Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2580. doi: 10.1107/S1600536811035562

2-Bromo-N-(4-chloro­phen­yl)-2-methyl­propanamide

Rodolfo Moreno-Fuquen a,*, David E Quintero a, Fabio Zuluaga a, Alan R Kennedy b, Regina H De Almeida Santos c
PMCID: PMC3201238  PMID: 22064690

Abstract

In the title mol­ecule, C10H11BrClNO, there is a twist between the mean plane of the amide group and the benzene ring [C(=O)—N—C—C torsion angle = −27.1 (3)°]. In the crystal, inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into chains along [010].

Related literature

For initiators in ATRP processes (polymerization by atom transfer radical), see: Matyjaszewski & Xia (2001); Pietrasik & Tsarevsky (2010). For end-functionalized linear polymers, see: Matyjaszewski & Mueller (2008); Stenzel-Rosenbaum et al. 2001). For hydrogen-bond graph-set motifs, see: Etter (1990). For hydrogen bonding, see: Nardelli (1995).graphic file with name e-67-o2580-scheme1.jpg

Experimental

Crystal data

  • C10H11BrClNO

  • M r = 276.56

  • Orthorhombic, Inline graphic

  • a = 9.7449 (3) Å

  • b = 10.1063 (3) Å

  • c = 22.8803 (7) Å

  • V = 2253.36 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.85 mm−1

  • T = 123 K

  • 0.45 × 0.22 × 0.08 mm

Data collection

  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.387, T max = 1.000

  • 9676 measured reflections

  • 2684 independent reflections

  • 2225 reflections with I > 2σ(I)

  • R int = 0.028

  • Standard reflections: 0

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.069

  • S = 1.05

  • 2684 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035562/hg5088sup1.cif

e-67-o2580-sup1.cif (15.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035562/hg5088Isup2.hkl

e-67-o2580-Isup2.hkl (129.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035562/hg5088Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.81 (3) 2.17 (3) 2.972 (2) 169 (3)
C10—H10⋯O1i 0.95 2.71 3.433 (3) 133
C4—H4B⋯O1i 0.98 2.53 3.453 (3) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF and FZ also thank the Universidad del Valle, Colombia, and Instituto de Química de São Carlos, USP, Brazil for partial financial support.

supplementary crystallographic information

Comment

The title compound (I), is a monofunctional alkyl halyde derivative, which can be used as an initiator in Atom Transfer Radical Polymerization processes (ATRP) (Matyjaszewski & Xia, 2001; Pietrasik & Tsarevsky, 2010). This derivative can form end-functionalized linear polymers when used as an initiator (Matyjaszewski et al. 2008; Stenzel-Rosenbaum et al. 2001). The molecular structure of (I) is shown in Fig. 1. There is a twist between the mean plane of the amide group and benzene ring giving a C3—N1—C5—C6 torsion angle of -27.1 (3)°. The crystal structure is stabilized by intermolecular N—H···O and weak C—H···O hydrogen bonds (see Table 1, Nardelli, 1995). Indeed, molecules of (I) are linked by N1—H1N···O1i, C10—H10···O1i and C4—H4B···O1i hydrogen bonds (i: -x + 3/2,+y + 1/2,+z) which lead to the formation of C(4) (Etter, 1990) one dimensional chain along [010] (Fig. 2).

Experimental

The initial reagents were purchased from Aldrich Chemical Co. and were used as received. In a 100 mL round bottom flask 4-chloroaniline (2.315 mmoles, 0.295 g), triethylamine (0.463 mmol, 0.027 g) were mixed, then a solution of 2-bromo isobutyryl bromide (0.450 g) in anhydrous THF (5 ml) was added drop wise, under an argon stream. The reaction was carried out in a dry bag overnight under magnetic stirring. The solid was filtered off and dichloromethane (20 ml) added to the organic phase which was washed with brine (50 ml) followed by water (10 ml). The solution was concentrated at low pressure affording colourless crystals and recrystalized from a solution of hexane and ethyl acetate (80:20). M.p. 386 (1) K.

Refinement

The H-atoms were positioned geometrically [C—H= 0.95 Å for aromatic and C—H= 0.98 Å for methyl, and with Uiso(H) (1.2 and 1.5 times Ueq of the parent atom respectivelly]. The amide-H1N atom was located in a difference Fourier map and was refined freely.

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of a one dimensional chain along [010]. Symmetry code: (i) -x + 3/2,+y + 1/2,+z

Crystal data

C10H11BrClNO Dx = 1.630 Mg m3
Mr = 276.56 Melting point: 386(1) K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4107 reflections
a = 9.7449 (3) Å θ = 2.9–29.7°
b = 10.1063 (3) Å µ = 3.85 mm1
c = 22.8803 (7) Å T = 123 K
V = 2253.36 (12) Å3 Bar, colourless
Z = 8 0.45 × 0.22 × 0.08 mm
F(000) = 1104

Data collection

Oxford Diffraction Gemini S diffractometer 2684 independent reflections
Radiation source: fine-focus sealed tube 2225 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 28.0°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −12→12
Tmin = 0.387, Tmax = 1.000 k = −11→13
9676 measured reflections l = −29→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0275P)2 + 1.8897P] where P = (Fo2 + 2Fc2)/3
2684 reflections (Δ/σ)max < 0.001
133 parameters Δρmax = 1.00 e Å3
0 restraints Δρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.48117 (2) 0.03662 (3) 0.143191 (11) 0.02744 (9)
Cl1 1.31938 (6) 0.04546 (7) −0.00111 (2) 0.02798 (15)
O1 0.77815 (16) −0.19000 (14) 0.15413 (7) 0.0189 (3)
N1 0.81397 (19) 0.03082 (19) 0.14313 (8) 0.0150 (4)
C1 0.5483 (3) −0.1697 (2) 0.22170 (11) 0.0275 (6)
H1A 0.6122 −0.2144 0.2483 0.041*
H1B 0.5265 −0.2286 0.1889 0.041*
H1C 0.4639 −0.1476 0.2428 0.041*
C2 0.6140 (2) −0.0437 (2) 0.19856 (9) 0.0168 (5)
C3 0.7429 (2) −0.0750 (2) 0.16220 (9) 0.0138 (4)
C4 0.6432 (3) 0.0534 (2) 0.24801 (10) 0.0215 (5)
H4A 0.5595 0.0670 0.2710 0.032*
H4B 0.6734 0.1381 0.2316 0.032*
H4C 0.7154 0.0175 0.2733 0.032*
C5 0.9350 (2) 0.0288 (2) 0.10845 (9) 0.0139 (4)
C6 1.0272 (2) −0.0771 (2) 0.10905 (10) 0.0176 (5)
H6 1.0088 −0.1532 0.1321 0.021*
C7 1.1457 (2) −0.0702 (2) 0.07567 (10) 0.0193 (5)
H7 1.2092 −0.1415 0.0761 0.023*
C8 1.1717 (2) 0.0402 (2) 0.04186 (9) 0.0191 (5)
C9 1.0812 (2) 0.1457 (2) 0.04075 (9) 0.0196 (5)
H9 1.0999 0.2211 0.0173 0.024*
C10 0.9626 (2) 0.1399 (2) 0.07439 (10) 0.0172 (5)
H10 0.9000 0.2120 0.0742 0.021*
H1N 0.778 (3) 0.103 (3) 0.1467 (11) 0.024 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01641 (13) 0.03536 (16) 0.03055 (14) 0.00118 (10) −0.00217 (9) 0.00496 (12)
Cl1 0.0173 (3) 0.0437 (4) 0.0230 (3) −0.0036 (3) 0.0062 (2) 0.0048 (3)
O1 0.0206 (8) 0.0105 (7) 0.0256 (8) −0.0002 (6) 0.0060 (6) −0.0013 (6)
N1 0.0178 (9) 0.0096 (9) 0.0176 (9) 0.0016 (8) 0.0048 (7) −0.0001 (8)
C1 0.0317 (14) 0.0173 (12) 0.0335 (14) −0.0036 (10) 0.0161 (11) 0.0016 (11)
C2 0.0172 (11) 0.0139 (11) 0.0194 (10) 0.0012 (9) 0.0025 (9) 0.0004 (9)
C3 0.0155 (10) 0.0133 (10) 0.0125 (9) −0.0004 (8) −0.0016 (8) 0.0008 (8)
C4 0.0259 (12) 0.0177 (11) 0.0210 (11) 0.0022 (10) 0.0066 (9) −0.0044 (10)
C5 0.0141 (10) 0.0158 (10) 0.0117 (9) −0.0024 (9) −0.0006 (8) −0.0027 (9)
C6 0.0203 (11) 0.0152 (10) 0.0171 (10) 0.0004 (9) 0.0016 (9) 0.0022 (9)
C7 0.0166 (11) 0.0214 (12) 0.0199 (11) 0.0026 (9) 0.0017 (9) −0.0019 (9)
C8 0.0135 (10) 0.0295 (13) 0.0142 (10) −0.0053 (10) 0.0017 (8) −0.0013 (10)
C9 0.0217 (12) 0.0217 (12) 0.0155 (10) −0.0072 (10) −0.0008 (9) 0.0036 (9)
C10 0.0186 (11) 0.0153 (11) 0.0178 (10) −0.0005 (9) −0.0002 (9) 0.0008 (9)

Geometric parameters (Å, °)

Br1—C2 1.985 (2) C4—H4B 0.9800
Cl1—C8 1.744 (2) C4—H4C 0.9800
O1—C3 1.226 (2) C5—C10 1.393 (3)
N1—C3 1.346 (3) C5—C6 1.397 (3)
N1—C5 1.422 (3) C6—C7 1.387 (3)
N1—H1N 0.81 (3) C6—H6 0.9500
C1—C2 1.521 (3) C7—C8 1.381 (3)
C1—H1A 0.9800 C7—H7 0.9500
C1—H1B 0.9800 C8—C9 1.384 (3)
C1—H1C 0.9800 C9—C10 1.390 (3)
C2—C4 1.524 (3) C9—H9 0.9500
C2—C3 1.539 (3) C10—H10 0.9500
C4—H4A 0.9800
C3—N1—C5 126.59 (19) C2—C4—H4C 109.5
C3—N1—H1N 117.2 (19) H4A—C4—H4C 109.5
C5—N1—H1N 115.3 (19) H4B—C4—H4C 109.5
C2—C1—H1A 109.5 C10—C5—C6 119.9 (2)
C2—C1—H1B 109.5 C10—C5—N1 117.43 (19)
H1A—C1—H1B 109.5 C6—C5—N1 122.59 (19)
C2—C1—H1C 109.5 C7—C6—C5 119.4 (2)
H1A—C1—H1C 109.5 C7—C6—H6 120.3
H1B—C1—H1C 109.5 C5—C6—H6 120.3
C1—C2—C4 111.06 (18) C8—C7—C6 120.1 (2)
C1—C2—C3 111.06 (18) C8—C7—H7 119.9
C4—C2—C3 112.42 (18) C6—C7—H7 119.9
C1—C2—Br1 106.84 (16) C7—C8—C9 121.1 (2)
C4—C2—Br1 109.42 (14) C7—C8—Cl1 119.44 (18)
C3—C2—Br1 105.74 (14) C9—C8—Cl1 119.49 (18)
O1—C3—N1 124.1 (2) C8—C9—C10 119.2 (2)
O1—C3—C2 120.33 (19) C8—C9—H9 120.4
N1—C3—C2 115.56 (18) C10—C9—H9 120.4
C2—C4—H4A 109.5 C9—C10—C5 120.3 (2)
C2—C4—H4B 109.5 C9—C10—H10 119.9
H4A—C4—H4B 109.5 C5—C10—H10 119.9
C5—N1—C3—O1 3.7 (3) C10—C5—C6—C7 0.1 (3)
C5—N1—C3—C2 −179.28 (19) N1—C5—C6—C7 −177.7 (2)
C1—C2—C3—O1 1.6 (3) C5—C6—C7—C8 −0.4 (3)
C4—C2—C3—O1 126.7 (2) C6—C7—C8—C9 0.3 (3)
Br1—C2—C3—O1 −113.94 (19) C6—C7—C8—Cl1 −178.54 (17)
C1—C2—C3—N1 −175.6 (2) C7—C8—C9—C10 0.1 (3)
C4—C2—C3—N1 −50.5 (2) Cl1—C8—C9—C10 178.97 (17)
Br1—C2—C3—N1 68.9 (2) C8—C9—C10—C5 −0.4 (3)
C3—N1—C5—C10 155.0 (2) C6—C5—C10—C9 0.3 (3)
C3—N1—C5—C6 −27.1 (3) N1—C5—C10—C9 178.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.81 (3) 2.17 (3) 2.972 (2) 169 (3)
C10—H10···O1i 0.95 2.71 3.433 (3) 133.
C4—H4B···O1i 0.98 2.53 3.453 (3) 158.

Symmetry codes: (i) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5088).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Etter, M. (1990). Acc. Chem. Res. 23, 120–126.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Matyjaszewski, K. & Mueller, L. (2008). Macromolecules, 41, 1067–1069.
  7. Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921–2990. [DOI] [PubMed]
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  10. Pietrasik, J. & Tsarevsky, N. V. (2010). Eur. Polym. J. 46, 2333–2340.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Stenzel-Rosenbaum, M., Davis, T. P., Chen, V. & Fane, A. G. (2001). J. Polym. Sci. Part A Polym. Chem. 39, 2777–2783.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035562/hg5088sup1.cif

e-67-o2580-sup1.cif (15.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035562/hg5088Isup2.hkl

e-67-o2580-Isup2.hkl (129.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035562/hg5088Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES