Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2664. doi: 10.1107/S1600536811037044

1-(6,8-Dibromo-2-methyl­quinolin-3-yl)ethanone

R Prasath a, P Bhavana a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3201233  PMID: 22058780

Abstract

Two independent mol­ecules,1 and 2, with similar conformations comprise the asymmetric unit in the title compound, C12H9Br2NO. The major difference between the mol­ecules relates to the relative orientation of the ketone–methyl groups [the C—C—C—C torsion angles are −1.7 (6) and −16.8 (6)° for mol­ecules 1 and 2, respectively]; in each case, the ketone O atom is directed towards the ring-bound methyl group. The crystal packing comprises layers of mol­ecules, sustained by C—H⋯O and π–π {ring centroid(C6) of molecule 2 with NC5 of molecule 1 [3.584 (3) Å] and NC5 of molecule 2 [3.615 (3) Å]} interactions. C—H⋯Br contacts also occur.

Related literature

For background details and the biological applications of quinolines, see: Kalluraya & Sreenivasa (1998); Xiang et al. (2006). For a related structure, see: Prasath et al. (2011). For additional structure analysis, see: Spek (2009).graphic file with name e-67-o2664-scheme1.jpg

Experimental

Crystal data

  • C12H9Br2NO

  • M r = 343.02

  • Triclinic, Inline graphic

  • a = 9.7549 (5) Å

  • b = 11.1719 (6) Å

  • c = 11.5629 (5) Å

  • α = 99.043 (4)°

  • β = 93.330 (4)°

  • γ = 111.733 (5)°

  • V = 1146.69 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 8.78 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.218, T max = 0.353

  • 6906 measured reflections

  • 4462 independent reflections

  • 4281 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.139

  • S = 1.11

  • 4462 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 1.60 e Å−3

  • Δρmin = −1.38 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037044/hb6406sup1.cif

e-67-o2664-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037044/hb6406Isup2.hkl

e-67-o2664-Isup2.hkl (218.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037044/hb6406Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.95 2.56 3.453 (7) 157
C15—H15⋯Br4ii 0.95 2.89 3.796 (5) 160
C19—H19⋯O1iii 0.95 2.60 3.462 (6) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors also thank the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

Quinoline derivatives continue to attract wide interest owing to their occurrence in natural products and for their biological activity (Kalluraya & Sreenivasa, 1998; Xiang et al., 2006). In continuation of structural research in this area (Prasath et al., 2011), the title compound, (I), was investigated.

Two independent molecules comprise the crystallographic asymmetric of (I), Fig. 1. The molecules are virtually super-imposable as seen in Fig. 2. The r.m.s. deviations for the bond distances and angles are 0.0088 Å and 0.507 °, respectively (Spek, 2009). The major differences between the molecules are manifested in the values of the C7—C8—C11—C12 and C19—C20—C23—C24 torsion angles of -1.7 (6) and -16.8 (6) °, respectively indicating a twist of the ketone residue out of the plane of the quinolinyl ring in the second independent molecule. In each case, the ketone-O atom is directed towards the ring-methyl group.

In the crystal packing, C—H···O, Table 1, and π–π interactions are noted. The C—H···O and two closest π–π interactions lead to the formation of layers in the ac plane. The π–π interactions occur between the (C13–C18) ring and each of the (N1,C1,C6–C9)i [3.584 (3) Å] and (N2,C13,C18–C21)ii [3.615 (3) Å] rings; symmetry operation i: 1 - x, 1 - y, 1 - z and ii: 1 - x, 1 - y, 2 - z. The resultant layers stack along the b axis, Fig. 3.

Experimental

To a mixture of 2-amino-3,5-dibromobenzaldehyde (0.01 M, 2.70 g) and acetylacetone (0.01 M, 1.02 ml), 10 ml of 1 N HCl was added. The reaction mixture was stirred at 363 K for 3 h. At the end of this period, the resulting suspension was neutralized with 10 ml of 1 N NaOH. The resultant solid was filtered, dried and purified by column chromatography using a 1:1 mixture of chloroform and hexane. Recrystallization was by slow evaporation of a chloroform solution of (I) which yielded light-brown prisms. Yield: 90%. M.pt. 433–435 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.60 and 1.38 e Å-3, respectively, were located 0.93 Å and 0.70 Å from the Br3 and Br2 atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structures of the two independent molecules comprising the asymmetric unit of (I) showing displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

Overlay diagram of the two independent molecules comprising the asymmetric unit of (I). The first independent molecule (with atom S1) is shown in red.

Fig. 3.

Fig. 3.

A view in projection down the c axis of the crystal packing in (I) highlighting the stacking of layers along the b axis. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C12H9Br2NO Z = 4
Mr = 343.02 F(000) = 664
Triclinic, P1 Dx = 1.987 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 9.7549 (5) Å Cell parameters from 4985 reflections
b = 11.1719 (6) Å θ = 3.9–74.1°
c = 11.5629 (5) Å µ = 8.78 mm1
α = 99.043 (4)° T = 100 K
β = 93.330 (4)° Prism, light-brown
γ = 111.733 (5)° 0.25 × 0.20 × 0.15 mm
V = 1146.69 (10) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4462 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 4281 reflections with I > 2σ(I)
Mirror Rint = 0.039
Detector resolution: 10.4041 pixels mm-1 θmax = 74.3°, θmin = 3.9°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −13→13
Tmin = 0.218, Tmax = 0.353 l = −14→7
6906 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0872P)2 + 3.5949P] where P = (Fo2 + 2Fc2)/3
4462 reflections (Δ/σ)max = 0.001
293 parameters Δρmax = 1.60 e Å3
0 restraints Δρmin = −1.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.64524 (5) 0.65200 (5) 0.49508 (4) 0.01426 (16)
Br2 0.92320 (5) 1.16226 (5) 0.40306 (4) 0.01406 (16)
Br3 0.85223 (5) 0.34850 (5) 1.00127 (4) 0.01197 (15)
Br4 0.24944 (5) 0.00166 (4) 0.93076 (4) 0.01288 (15)
O1 −0.0502 (4) 0.7000 (4) 0.2695 (3) 0.0221 (8)
O2 0.5755 (4) 0.8053 (4) 0.7753 (3) 0.0192 (8)
N1 0.3618 (4) 0.6815 (4) 0.3952 (3) 0.0095 (7)
N2 0.7242 (4) 0.5237 (4) 0.8901 (3) 0.0081 (7)
C1 0.4870 (5) 0.7915 (4) 0.3957 (4) 0.0080 (8)
C2 0.6289 (5) 0.7963 (4) 0.4388 (4) 0.0096 (8)
C3 0.7562 (5) 0.9045 (5) 0.4393 (4) 0.0112 (9)
H3 0.8503 0.9061 0.4678 0.013*
C4 0.7460 (5) 1.0134 (4) 0.3971 (4) 0.0092 (9)
C5 0.6127 (5) 1.0128 (5) 0.3557 (4) 0.0134 (9)
H5 0.6077 1.0865 0.3271 0.016*
C6 0.4816 (5) 0.9023 (5) 0.3553 (4) 0.0107 (9)
C7 0.3414 (5) 0.8974 (5) 0.3137 (4) 0.0117 (9)
H7 0.3340 0.9701 0.2849 0.014*
C8 0.2144 (5) 0.7890 (5) 0.3138 (4) 0.0103 (9)
C9 0.2302 (5) 0.6785 (4) 0.3544 (4) 0.0084 (8)
C10 0.1013 (5) 0.5530 (5) 0.3547 (4) 0.0165 (10)
H10A 0.1373 0.4915 0.3852 0.025*
H10B 0.0511 0.5143 0.2740 0.025*
H10C 0.0311 0.5710 0.4051 0.025*
C11 0.0666 (5) 0.7922 (5) 0.2724 (4) 0.0141 (10)
C12 0.0674 (6) 0.9161 (5) 0.2366 (6) 0.0250 (12)
H12A −0.0349 0.9111 0.2240 0.037*
H12B 0.1125 0.9265 0.1634 0.037*
H12C 0.1252 0.9916 0.2992 0.037*
C13 0.6151 (5) 0.4096 (4) 0.9012 (4) 0.0071 (8)
C14 0.6509 (5) 0.3130 (5) 0.9490 (4) 0.0095 (8)
C15 0.5430 (5) 0.1943 (4) 0.9581 (4) 0.0099 (8)
H15 0.5698 0.1309 0.9890 0.012*
C16 0.3936 (5) 0.1679 (5) 0.9212 (4) 0.0104 (9)
C17 0.3516 (5) 0.2581 (4) 0.8784 (4) 0.0084 (8)
H17 0.2495 0.2398 0.8563 0.010*
C18 0.4625 (5) 0.3792 (4) 0.8676 (4) 0.0093 (8)
C19 0.4264 (5) 0.4746 (4) 0.8214 (4) 0.0089 (8)
H19 0.3252 0.4584 0.7980 0.011*
C20 0.5357 (5) 0.5907 (4) 0.8098 (4) 0.0097 (8)
C21 0.6871 (5) 0.6116 (4) 0.8459 (4) 0.0093 (8)
C22 0.8165 (5) 0.7332 (5) 0.8342 (4) 0.0146 (9)
H22A 0.9094 0.7198 0.8477 0.022*
H22B 0.8186 0.8079 0.8925 0.022*
H22C 0.8057 0.7512 0.7546 0.022*
C23 0.4916 (6) 0.6915 (5) 0.7634 (4) 0.0134 (9)
C24 0.3351 (6) 0.6467 (5) 0.7000 (4) 0.0173 (10)
H24A 0.3369 0.6938 0.6351 0.026*
H24B 0.2702 0.6652 0.7557 0.026*
H24C 0.2972 0.5521 0.6685 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0141 (3) 0.0157 (3) 0.0155 (3) 0.0064 (2) −0.00005 (19) 0.0089 (2)
Br2 0.0070 (3) 0.0118 (3) 0.0201 (3) −0.0001 (2) 0.00311 (18) 0.0024 (2)
Br3 0.0070 (3) 0.0125 (3) 0.0165 (3) 0.0031 (2) −0.00128 (18) 0.00586 (19)
Br4 0.0103 (3) 0.0077 (3) 0.0200 (3) 0.00088 (19) 0.00047 (18) 0.00814 (19)
O1 0.0065 (16) 0.029 (2) 0.029 (2) 0.0018 (15) 0.0026 (14) 0.0116 (16)
O2 0.0233 (19) 0.0126 (17) 0.0236 (18) 0.0072 (15) 0.0012 (15) 0.0084 (14)
N1 0.0104 (18) 0.0121 (19) 0.0070 (16) 0.0043 (15) 0.0040 (14) 0.0041 (14)
N2 0.0091 (17) 0.0099 (18) 0.0050 (16) 0.0028 (15) 0.0022 (13) 0.0020 (14)
C1 0.012 (2) 0.009 (2) 0.0046 (18) 0.0048 (18) 0.0032 (15) 0.0024 (15)
C2 0.012 (2) 0.012 (2) 0.0048 (18) 0.0042 (18) 0.0013 (15) 0.0031 (16)
C3 0.009 (2) 0.015 (2) 0.012 (2) 0.0071 (18) 0.0010 (16) 0.0048 (17)
C4 0.010 (2) 0.007 (2) 0.011 (2) 0.0027 (17) 0.0027 (16) 0.0020 (16)
C5 0.012 (2) 0.014 (2) 0.015 (2) 0.0051 (19) 0.0035 (17) 0.0044 (18)
C6 0.007 (2) 0.015 (2) 0.0092 (19) 0.0044 (18) 0.0032 (16) 0.0018 (17)
C7 0.015 (2) 0.013 (2) 0.011 (2) 0.0076 (19) 0.0046 (17) 0.0044 (17)
C8 0.007 (2) 0.017 (2) 0.0076 (19) 0.0062 (18) 0.0015 (15) 0.0032 (17)
C9 0.010 (2) 0.010 (2) 0.0053 (18) 0.0023 (18) 0.0031 (15) 0.0031 (16)
C10 0.008 (2) 0.015 (2) 0.018 (2) −0.0032 (19) 0.0038 (18) −0.0005 (19)
C11 0.012 (2) 0.019 (2) 0.011 (2) 0.006 (2) 0.0016 (17) 0.0012 (18)
C12 0.013 (2) 0.017 (3) 0.050 (4) 0.010 (2) 0.003 (2) 0.008 (2)
C13 0.0066 (19) 0.008 (2) 0.0073 (18) 0.0032 (17) 0.0016 (15) 0.0015 (15)
C14 0.008 (2) 0.015 (2) 0.0061 (19) 0.0050 (18) 0.0001 (15) 0.0017 (16)
C15 0.012 (2) 0.0070 (19) 0.014 (2) 0.0060 (18) 0.0008 (17) 0.0062 (16)
C16 0.009 (2) 0.009 (2) 0.012 (2) 0.0013 (18) 0.0022 (16) 0.0028 (17)
C17 0.007 (2) 0.009 (2) 0.011 (2) 0.0048 (17) 0.0006 (15) 0.0047 (16)
C18 0.014 (2) 0.012 (2) 0.0048 (18) 0.0062 (18) 0.0027 (16) 0.0047 (16)
C19 0.013 (2) 0.009 (2) 0.0063 (19) 0.0060 (18) 0.0003 (16) 0.0017 (16)
C20 0.018 (2) 0.008 (2) 0.0054 (18) 0.0063 (18) 0.0031 (16) 0.0024 (16)
C21 0.014 (2) 0.010 (2) 0.0042 (18) 0.0040 (18) 0.0036 (16) 0.0026 (16)
C22 0.014 (2) 0.012 (2) 0.016 (2) 0.0012 (19) 0.0046 (18) 0.0093 (18)
C23 0.019 (2) 0.016 (2) 0.011 (2) 0.010 (2) 0.0049 (18) 0.0086 (18)
C24 0.018 (2) 0.016 (2) 0.021 (2) 0.008 (2) 0.0006 (19) 0.0103 (19)

Geometric parameters (Å, °)

Br1—C2 1.886 (5) C10—H10C 0.9800
Br2—C4 1.892 (5) C11—C12 1.503 (7)
Br3—C14 1.895 (4) C12—H12A 0.9800
Br4—C16 1.894 (5) C12—H12B 0.9800
O1—C11 1.215 (6) C12—H12C 0.9800
O2—C23 1.211 (6) C13—C18 1.414 (6)
N1—C9 1.328 (6) C13—C14 1.426 (6)
N1—C1 1.374 (6) C14—C15 1.379 (6)
N2—C21 1.324 (6) C15—C16 1.401 (6)
N2—C13 1.355 (6) C15—H15 0.9500
C1—C6 1.407 (6) C16—C17 1.366 (6)
C1—C2 1.422 (6) C17—C18 1.415 (6)
C2—C3 1.374 (7) C17—H17 0.9500
C3—C4 1.413 (6) C18—C19 1.407 (6)
C3—H3 0.9500 C19—C20 1.373 (6)
C4—C5 1.357 (7) C19—H19 0.9500
C5—C6 1.410 (7) C20—C21 1.433 (7)
C5—H5 0.9500 C20—C23 1.505 (6)
C6—C7 1.402 (7) C21—C22 1.505 (6)
C7—C8 1.375 (7) C22—H22A 0.9800
C7—H7 0.9500 C22—H22B 0.9800
C8—C9 1.443 (6) C22—H22C 0.9800
C8—C11 1.508 (6) C23—C24 1.519 (7)
C9—C10 1.499 (6) C24—H24A 0.9800
C10—H10A 0.9800 C24—H24B 0.9800
C10—H10B 0.9800 C24—H24C 0.9800
C9—N1—C1 119.1 (4) H12B—C12—H12C 109.5
C21—N2—C13 118.9 (4) N2—C13—C18 123.0 (4)
N1—C1—C6 122.5 (4) N2—C13—C14 120.4 (4)
N1—C1—C2 119.9 (4) C18—C13—C14 116.5 (4)
C6—C1—C2 117.6 (4) C15—C14—C13 121.8 (4)
C3—C2—C1 121.2 (4) C15—C14—Br3 119.0 (3)
C3—C2—Br1 118.7 (3) C13—C14—Br3 119.2 (3)
C1—C2—Br1 120.1 (3) C14—C15—C16 119.4 (4)
C2—C3—C4 119.5 (4) C14—C15—H15 120.3
C2—C3—H3 120.3 C16—C15—H15 120.3
C4—C3—H3 120.3 C17—C16—C15 121.6 (4)
C5—C4—C3 121.1 (4) C17—C16—Br4 120.3 (4)
C5—C4—Br2 120.6 (4) C15—C16—Br4 118.1 (3)
C3—C4—Br2 118.2 (3) C16—C17—C18 119.0 (4)
C4—C5—C6 119.7 (4) C16—C17—H17 120.5
C4—C5—H5 120.2 C18—C17—H17 120.5
C6—C5—H5 120.2 C19—C18—C17 121.6 (4)
C7—C6—C1 117.3 (4) C19—C18—C13 116.8 (4)
C7—C6—C5 121.7 (4) C17—C18—C13 121.6 (4)
C1—C6—C5 121.0 (4) C20—C19—C18 120.8 (4)
C8—C7—C6 121.1 (4) C20—C19—H19 119.6
C8—C7—H7 119.4 C18—C19—H19 119.6
C6—C7—H7 119.4 C19—C20—C21 118.1 (4)
C7—C8—C9 118.0 (4) C19—C20—C23 118.9 (4)
C7—C8—C11 118.4 (4) C21—C20—C23 122.9 (4)
C9—C8—C11 123.6 (4) N2—C21—C20 122.4 (4)
N1—C9—C8 121.9 (4) N2—C21—C22 114.8 (4)
N1—C9—C10 114.9 (4) C20—C21—C22 122.8 (4)
C8—C9—C10 123.2 (4) C21—C22—H22A 109.5
C9—C10—H10A 109.5 C21—C22—H22B 109.5
C9—C10—H10B 109.5 H22A—C22—H22B 109.5
H10A—C10—H10B 109.5 C21—C22—H22C 109.5
C9—C10—H10C 109.5 H22A—C22—H22C 109.5
H10A—C10—H10C 109.5 H22B—C22—H22C 109.5
H10B—C10—H10C 109.5 O2—C23—C20 122.5 (4)
O1—C11—C12 120.3 (5) O2—C23—C24 119.7 (4)
O1—C11—C8 122.1 (5) C20—C23—C24 117.8 (4)
C12—C11—C8 117.5 (4) C23—C24—H24A 109.5
C11—C12—H12A 109.5 C23—C24—H24B 109.5
C11—C12—H12B 109.5 H24A—C24—H24B 109.5
H12A—C12—H12B 109.5 C23—C24—H24C 109.5
C11—C12—H12C 109.5 H24A—C24—H24C 109.5
H12A—C12—H12C 109.5 H24B—C24—H24C 109.5
C9—N1—C1—C6 0.4 (6) C21—N2—C13—C18 0.2 (6)
C9—N1—C1—C2 −179.8 (4) C21—N2—C13—C14 −179.6 (4)
N1—C1—C2—C3 179.3 (4) N2—C13—C14—C15 −177.9 (4)
C6—C1—C2—C3 −0.9 (6) C18—C13—C14—C15 2.3 (6)
N1—C1—C2—Br1 0.0 (5) N2—C13—C14—Br3 1.9 (5)
C6—C1—C2—Br1 179.8 (3) C18—C13—C14—Br3 −177.9 (3)
C1—C2—C3—C4 0.5 (6) C13—C14—C15—C16 −1.1 (7)
Br1—C2—C3—C4 179.8 (3) Br3—C14—C15—C16 179.1 (3)
C2—C3—C4—C5 −0.2 (7) C14—C15—C16—C17 −1.2 (7)
C2—C3—C4—Br2 178.4 (3) C14—C15—C16—Br4 178.2 (3)
C3—C4—C5—C6 0.4 (7) C15—C16—C17—C18 2.1 (7)
Br2—C4—C5—C6 −178.1 (3) Br4—C16—C17—C18 −177.3 (3)
N1—C1—C6—C7 0.2 (6) C16—C17—C18—C19 178.4 (4)
C2—C1—C6—C7 −179.6 (4) C16—C17—C18—C13 −0.8 (6)
N1—C1—C6—C5 −179.2 (4) N2—C13—C18—C19 −0.4 (6)
C2—C1—C6—C5 1.1 (6) C14—C13—C18—C19 179.4 (4)
C4—C5—C6—C7 179.8 (4) N2—C13—C18—C17 178.8 (4)
C4—C5—C6—C1 −0.9 (7) C14—C13—C18—C17 −1.3 (6)
C1—C6—C7—C8 0.7 (7) C17—C18—C19—C20 −179.0 (4)
C5—C6—C7—C8 −180.0 (4) C13—C18—C19—C20 0.3 (6)
C6—C7—C8—C9 −2.0 (6) C18—C19—C20—C21 0.1 (6)
C6—C7—C8—C11 177.6 (4) C18—C19—C20—C23 −178.2 (4)
C1—N1—C9—C8 −1.9 (6) C13—N2—C21—C20 0.2 (6)
C1—N1—C9—C10 178.5 (4) C13—N2—C21—C22 −178.4 (4)
C7—C8—C9—N1 2.7 (6) C19—C20—C21—N2 −0.4 (6)
C11—C8—C9—N1 −176.9 (4) C23—C20—C21—N2 177.9 (4)
C7—C8—C9—C10 −177.7 (4) C19—C20—C21—C22 178.2 (4)
C11—C8—C9—C10 2.7 (7) C23—C20—C21—C22 −3.6 (6)
C7—C8—C11—O1 179.7 (4) C19—C20—C23—O2 162.9 (5)
C9—C8—C11—O1 −0.7 (7) C21—C20—C23—O2 −15.4 (7)
C7—C8—C11—C12 −1.7 (6) C19—C20—C23—C24 −16.8 (6)
C9—C8—C11—C12 177.9 (4) C21—C20—C23—C24 165.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O2i 0.95 2.56 3.453 (7) 157
C15—H15···Br4ii 0.95 2.89 3.796 (5) 160
C19—H19···O1iii 0.95 2.60 3.462 (6) 152

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y, −z+2; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6406).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559. [DOI] [PubMed]
  5. Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404. [DOI] [PubMed]
  6. Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o796–o797. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Xiang, W., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175–187.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037044/hb6406sup1.cif

e-67-o2664-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037044/hb6406Isup2.hkl

e-67-o2664-Isup2.hkl (218.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037044/hb6406Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES