Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2788. doi: 10.1107/S1600536811038827

4-Sulfamoylanilinium nitrate

S Pandiarajan a, S Balasubramanian a, B Ravikumar a, S Athimoolam b,*
PMCID: PMC3201237  PMID: 22058822

Abstract

In the crystal structure of the title compound, C6H9N2O2S+·NO3 , the cations and anions are connected by N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the biological importance of the title compound, see: Kent (2000). For related structures, see: Alléaume & Decap (1965a ,b ); Buttle et al. (1936); Chatterjee et al. (1981); Gelbrich et al. (2007, 2008); Gelmboldt et al. (2004); Hughes et al. (1999); O’Connell & Maslen (1967); O’Connor & Maslen (1965); Smith et al. (2001); Zaouali Zgolli et al. (2010). For the polymorphism of sulfanilamide, see: Burger (1973). For hydrogen-bond motifs, see: Etter et al. (1990).graphic file with name e-67-o2788-scheme1.jpg

Experimental

Crystal data

  • C6H9N2O2S+·NO3

  • M r = 235.22

  • Monoclinic, Inline graphic

  • a = 14.1489 (19) Å

  • b = 8.1786 (11) Å

  • c = 8.6931 (12) Å

  • β = 107.129 (2)°

  • V = 961.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.19 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • 4345 measured reflections

  • 1694 independent reflections

  • 1689 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.061

  • S = 1.15

  • 1694 reflections

  • 157 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 840 Friedel pairs

  • Flack parameter: 0.06 (5)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038827/bt5645sup1.cif

e-67-o2788-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038827/bt5645Isup2.hkl

e-67-o2788-Isup2.hkl (83.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038827/bt5645Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.81 (3) 2.33 (3) 2.992 (2) 139 (2)
N1—H1B⋯O4ii 0.75 (3) 2.30 (3) 3.045 (3) 172 (3)
N2—H1N⋯O5iii 0.93 (3) 2.01 (3) 2.866 (2) 151 (3)
N2—H2N⋯O1iii 0.92 (2) 1.97 (2) 2.858 (2) 163 (2)
N2—H3N⋯O5iv 0.83 (3) 1.95 (3) 2.770 (2) 171 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

SPR and BRK thank the management of the Devanga Arts College for their support and encouragement and also extend their thanks to the University Grants Commission for the financial support of this work in the form of a Minor Research Project.

supplementary crystallographic information

Comment

Sulfanilamide, a sulfonamide antibacterial, acts as competitive inhibitor of the enzyme dihydropteroate synthetase (DHPS), an enzyme involved in folate synthesis which involves para-aminobenzoic acid (PABA). PABA is needed in enzymatic reactions that produce folic acid which acts as a coenzyme in the synthesis of purine, pyrimidine and other amino acids (Kent, 2000). Sulfonamide drugs were the first antimicrobial drugs, and paved the way for the antibiotic revolution in medicine. The antibacterial activity of sulfanilamide, was first investigated by Buttle (Buttle et al., 1936). The use of sulfanilamide was eclipsed by its prodrugs, the more effective sulfadrugs, shortly afterwards. From literature, it is observed that sulfadrugs are remarkably polymorphic. The polymorphs of sulfathiazole (Hughes et al., 1999) and sulfapyridine (Gelbrich et al., 2007) were already reported. The polymorphism of sulfanilamide was extensively investigated over a number of years (Burger, 1973). There are three well known polymorphs, usually represented as α, β and γ sulfanilamides (Alléaume & Decap, 1965a,b; O'Connor & Maslen, 1965; O'Connell & Maslen, 1967). Based on the above specifics, we are interested on the investigation of hydrogen bonding tendancy and its reactivity with different inorganic/organic acids.

The asymmetric part of the unit cell, contains a protonated sulfomylanilinium cation and a nitrate anion (Fig 1). The protonation on the one of the N sites is confirmed from C—N bond distance. The other geometrical parameters of the cation are in agreement with the reported structures of 4-homosulfanilamide hydrochloride (Chatterjee et al., 1981), 4-aminobenzenesulfonamide (Gelbrich et al., 2008), bis(4-Aminosulfonyl)benzeneammonium hexafluorosilicate (Gelmboldt et al.,2004), 4-sulfonamidoanilinium 3,5-dinitrosalicylate (Smith et al., 2001) and 4-sulfamoylanilinium chloride (Zaouali Zgolli et al., 2010).

The crystal structure is stabilized through intricate three dimensional hydrogen bonding network formed through N—H···O hydrogen bonds (Fig 2, Table 1). The N atom of the –NH2 group of the cation is hydrogen bonded with O atom of the S=O group making a zigzag chain C(4) motif extending along c axis of the unit cell (Etter et al., 1990). Further, the N atom of the –NH3 group of the cation is hydrogen bonded with another O atom of the S=O group making a head-to-tail like chain C(8) motif extending along diagonal of the ab-plane. Nitrate anions are sandwiched between these two chains leading to a unusual asymmetric ring R55(16) motif which involves four cation and one anion. Also, cations are linked through anion by two N—H···O hydrogen bonds [viz., N1—H1B···O4 (x, 1 - y, 1/2 + z) and N2—H3N···O5 (-1/2 + x, 3/2 - y, -1/2 + z)] forming a chain C22(12)motif extending along diagonal of the bc-plane.

Experimental

Colourless crystals of 4-sulfamoylanilinium nitrate suitable for single-crystal X-ray analysis were obtained by slow evaporation at room temperature from an aqeuous solution of sulphanilamide and nitric acid.

Refinement

The H atoms bonded to N located were refined istropically. All other H atoms were positioned geometrically and refined by the riding model approximation with d(C—H) = 0.93 Å and Uiso(H)= 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom numbering scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the b-axis. H-bonds are shown as dashed lines.

Crystal data

C6H9N2O2S+·NO3 F(000) = 488
Mr = 235.22 Dx = 1.625 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 2432 reflections
a = 14.1489 (19) Å θ = 2.3–24.3°
b = 8.1786 (11) Å µ = 0.34 mm1
c = 8.6931 (12) Å T = 293 K
β = 107.129 (2)° Block, colourless
V = 961.3 (2) Å3 0.24 × 0.22 × 0.19 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1689 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.017
graphite θmax = 25.0°, θmin = 2.9°
ω scans h = −16→16
4345 measured reflections k = −9→9
1694 independent reflections l = −10→10

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.043P)2 + 0.0928P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061 (Δ/σ)max = 0.001
S = 1.15 Δρmax = 0.17 e Å3
1694 reflections Δρmin = −0.25 e Å3
157 parameters Extinction correction: SHELXTL/PC, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.050 (3)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 840 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.06 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.29701 (12) 0.3638 (2) 0.66596 (19) 0.0342 (3)
C2 0.20184 (13) 0.3652 (2) 0.5630 (2) 0.0403 (3)
H2 0.1737 0.2705 0.5098 0.048*
C3 0.14895 (12) 0.5103 (2) 0.5403 (2) 0.0428 (4)
H3 0.0845 0.5138 0.4721 0.051*
C4 0.19244 (12) 0.6488 (2) 0.6193 (2) 0.0334 (3)
C5 0.28819 (14) 0.6483 (2) 0.7208 (2) 0.0414 (4)
H5 0.3166 0.7437 0.7723 0.050*
C6 0.34101 (13) 0.5037 (2) 0.7443 (2) 0.0424 (4)
H6 0.4055 0.5005 0.8122 0.051*
N1 0.39052 (16) 0.1289 (2) 0.8816 (2) 0.0511 (4)
N2 0.13535 (11) 0.79981 (18) 0.59414 (18) 0.0374 (3)
N3 0.55860 (12) 0.64779 (19) 0.6987 (2) 0.0447 (3)
O1 0.45798 (12) 0.21351 (19) 0.6684 (2) 0.0596 (4)
O2 0.30328 (10) 0.05499 (16) 0.60456 (18) 0.0520 (3)
O3 0.51772 (13) 0.76152 (19) 0.7468 (2) 0.0658 (4)
O4 0.53047 (11) 0.60273 (18) 0.55635 (17) 0.0557 (3)
O5 0.63098 (11) 0.57493 (19) 0.79609 (15) 0.0522 (3)
S1 0.36568 (3) 0.17908 (4) 0.69713 (4) 0.03650 (14)
H1A 0.343 (2) 0.088 (3) 0.900 (3) 0.060 (7)*
H1B 0.4231 (19) 0.194 (4) 0.932 (3) 0.056 (7)*
H1N 0.156 (2) 0.875 (4) 0.678 (4) 0.074 (8)*
H2N 0.0721 (18) 0.783 (3) 0.599 (3) 0.045 (5)*
H3N 0.1270 (18) 0.837 (3) 0.503 (3) 0.052 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0360 (7) 0.0310 (8) 0.0390 (7) 0.0001 (6) 0.0165 (6) 0.0030 (6)
C2 0.0376 (8) 0.0324 (7) 0.0484 (8) −0.0050 (7) 0.0086 (7) −0.0025 (7)
C3 0.0317 (7) 0.0412 (9) 0.0502 (9) −0.0028 (6) 0.0038 (6) 0.0022 (7)
C4 0.0359 (8) 0.0308 (7) 0.0362 (7) 0.0028 (6) 0.0146 (6) 0.0036 (5)
C5 0.0417 (9) 0.0318 (8) 0.0459 (9) −0.0015 (7) 0.0057 (7) −0.0045 (7)
C6 0.0344 (7) 0.0372 (9) 0.0495 (9) 0.0017 (6) 0.0030 (6) −0.0006 (6)
N1 0.0581 (10) 0.0410 (8) 0.0550 (9) 0.0039 (8) 0.0179 (8) 0.0072 (8)
N2 0.0387 (8) 0.0359 (7) 0.0399 (7) 0.0054 (6) 0.0152 (6) 0.0053 (6)
N3 0.0447 (9) 0.0421 (8) 0.0486 (9) −0.0043 (6) 0.0154 (7) −0.0024 (7)
O1 0.0491 (8) 0.0516 (7) 0.0924 (11) 0.0044 (6) 0.0430 (7) 0.0048 (7)
O2 0.0521 (8) 0.0368 (7) 0.0682 (8) 0.0014 (5) 0.0194 (6) −0.0139 (6)
O3 0.0643 (9) 0.0538 (9) 0.0795 (11) 0.0092 (7) 0.0214 (7) −0.0178 (8)
O4 0.0622 (8) 0.0551 (8) 0.0420 (6) 0.0030 (7) 0.0033 (6) −0.0058 (6)
O5 0.0586 (8) 0.0551 (8) 0.0402 (6) 0.0095 (6) 0.0105 (5) −0.0017 (6)
S1 0.0357 (2) 0.0304 (2) 0.0475 (2) 0.00160 (14) 0.01862 (14) −0.00021 (15)

Geometric parameters (Å, °)

C1—C2 1.380 (2) N1—S1 1.5911 (19)
C1—C6 1.382 (2) N1—H1A 0.81 (3)
C1—S1 1.7737 (16) N1—H1B 0.75 (3)
C2—C3 1.386 (2) N2—H1N 0.93 (3)
C2—H2 0.9300 N2—H2N 0.92 (2)
C3—C4 1.372 (2) N2—H3N 0.83 (3)
C3—H3 0.9300 N3—O3 1.232 (2)
C4—C5 1.382 (2) N3—O4 1.239 (2)
C4—N2 1.457 (2) N3—O5 1.269 (2)
C5—C6 1.382 (3) O1—S1 1.4283 (14)
C5—H5 0.9300 O2—S1 1.4277 (14)
C6—H6 0.9300
C2—C1—C6 121.65 (15) S1—N1—H1A 110.7 (19)
C2—C1—S1 119.47 (12) S1—N1—H1B 109 (2)
C6—C1—S1 118.87 (13) H1A—N1—H1B 125 (3)
C1—C2—C3 118.84 (15) C4—N2—H1N 114.6 (19)
C1—C2—H2 120.6 C4—N2—H2N 111.9 (14)
C3—C2—H2 120.6 H1N—N2—H2N 98 (2)
C4—C3—C2 119.44 (14) C4—N2—H3N 112.0 (17)
C4—C3—H3 120.3 H1N—N2—H3N 115 (2)
C2—C3—H3 120.3 H2N—N2—H3N 104 (2)
C3—C4—C5 121.88 (15) O3—N3—O4 121.26 (17)
C3—C4—N2 118.52 (14) O3—N3—O5 119.70 (17)
C5—C4—N2 119.60 (16) O4—N3—O5 119.05 (16)
C6—C5—C4 118.85 (16) O2—S1—O1 119.14 (9)
C6—C5—H5 120.6 O2—S1—N1 107.54 (11)
C4—C5—H5 120.6 O1—S1—N1 106.58 (11)
C5—C6—C1 119.34 (15) O2—S1—C1 107.43 (8)
C5—C6—H6 120.3 O1—S1—C1 107.05 (8)
C1—C6—H6 120.3 N1—S1—C1 108.78 (8)
C6—C1—C2—C3 −1.1 (2) C2—C1—C6—C5 0.8 (3)
S1—C1—C2—C3 179.76 (14) S1—C1—C6—C5 179.95 (14)
C1—C2—C3—C4 0.5 (3) C2—C1—S1—O2 −1.42 (15)
C2—C3—C4—C5 0.4 (3) C6—C1—S1—O2 179.42 (14)
C2—C3—C4—N2 −179.77 (16) C2—C1—S1—O1 127.65 (14)
C3—C4—C5—C6 −0.7 (3) C6—C1—S1—O1 −51.51 (16)
N2—C4—C5—C6 179.48 (16) C2—C1—S1—N1 −117.54 (15)
C4—C5—C6—C1 0.1 (3) C6—C1—S1—N1 63.29 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.81 (3) 2.33 (3) 2.992 (2) 139 (2)
N1—H1B···O4ii 0.75 (3) 2.30 (3) 3.045 (3) 172 (3)
N2—H1N···O5iii 0.93 (3) 2.01 (3) 2.866 (2) 151 (3)
N2—H2N···O1iii 0.92 (2) 1.97 (2) 2.858 (2) 163 (2)
N2—H3N···O5iv 0.83 (3) 1.95 (3) 2.770 (2) 171 (2)

Symmetry codes: (i) x, −y, z+1/2; (ii) x, −y+1, z+1/2; (iii) x−1/2, y+1/2, z; (iv) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5645).

References

  1. Alléaume, M. & Decap, J. (1965a). Acta Cryst. 18, 731–736. [DOI] [PubMed]
  2. Alléaume, M. & Decap, J. (1965b). Acta Cryst. 19, 934–938. [DOI] [PubMed]
  3. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burger, A. (1973). Sci. Pharm. 4, 290–293.
  5. Buttle, G. A. H., Grey, W. H. & Stephenson, D. (1936). Lancet, 1, 1286–1290.
  6. Chatterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835–1838.
  7. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Gelbrich, T., Bingham, A. L., Threlfall, T. L. & Hursthouse, M. B. (2008). Acta Cryst. C64, o205–o207. [DOI] [PubMed]
  10. Gelbrich, T., Threlfall, T. L., Bingham, A. L. & Hursthouse, M. B. (2007). Acta Cryst. C63, o323–o326. [DOI] [PubMed]
  11. Gelmboldt, V. O., Ennan, A. A., Ganin, E. V., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2004). J. Fluorine Chem. 125, 1951–1957.
  12. Hughes, D. S., Hursthouse, M. B., Threlfall, T. & Tavener, S. (1999). Acta Cryst. C55, 1831–1833.
  13. Kent, M. (2000). Advanced Biology New York: Oxford University Press Inc.
  14. O’Connell, A. M. & Maslen, E. N. (1967). Acta Cryst. 22, 134–145. [DOI] [PubMed]
  15. O’Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363–366.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Smith, G., Wermuth, U. D. & White, J. M. (2001). Acta Cryst. E57, o1036–o1038.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, o1488. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038827/bt5645sup1.cif

e-67-o2788-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038827/bt5645Isup2.hkl

e-67-o2788-Isup2.hkl (83.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038827/bt5645Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES