.0000 (2) 0.0036 (2)
Cl3 0.0141 (3) 0.0338 (3) 0.0193 (3) 0.0068 (2) 0.0028 (2) 0.0143 (3)
Cl2 0.0202 (3) 0.0195 (3) 0.0176 (3) −0.0020 (2) −0.0041 (2) 0.0072 (2)
C1 0.0208 (12) 0.0257 (12) 0.0089 (11) 0.0062 (9) 0.0010 (9) 0.0065 (9)
C2 0.0189 (11) 0.0252 (12) 0.0102 (11) 0.0042 (9) −0.0023 (9) 0.0061 (9)
C3 0.0134 (11) 0.0278 (13) 0.0139 (12) 0.0045 (9) −0.0019 (9) 0.0096 (10)
C4 0.0175 (11) 0.0239 (12) 0.0186 (13) 0.0086 (9) −0.0015 (9) 0.0099 (10)
C5 0.0216 (12) 0.0192 (12) 0.0183 (13) 0.0055 (9) −0.0022 (10) 0.0104 (10)
C6 0.0179 (11) 0.0237 (12) 0.0143 (12) 0.0032 (9) 0.0007 (9) 0.0115 (10)
C7 0.0253 (13) 0.0303 (14) 0.0210 (14) 0.0077 (11) 0.0063 (11) 0.0074 (11)
C8 0.0288 (14) 0.0265 (13) 0.0211 (14) −0.0001 (11) −0.0018 (11) 0.0016 (11)
C9 0.0179 (12) 0.0354 (15) 0.0296 (16) 0.0017 (11) 0.0012 (11) 0.0097 (12)
C10 0.0257 (13) 0.0318 (15) 0.0306 (16) 0.0131 (11) 0.0054 (12) 0.0098 (12)
C11 0.0291 (14) 0.0227 (13) 0.0293 (15) 0.0066 (10) −0.0017 (11) 0.0069 (11)
C12 0.0212 (13) 0.0326 (14) 0.0279 (15) 0.0016 (11) 0.0035 (11) 0.0137 (12)
C21 0.0163 (11) 0.0231 (12) 0.0179 (13) 0.0059 (9) −0.0031 (9) 0.0111 (10)
C22 0.0211 (11) 0.0167 (11) 0.0161 (12) 0.0047 (9) −0.0025 (9) 0.0099 (9)
C23 0.0183 (11) 0.0203 (11) 0.0127 (12) 0.0023 (9) −0.0007 (9) 0.0102 (9)
C24 0.0217 (12) 0.0219 (12) 0.0112 (12) 0.0042 (9) 0.0002 (9) 0.0062 (9)
C25 0.0227 (12) 0.0196 (12) 0.0125 (12) 0.0014 (9) −0.0037 (9) 0.0044 (9)
C26 0.0159 (11) 0.0231 (12) 0.0163 (12) 0.0002 (9) −0.0063 (9) 0.0084 (10)
C27 0.0201 (12) 0.0295 (14) 0.0279 (15) 0.0090 (10) 0.0028 (11) 0.0107 (11)
C28 0.0290 (14) 0.0189 (12) 0.0282 (15) 0.0042 (10) 0.0005 (11) 0.0063 (11)
C29 0.0211 (12) 0.0256 (13) 0.0226 (14) −0.0012 (10) 0.0017 (10) 0.0085 (11)
C30 0.0292 (14) 0.0290 (14) 0.0218 (14) 0.0088 (11) 0.0056 (11) 0.0054 (11)
C31 0.0340 (15) 0.0187 (12) 0.0270 (15) −0.0003 (11) −0.0047 (12) 0.0018 (11)
C32 0.0206 (12) 0.0299 (14) 0.0307 (16) −0.0043 (10) −0.0035 (11) 0.0121 (12)
Fe1 0.02005 (17) 0.01886 (17) 0.01832 (19) 0.00242 (13) 0.00093 (14) 0.00633 (14)
Cl4 0.0285 (3) 0.0239 (3) 0.0266 (4) 0.0058 (2) 0.0066 (3) 0.0030 (3)
Cl5 0.0465 (4) 0.0444 (4) 0.0288 (4) 0.0040 (3) −0.0083 (3) 0.0188 (3)
Cl6 0.0224 (3) 0.0257 (3) 0.0344 (4) 0.0054 (2) 0.0061 (3) 0.0068 (3)
Cl7 0.0307 (3) 0.0235 (3) 0.0331 (4) −0.0034 (3) −0.0018 (3) 0.0121 (3)

Geometric parameters (Å, °)

Ru1—C4 2.175 (2) C10—H10C 0.9600
Ru1—C5 2.177 (2) C11—H11A 0.9600
Ru1—C6 2.177 (2) C11—H11B 0.9600
Ru1—C3 2.178 (2) C11—H11C 0.9600
Ru1—C2 2.180 (2) C12—H12A 0.9600
Ru1—C1 2.181 (2) C12—H12B 0.9600
Ru1—Cl3 2.4354 (6) C12—H12C 0.9600
Ru1—Cl1 2.4393 (6) C21—C22 1.420 (3)
Ru1—Cl2 2.4498 (6) C21—C26 1.440 (3)
Ru2—C25 2.170 (2) C21—C27 1.509 (3)
Ru2—C23 2.171 (2) C22—C23 1.443 (3)
Ru2—C26 2.175 (2) C22—C28 1.511 (3)
Ru2—C24 2.181 (2) C23—C24 1.427 (3)
Ru2—C22 2.188 (2) C23—C29 1.511 (3)
Ru2—C21 2.192 (2) C24—C25 1.439 (3)
Ru2—Cl3 2.4374 (6) C24—C30 1.507 (3)
Ru2—Cl1 2.4425 (6) C25—C26 1.416 (4)
Ru2—Cl2 2.4616 (6) C25—C31 1.512 (3)
C1—C2 1.416 (3) C26—C32 1.511 (3)
C1—C6 1.446 (3) C27—H27A 0.9600
C1—C7 1.507 (3) C27—H27B 0.9600
C2—C3 1.441 (3) C27—H27C 0.9600
C2—C8 1.513 (3) C28—H28A 0.9600
C3—C4 1.415 (3) C28—H28B 0.9600
C3—C9 1.513 (3) C28—H28C 0.9600
C4—C5 1.448 (3) C29—H29A 0.9600
C4—C10 1.513 (4) C29—H29B 0.9600
C5—C6 1.421 (3) C29—H29C 0.9600
C5—C11 1.506 (3) C30—H30A 0.9600
C6—C12 1.515 (3) C30—H30B 0.9600
C7—H7A 0.9600 C30—H30C 0.9600
C7—H7B 0.9600 C31—H31A 0.9600
C7—H7C 0.9600 C31—H31B 0.9600
C8—H8A 0.9600 C31—H31C 0.9600
C8—H8B 0.9600 C32—H32A 0.9600
C8—H8C 0.9600 C32—H32B 0.9600
C9—H9A 0.9600 C32—H32C 0.9600
C9—H9B 0.9600 Fe1—Cl4 2.1891 (7)
C9—H9C 0.9600 Fe1—Cl7 2.1925 (7)
C10—H10A 0.9600 Fe1—Cl6 2.1982 (7)
C10—H10B 0.9600 Fe1—Cl5 2.2018 (8)
C4—Ru1—C5 38.86 (9) H7A—C7—H7B 109.5
C4—Ru1—C6 69.45 (9) C1—C7—H7C 109.5
C5—Ru1—C6 38.09 (9) H7A—C7—H7C 109.5
C4—Ru1—C3 37.96 (9) H7B—C7—H7C 109.5
C5—Ru1—C3 69.40 (9) C2—C8—H8A 109.5
C6—Ru1—C3 81.96 (9) C2—C8—H8B 109.5
C4—Ru1—C2 69.41 (9) H8A—C8—H8B 109.5
C5—Ru1—C2 82.33 (9) C2—C8—H8C 109.5
C6—Ru1—C2 69.31 (9) H8A—C8—H8C 109.5
C3—Ru1—C2 38.63 (9) H8B—C8—H8C 109.5
C4—Ru1—C1 82.20 (9) C3—C9—H9A 109.5
C5—Ru1—C1 69.55 (9) C3—C9—H9B 109.5
C6—Ru1—C1 38.75 (9) H9A—C9—H9B 109.5
C3—Ru1—C1 69.14 (9) C3—C9—H9C 109.5
C2—Ru1—C1 37.89 (9) H9A—C9—H9C 109.5
C4—Ru1—Cl3 158.47 (7) H9B—C9—H9C 109.5
C5—Ru1—Cl3 120.10 (7) C4—C10—H10A 109.5
C6—Ru1—Cl3 94.48 (6) C4—C10—H10B 109.5
C3—Ru1—Cl3 157.47 (7) H10A—C10—H10B 109.5
C2—Ru1—Cl3 119.41 (7) C4—C10—H10C 109.5
C1—Ru1—Cl3 94.18 (6) H10A—C10—H10C 109.5
C4—Ru1—Cl1 94.63 (7) H10B—C10—H10C 109.5
C5—Ru1—Cl1 94.10 (7) C5—C11—H11A 109.5
C6—Ru1—Cl1 119.50 (7) C5—C11—H11B 109.5
C3—Ru1—Cl1 120.52 (7) H11A—C11—H11B 109.5
C2—Ru1—Cl1 158.63 (7) C5—C11—H11C 109.5
C1—Ru1—Cl1 157.61 (7) H11A—C11—H11C 109.5
Cl3—Ru1—Cl1 80.63 (2) H11B—C11—H11C 109.5
C4—Ru1—Cl2 119.53 (7) C6—C12—H12A 109.5
C5—Ru1—Cl2 157.44 (7) C6—C12—H12B 109.5
C6—Ru1—Cl2 159.55 (7) H12A—C12—H12B 109.5
C3—Ru1—Cl2 95.09 (6) C6—C12—H12C 109.5
C2—Ru1—Cl2 95.77 (7) H12A—C12—H12C 109.5
C1—Ru1—Cl2 121.39 (7) H12B—C12—H12C 109.5
Cl3—Ru1—Cl2 80.48 (2) C22—C21—C26 119.8 (2)
Cl1—Ru1—Cl2 79.48 (2) C22—C21—C27 120.8 (2)
C25—Ru2—C23 69.46 (9) C26—C21—C27 119.4 (2)
C25—Ru2—C26 38.05 (9) C22—C21—Ru2 70.92 (13)
C23—Ru2—C26 82.24 (9) C26—C21—Ru2 70.08 (13)
C25—Ru2—C24 38.62 (9) C27—C21—Ru2 129.35 (17)
C23—Ru2—C24 38.27 (9) C21—C22—C23 120.0 (2)
C26—Ru2—C24 69.40 (9) C21—C22—C28 120.7 (2)
C25—Ru2—C22 81.91 (9) C23—C22—C28 119.2 (2)
C23—Ru2—C22 38.67 (9) C21—C22—Ru2 71.24 (13)
C26—Ru2—C22 69.11 (9) C23—C22—Ru2 70.00 (12)
C24—Ru2—C22 69.42 (9) C28—C22—Ru2 129.46 (17)
C25—Ru2—C21 69.14 (9) C24—C23—C22 120.2 (2)
C23—Ru2—C21 69.28 (9) C24—C23—C29 121.1 (2)
C26—Ru2—C21 38.50 (9) C22—C23—C29 118.7 (2)
C24—Ru2—C21 82.06 (9) C24—C23—Ru2 71.26 (13)
C22—Ru2—C21 37.84 (9) C22—C23—Ru2 71.32 (13)
C25—Ru2—Cl3 122.69 (7) C29—C23—Ru2 127.77 (17)
C23—Ru2—Cl3 154.96 (7) C23—C24—C25 119.3 (2)
C26—Ru2—Cl3 95.76 (7) C23—C24—C30 120.9 (2)
C24—Ru2—Cl3 161.03 (6) C25—C24—C30 119.7 (2)
C22—Ru2—Cl3 117.41 (7) C23—C24—Ru2 70.46 (13)
C21—Ru2—Cl3 93.62 (7) C25—C24—Ru2 70.27 (14)
C25—Ru2—Cl1 93.22 (7) C30—C24—Ru2 128.70 (18)
C23—Ru2—Cl1 122.67 (7) C26—C25—C24 120.6 (2)
C26—Ru2—Cl1 117.14 (7) C26—C25—C31 119.5 (2)
C24—Ru2—Cl1 95.47 (6) C24—C25—C31 119.9 (2)
C22—Ru2—Cl1 161.18 (7) C26—C25—Ru2 71.15 (13)
C21—Ru2—Cl1 154.69 (7) C24—C25—Ru2 71.11 (13)
Cl3—Ru2—Cl1 80.53 (2) C31—C25—Ru2 128.74 (18)
C25—Ru2—Cl2 154.68 (7) C25—C26—C21 120.1 (2)
C23—Ru2—Cl2 94.21 (6) C25—C26—C32 119.7 (2)
C26—Ru2—Cl2 162.53 (7) C21—C26—C32 120.1 (2)
C24—Ru2—Cl2 117.47 (6) C25—C26—Ru2 70.80 (13)
C22—Ru2—Cl2 97.49 (6) C21—C26—Ru2 71.42 (13)
C21—Ru2—Cl2 124.36 (7) C32—C26—Ru2 128.38 (18)
Cl3—Ru2—Cl2 80.21 (2) C21—C27—H27A 109.5
Cl1—Ru2—Cl2 79.19 (2) C21—C27—H27B 109.5
Ru1—Cl1—Ru2 84.181 (19) H27A—C27—H27B 109.5
Ru1—Cl3—Ru2 84.372 (19) C21—C27—H27C 109.5
Ru1—Cl2—Ru2 83.559 (18) H27A—C27—H27C 109.5
C2—C1—C6 119.9 (2) H27B—C27—H27C 109.5
C2—C1—C7 121.2 (2) C22—C28—H28A 109.5
C6—C1—C7 118.8 (2) C22—C28—H28B 109.5
C2—C1—Ru1 71.00 (14) H28A—C28—H28B 109.5
C6—C1—Ru1 70.48 (13) C22—C28—H28C 109.5
C7—C1—Ru1 128.64 (17) H28A—C28—H28C 109.5
C1—C2—C3 119.9 (2) H28B—C28—H28C 109.5
C1—C2—C8 121.6 (2) C23—C29—H29A 109.5
C3—C2—C8 118.4 (2) C23—C29—H29B 109.5
C1—C2—Ru1 71.11 (13) H29A—C29—H29B 109.5
C3—C2—Ru1 70.61 (13) C23—C29—H29C 109.5
C8—C2—Ru1 128.84 (17) H29A—C29—H29C 109.5
C4—C3—C2 120.4 (2) H29B—C29—H29C 109.5
C4—C3—C9 120.6 (2) C24—C30—H30A 109.5
C2—C3—C9 118.9 (2) C24—C30—H30B 109.5
C4—C3—Ru1 70.90 (13) H30A—C30—H30B 109.5
C2—C3—Ru1 70.76 (13) C24—C30—H30C 109.5
C9—C3—Ru1 128.73 (18) H30A—C30—H30C 109.5
C3—C4—C5 120.0 (2) H30B—C30—H30C 109.5
C3—C4—C10 120.7 (2) C25—C31—H31A 109.5
C5—C4—C10 119.3 (2) C25—C31—H31B 109.5
C3—C4—Ru1 71.15 (13) H31A—C31—H31B 109.5
C5—C4—Ru1 70.65 (13) C25—C31—H31C 109.5
C10—C4—Ru1 128.39 (18) H31A—C31—H31C 109.5
C6—C5—C4 119.6 (2) H31B—C31—H31C 109.5
C6—C5—C11 120.1 (2) C26—C32—H32A 109.5
C4—C5—C11 120.2 (2) C26—C32—H32B 109.5
C6—C5—Ru1 70.98 (13) H32A—C32—H32B 109.5
C4—C5—Ru1 70.49 (13) C26—C32—H32C 109.5
C11—C5—Ru1 127.97 (18) H32A—C32—H32C 109.5
C5—C6—C1 120.2 (2) H32B—C32—H32C 109.5
C5—C6—C12 119.7 (2) Cl4—Fe1—Cl7 110.26 (3)
C1—C6—C12 120.1 (2) Cl4—Fe1—Cl6 107.10 (3)
C5—C6—Ru1 70.93 (13) Cl7—Fe1—Cl6 109.15 (3)
C1—C6—Ru1 70.77 (13) Cl4—Fe1—Cl5 110.56 (3)
C12—C6—Ru1 128.84 (17) Cl7—Fe1—Cl5 109.87 (3)
C1—C7—H7A 109.5 Cl6—Fe1—Cl5 109.85 (3)
C1—C7—H7B 109.5
C4—Ru1—Cl1—Ru2 −161.28 (7) C2—C1—C6—Ru1 −52.9 (2)
C5—Ru1—Cl1—Ru2 159.74 (7) C7—C1—C6—Ru1 124.1 (2)
C6—Ru1—Cl1—Ru2 129.75 (7) C4—Ru1—C6—C5 −29.58 (14)
C3—Ru1—Cl1—Ru2 −131.80 (7) C3—Ru1—C6—C5 −66.69 (14)
C2—Ru1—Cl1—Ru2 −120.87 (18) C2—Ru1—C6—C5 −104.51 (15)
C1—Ru1—Cl1—Ru2 117.96 (17) C1—Ru1—C6—C5 −133.2 (2)
Cl3—Ru1—Cl1—Ru2 39.886 (19) Cl3—Ru1—C6—C5 135.69 (13)
Cl2—Ru1—Cl1—Ru2 −42.073 (19) Cl1—Ru1—C6—C5 53.93 (15)
C25—Ru2—Cl1—Ru1 −162.48 (7) Cl2—Ru1—C6—C5 −149.66 (15)
C23—Ru2—Cl1—Ru1 129.94 (7) C4—Ru1—C6—C1 103.63 (15)
C26—Ru2—Cl1—Ru1 −131.52 (8) C5—Ru1—C6—C1 133.2 (2)
C24—Ru2—Cl1—Ru1 158.85 (6) C3—Ru1—C6—C1 66.51 (14)
C22—Ru2—Cl1—Ru1 123.3 (2) C2—Ru1—C6—C1 28.70 (13)
C21—Ru2—Cl1—Ru1 −118.16 (16) Cl3—Ru1—C6—C1 −91.10 (13)
Cl3—Ru2—Cl1—Ru1 −39.863 (19) Cl1—Ru1—C6—C1 −172.86 (11)
Cl2—Ru2—Cl1—Ru1 41.875 (19) Cl2—Ru1—C6—C1 −16.5 (3)
C4—Ru1—Cl3—Ru2 −118.72 (19) C4—Ru1—C6—C12 −142.8 (3)
C5—Ru1—Cl3—Ru2 −129.29 (8) C5—Ru1—C6—C12 −113.2 (3)
C6—Ru1—Cl3—Ru2 −159.16 (7) C3—Ru1—C6—C12 −179.9 (2)
C3—Ru1—Cl3—Ru2 121.07 (17) C2—Ru1—C6—C12 142.3 (2)
C2—Ru1—Cl3—Ru2 132.10 (7) C1—Ru1—C6—C12 113.6 (3)
C1—Ru1—Cl3—Ru2 161.98 (7) Cl3—Ru1—C6—C12 22.5 (2)
Cl1—Ru1—Cl3—Ru2 −39.971 (19) Cl1—Ru1—C6—C12 −59.3 (2)
Cl2—Ru1—Cl3—Ru2 40.820 (19) Cl2—Ru1—C6—C12 97.1 (3)
C25—Ru2—Cl3—Ru1 127.66 (8) C25—Ru2—C21—C22 −104.19 (16)
C23—Ru2—Cl3—Ru1 −119.47 (15) C23—Ru2—C21—C22 −29.11 (14)
C26—Ru2—Cl3—Ru1 156.54 (7) C26—Ru2—C21—C22 −133.2 (2)
C24—Ru2—Cl3—Ru1 119.1 (2) C24—Ru2—C21—C22 −66.48 (15)
C22—Ru2—Cl3—Ru1 −134.03 (7) Cl3—Ru2—C21—C22 132.09 (14)
C21—Ru2—Cl3—Ru1 −164.88 (7) Cl1—Ru2—C21—C22 −152.49 (13)
Cl1—Ru2—Cl3—Ru1 39.923 (19) Cl2—Ru2—C21—C22 51.49 (16)
Cl2—Ru2—Cl3—Ru1 −40.624 (19) C25—Ru2—C21—C26 29.01 (14)
C4—Ru1—Cl2—Ru2 131.11 (8) C23—Ru2—C21—C26 104.09 (16)
C5—Ru1—Cl2—Ru2 116.80 (17) C24—Ru2—C21—C26 66.72 (15)
C6—Ru1—Cl2—Ru2 −117.51 (18) C22—Ru2—C21—C26 133.2 (2)
C3—Ru1—Cl2—Ru2 161.87 (7) Cl3—Ru2—C21—C26 −94.71 (13)
C2—Ru1—Cl2—Ru2 −159.32 (6) Cl1—Ru2—C21—C26 −19.3 (2)
C1—Ru1—Cl2—Ru2 −129.50 (7) Cl2—Ru2—C21—C26 −175.31 (11)
Cl3—Ru1—Cl2—Ru2 −40.409 (19) C25—Ru2—C21—C27 141.2 (2)
Cl1—Ru1—Cl2—Ru2 41.733 (19) C23—Ru2—C21—C27 −143.7 (2)
C25—Ru2—Cl2—Ru1 −116.04 (15) C26—Ru2—C21—C27 112.2 (3)
C23—Ru2—Cl2—Ru1 −164.20 (7) C24—Ru2—C21—C27 178.9 (2)
C26—Ru2—Cl2—Ru1 118.3 (2) C22—Ru2—C21—C27 −114.6 (3)
C24—Ru2—Cl2—Ru1 −132.30 (7) Cl3—Ru2—C21—C27 17.5 (2)
C22—Ru2—Cl2—Ru1 157.05 (7) Cl1—Ru2—C21—C27 92.9 (3)
C21—Ru2—Cl2—Ru1 128.10 (8) Cl2—Ru2—C21—C27 −63.1 (2)
Cl3—Ru2—Cl2—Ru1 40.409 (19) C26—C21—C22—C23 0.0 (3)
Cl1—Ru2—Cl2—Ru1 −41.716 (19) C27—C21—C22—C23 177.3 (2)
C4—Ru1—C1—C2 66.29 (14) Ru2—C21—C22—C23 52.19 (19)
C5—Ru1—C1—C2 104.32 (15) C26—C21—C22—C28 −177.5 (2)
C6—Ru1—C1—C2 133.0 (2) C27—C21—C22—C28 −0.3 (3)
C3—Ru1—C1—C2 29.37 (14) Ru2—C21—C22—C28 −125.4 (2)
Cl3—Ru1—C1—C2 −135.05 (13) C26—C21—C22—Ru2 −52.16 (19)
Cl1—Ru1—C1—C2 149.49 (14) C27—C21—C22—Ru2 125.1 (2)
Cl2—Ru1—C1—C2 −53.67 (15) C25—Ru2—C22—C21 66.21 (15)
C4—Ru1—C1—C6 −66.71 (14) C23—Ru2—C22—C21 133.3 (2)
C5—Ru1—C1—C6 −28.68 (13) C26—Ru2—C22—C21 29.06 (14)
C3—Ru1—C1—C6 −103.63 (15) C24—Ru2—C22—C21 104.06 (16)
C2—Ru1—C1—C6 −133.0 (2) Cl3—Ru2—C22—C21 −56.53 (15)
Cl3—Ru1—C1—C6 91.95 (13) Cl1—Ru2—C22—C21 142.25 (17)
Cl1—Ru1—C1—C6 16.5 (2) Cl2—Ru2—C22—C21 −139.35 (13)
Cl2—Ru1—C1—C6 173.34 (11) C25—Ru2—C22—C23 −67.07 (14)
C4—Ru1—C1—C7 −178.5 (2) C26—Ru2—C22—C23 −104.21 (15)
C5—Ru1—C1—C7 −140.5 (2) C24—Ru2—C22—C23 −29.21 (13)
C6—Ru1—C1—C7 −111.8 (3) C21—Ru2—C22—C23 −133.3 (2)
C3—Ru1—C1—C7 144.6 (2) Cl3—Ru2—C22—C23 170.19 (11)
C2—Ru1—C1—C7 115.2 (3) Cl1—Ru2—C22—C23 9.0 (3)
Cl3—Ru1—C1—C7 −19.9 (2) Cl2—Ru2—C22—C23 87.38 (13)
Cl1—Ru1—C1—C7 −95.3 (3) C25—Ru2—C22—C28 −179.0 (2)
Cl2—Ru1—C1—C7 61.5 (2) C23—Ru2—C22—C28 −111.9 (3)
C6—C1—C2—C3 −0.3 (3) C26—Ru2—C22—C28 143.9 (2)
C7—C1—C2—C3 −177.3 (2) C24—Ru2—C22—C28 −141.1 (2)
Ru1—C1—C2—C3 −53.0 (2) C21—Ru2—C22—C28 114.8 (3)
C6—C1—C2—C8 177.3 (2) Cl3—Ru2—C22—C28 58.3 (2)
C7—C1—C2—C8 0.3 (4) Cl1—Ru2—C22—C28 −103.0 (3)
Ru1—C1—C2—C8 124.6 (2) Cl2—Ru2—C22—C28 −24.5 (2)
C6—C1—C2—Ru1 52.7 (2) C21—C22—C23—C24 1.2 (3)
C7—C1—C2—Ru1 −124.3 (2) C28—C22—C23—C24 178.8 (2)
C4—Ru1—C2—C1 −104.29 (15) Ru2—C22—C23—C24 53.92 (19)
C5—Ru1—C2—C1 −66.36 (15) C21—C22—C23—C29 −176.3 (2)
C6—Ru1—C2—C1 −29.30 (14) C28—C22—C23—C29 1.3 (3)
C3—Ru1—C2—C1 −132.8 (2) Ru2—C22—C23—C29 −123.5 (2)
Cl3—Ru1—C2—C1 53.98 (15) C21—C22—C23—Ru2 −52.75 (19)
Cl1—Ru1—C2—C1 −147.94 (15) C28—C22—C23—Ru2 124.8 (2)
Cl2—Ru1—C2—C1 136.28 (13) C25—Ru2—C23—C24 −29.30 (14)
C4—Ru1—C2—C3 28.48 (14) C26—Ru2—C23—C24 −66.40 (14)
C5—Ru1—C2—C3 66.42 (14) C22—Ru2—C23—C24 −132.5 (2)
C6—Ru1—C2—C3 103.47 (15) C21—Ru2—C23—C24 −103.94 (15)
C1—Ru1—C2—C3 132.8 (2) Cl3—Ru2—C23—C24 −153.40 (13)
Cl3—Ru1—C2—C3 −173.25 (11) Cl1—Ru2—C23—C24 50.96 (15)
Cl1—Ru1—C2—C3 −15.2 (3) Cl2—Ru2—C23—C24 130.80 (13)
Cl2—Ru1—C2—C3 −90.95 (13) C25—Ru2—C23—C22 103.17 (15)
C4—Ru1—C2—C8 139.9 (2) C26—Ru2—C23—C22 66.07 (14)
C5—Ru1—C2—C8 177.8 (2) C24—Ru2—C23—C22 132.5 (2)
C6—Ru1—C2—C8 −145.1 (2) C21—Ru2—C23—C22 28.52 (13)
C3—Ru1—C2—C8 111.4 (3) Cl3—Ru2—C23—C22 −20.9 (2)
C1—Ru1—C2—C8 −115.8 (3) Cl1—Ru2—C23—C22 −176.57 (11)
Cl3—Ru1—C2—C8 −61.9 (2) Cl2—Ru2—C23—C22 −96.73 (13)
Cl1—Ru1—C2—C8 96.2 (3) C25—Ru2—C23—C29 −144.6 (2)
Cl2—Ru1—C2—C8 20.4 (2) C26—Ru2—C23—C29 178.4 (2)
C1—C2—C3—C4 0.6 (3) C24—Ru2—C23—C29 −115.2 (3)
C8—C2—C3—C4 −177.1 (2) C22—Ru2—C23—C29 112.3 (3)
Ru1—C2—C3—C4 −52.7 (2) C21—Ru2—C23—C29 140.8 (2)
C1—C2—C3—C9 177.6 (2) Cl3—Ru2—C23—C29 91.4 (2)
C8—C2—C3—C9 −0.1 (3) Cl1—Ru2—C23—C29 −64.3 (2)
Ru1—C2—C3—C9 124.3 (2) Cl2—Ru2—C23—C29 15.6 (2)
C1—C2—C3—Ru1 53.2 (2) C22—C23—C24—C25 −1.5 (3)
C8—C2—C3—Ru1 −124.4 (2) C29—C23—C24—C25 175.8 (2)
C5—Ru1—C3—C4 29.47 (14) Ru2—C23—C24—C25 52.4 (2)
C6—Ru1—C3—C4 66.72 (15) C22—C23—C24—C30 −178.1 (2)
C2—Ru1—C3—C4 133.5 (2) C29—C23—C24—C30 −0.7 (4)
C1—Ru1—C3—C4 104.62 (16) Ru2—C23—C24—C30 −124.1 (2)
Cl3—Ru1—C3—C4 148.97 (15) C22—C23—C24—Ru2 −53.94 (19)
Cl1—Ru1—C3—C4 −52.89 (15) C29—C23—C24—Ru2 123.4 (2)
Cl2—Ru1—C3—C4 −133.66 (13) C25—Ru2—C24—C23 132.8 (2)
C4—Ru1—C3—C2 −133.5 (2) C26—Ru2—C24—C23 104.08 (15)
C5—Ru1—C3—C2 −104.00 (15) C22—Ru2—C24—C23 29.50 (13)
C6—Ru1—C3—C2 −66.75 (14) C21—Ru2—C24—C23 66.43 (14)
C1—Ru1—C3—C2 −28.85 (14) Cl3—Ru2—C24—C23 144.33 (17)
Cl3—Ru1—C3—C2 15.5 (3) Cl1—Ru2—C24—C23 −138.95 (12)
Cl1—Ru1—C3—C2 173.64 (11) Cl2—Ru2—C24—C23 −58.30 (14)
Cl2—Ru1—C3—C2 92.87 (13) C23—Ru2—C24—C25 −132.8 (2)
C4—Ru1—C3—C9 114.4 (3) C26—Ru2—C24—C25 −28.67 (14)
C5—Ru1—C3—C9 143.9 (3) C22—Ru2—C24—C25 −103.26 (15)
C6—Ru1—C3—C9 −178.9 (2) C21—Ru2—C24—C25 −66.33 (14)
C2—Ru1—C3—C9 −112.1 (3) Cl3—Ru2—C24—C25 11.6 (3)
C1—Ru1—C3—C9 −141.0 (3) Cl1—Ru2—C24—C25 88.30 (13)
Cl3—Ru1—C3—C9 −96.6 (3) Cl2—Ru2—C24—C25 168.94 (11)
Cl1—Ru1—C3—C9 61.5 (2) C25—Ru2—C24—C30 −112.8 (3)
Cl2—Ru1—C3—C9 −19.2 (2) C23—Ru2—C24—C30 114.5 (3)
C2—C3—C4—C5 −0.5 (3) C26—Ru2—C24—C30 −141.4 (2)
C9—C3—C4—C5 −177.4 (2) C22—Ru2—C24—C30 144.0 (2)
Ru1—C3—C4—C5 −53.1 (2) C21—Ru2—C24—C30 −179.1 (2)
C2—C3—C4—C10 176.7 (2) Cl3—Ru2—C24—C30 −101.2 (3)
C9—C3—C4—C10 −0.3 (4) Cl1—Ru2—C24—C30 −24.5 (2)
Ru1—C3—C4—C10 124.1 (2) Cl2—Ru2—C24—C30 56.2 (2)
C2—C3—C4—Ru1 52.6 (2) C23—C24—C25—C26 0.7 (3)
C9—C3—C4—Ru1 −124.4 (2) C30—C24—C25—C26 177.3 (2)
C5—Ru1—C4—C3 −132.8 (2) Ru2—C24—C25—C26 53.2 (2)
C6—Ru1—C4—C3 −103.75 (16) C23—C24—C25—C31 −177.0 (2)
C2—Ru1—C4—C3 −28.95 (14) C30—C24—C25—C31 −0.4 (4)
C1—Ru1—C4—C3 −65.87 (15) Ru2—C24—C25—C31 −124.5 (2)
Cl3—Ru1—C4—C3 −147.43 (16) C23—C24—C25—Ru2 −52.5 (2)
Cl1—Ru1—C4—C3 136.43 (13) C30—C24—C25—Ru2 124.1 (2)
Cl2—Ru1—C4—C3 55.91 (15) C23—Ru2—C25—C26 −104.17 (15)
C6—Ru1—C4—C5 29.03 (14) C24—Ru2—C25—C26 −133.2 (2)
C3—Ru1—C4—C5 132.8 (2) C22—Ru2—C25—C26 −66.25 (14)
C2—Ru1—C4—C5 103.83 (16) C21—Ru2—C25—C26 −29.33 (14)
C1—Ru1—C4—C5 66.91 (15) Cl3—Ru2—C25—C26 51.22 (15)
Cl3—Ru1—C4—C5 −14.7 (3) Cl1—Ru2—C25—C26 132.03 (13)
Cl1—Ru1—C4—C5 −90.79 (14) Cl2—Ru2—C25—C26 −156.68 (13)
Cl2—Ru1—C4—C5 −171.31 (12) C23—Ru2—C25—C24 29.06 (13)
C5—Ru1—C4—C10 112.5 (3) C26—Ru2—C25—C24 133.2 (2)
C6—Ru1—C4—C10 141.6 (2) C22—Ru2—C25—C24 66.98 (14)
C3—Ru1—C4—C10 −114.7 (3) C21—Ru2—C25—C24 103.90 (15)
C2—Ru1—C4—C10 −143.6 (2) Cl3—Ru2—C25—C24 −175.55 (11)
C1—Ru1—C4—C10 179.5 (2) Cl1—Ru2—C25—C24 −94.75 (13)
Cl3—Ru1—C4—C10 97.9 (3) Cl2—Ru2—C25—C24 −23.4 (2)
Cl1—Ru1—C4—C10 21.8 (2) C23—Ru2—C25—C31 142.7 (2)
Cl2—Ru1—C4—C10 −58.8 (2) C26—Ru2—C25—C31 −113.1 (3)
C3—C4—C5—C6 0.1 (3) C24—Ru2—C25—C31 113.7 (3)
C10—C4—C5—C6 −177.1 (2) C22—Ru2—C25—C31 −179.4 (2)
Ru1—C4—C5—C6 −53.21 (19) C21—Ru2—C25—C31 −142.4 (2)
C3—C4—C5—C11 176.6 (2) Cl3—Ru2—C25—C31 −61.9 (2)
C10—C4—C5—C11 −0.6 (3) Cl1—Ru2—C25—C31 18.9 (2)
Ru1—C4—C5—C11 123.3 (2) Cl2—Ru2—C25—C31 90.2 (3)
C3—C4—C5—Ru1 53.3 (2) C24—C25—C26—C21 0.5 (3)
C10—C4—C5—Ru1 −123.9 (2) C31—C25—C26—C21 178.2 (2)
C4—Ru1—C5—C6 132.6 (2) Ru2—C25—C26—C21 53.7 (2)
C3—Ru1—C5—C6 103.72 (15) C24—C25—C26—C32 −177.1 (2)
C2—Ru1—C5—C6 66.04 (14) C31—C25—C26—C32 0.6 (3)
C1—Ru1—C5—C6 29.14 (14) Ru2—C25—C26—C32 −123.9 (2)
Cl3—Ru1—C5—C6 −53.60 (15) C24—C25—C26—Ru2 −53.2 (2)
Cl1—Ru1—C5—C6 −135.14 (13) C31—C25—C26—Ru2 124.5 (2)
Cl2—Ru1—C5—C6 152.61 (15) C22—C21—C26—C25 −0.8 (3)
C6—Ru1—C5—C4 −132.6 (2) C27—C21—C26—C25 −178.1 (2)
C3—Ru1—C5—C4 −28.83 (14) Ru2—C21—C26—C25 −53.4 (2)
C2—Ru1—C5—C4 −66.51 (15) C22—C21—C26—C32 176.8 (2)
C1—Ru1—C5—C4 −103.42 (16) C27—C21—C26—C32 −0.5 (3)
Cl3—Ru1—C5—C4 173.84 (12) Ru2—C21—C26—C32 124.2 (2)
Cl1—Ru1—C5—C4 92.30 (14) C22—C21—C26—Ru2 52.55 (19)
Cl2—Ru1—C5—C4 20.0 (3) C27—C21—C26—Ru2 −124.7 (2)
C4—Ru1—C5—C11 −113.6 (3) C23—Ru2—C26—C25 66.39 (15)
C6—Ru1—C5—C11 113.8 (3) C24—Ru2—C26—C25 29.07 (14)
C3—Ru1—C5—C11 −142.5 (2) C22—Ru2—C26—C25 104.08 (15)
C2—Ru1—C5—C11 179.8 (2) C21—Ru2—C26—C25 132.7 (2)
C1—Ru1—C5—C11 142.9 (2) Cl3—Ru2—C26—C25 −138.75 (13)
Cl3—Ru1—C5—C11 60.2 (2) Cl1—Ru2—C26—C25 −56.45 (15)
Cl1—Ru1—C5—C11 −21.3 (2) Cl2—Ru2—C26—C25 145.66 (19)
Cl2—Ru1—C5—C11 −93.6 (3) C25—Ru2—C26—C21 −132.7 (2)
C4—C5—C6—C1 0.2 (3) C23—Ru2—C26—C21 −66.28 (15)
C11—C5—C6—C1 −176.3 (2) C24—Ru2—C26—C21 −103.61 (15)
Ru1—C5—C6—C1 −52.80 (19) C22—Ru2—C26—C21 −28.60 (14)
C4—C5—C6—C12 177.5 (2) Cl3—Ru2—C26—C21 88.57 (13)
C11—C5—C6—C12 1.0 (3) Cl1—Ru2—C26—C21 170.87 (12)
Ru1—C5—C6—C12 124.5 (2) Cl2—Ru2—C26—C21 13.0 (3)
C4—C5—C6—Ru1 52.98 (19) C25—Ru2—C26—C32 113.2 (3)
C11—C5—C6—Ru1 −123.5 (2) C23—Ru2—C26—C32 179.6 (2)
C2—C1—C6—C5 −0.1 (3) C24—Ru2—C26—C32 142.2 (3)
C7—C1—C6—C5 177.0 (2) C22—Ru2—C26—C32 −142.8 (3)
Ru1—C1—C6—C5 52.9 (2) C21—Ru2—C26—C32 −114.2 (3)
C2—C1—C6—C12 −177.4 (2) Cl3—Ru2—C26—C32 −25.6 (2)
C7—C1—C6—C12 −0.3 (3) Cl1—Ru2—C26—C32 56.7 (2)
Ru1—C1—C6—C12 −124.4 (2) Cl2—Ru2—C26—C32 −101.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9A···Cl3i 0.96 2.80 3.629 (3) 145
C11—H11B···Cl6ii 0.96 2.71 3.588 (3) 153

Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2311).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brand, J. C. D. & Snedden, W. (1957). Trans. Faraday Soc. 53, 894–900.
  3. Jin, Z.-M., Li, Z.-G., Li, L., Li, M.-C. & Hu, M.-L. (2005). Acta Cryst. E61, m2466–m2468.
  4. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  6. Pandey, D. S., Sahay, A. N., Sisodia, O. S., Jha, N. K., Sharma, P., Klaus, H. E. & Cabrera, A. (1999). J. Organomet. Chem. 592, 278–282.
  7. Redwine, K. D., Hansen, H. D., Bowley, S., Isbell, J., Sanchnez, M., Vodak, D. & Nelson, J. H. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 379–407.
  8. Schulz, J., Císařová, I. & Štěpnička, P. (2009). J. Organomet. Chem. 694, 2519–2530.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tocher, D. A. & Walkinshaw, M. D. (1982). Acta Cryst. B38, 3083–3085.
  12. Wyrzykowski, D., Sikorski, A., Konitz, A. & Warnke, Z. (2006). Acta Cryst. E62, m3562–m3564.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103621X/su2311sup1.cif

e-67-m1363-sup1.cif (41.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103621X/su2311Isup2.hkl

e-67-m1363-Isup2.hkl (337.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES