Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):m1397. doi: 10.1107/S1600536811036993

catena-Poly[[[tetra­aqua­nickel(II)]-μ-4,4′-bipyridyl-κ2 N:N′] 3,3′-(p-phenyl­ene)diacrylate]

Ni-Ya Li a,*
PMCID: PMC3201244  PMID: 22064763

Abstract

In the title compound, {[Ni(C10H8N2)(H2O)4](C12H8O4)}n, the NiII, 4,4′-bipyridyl (bipy) and 3,3′-(p-phenyl­ene)diacrylate (L 2−) moieties are situated on inversion centres. The bipy ligands bridge NiII ions into positively charged polymeric chains along [101]. The NiII atom is coordinated by two N atoms from two bipy ligands and four water mol­ecules in a distorted octa­hedral geometry. L 2− anions inter­act with the polymeric chains via O–H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For a metal-organic complex with bipy and L 2− ligands, see: Huang et al. (2008). For related Ni complexes, see: Batten & Harris (2001); Dong (2009); Li et al. (2010).graphic file with name e-67-m1397-scheme1.jpg

Experimental

Crystal data

  • [Ni(C10H8N2)(H2O)4](C12H8O4)

  • M r = 503.12

  • Triclinic, Inline graphic

  • a = 7.0867 (14) Å

  • b = 7.3614 (15) Å

  • c = 10.418 (2) Å

  • α = 95.51 (3)°

  • β = 102.51 (3)°

  • γ = 97.27 (3)°

  • V = 522.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 223 K

  • 0.40 × 0.40 × 0.25 mm

Data collection

  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.694, T max = 0.791

  • 4910 measured reflections

  • 1884 independent reflections

  • 1807 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.067

  • S = 1.07

  • 1884 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036993/cv5150sup1.cif

e-67-m1397-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036993/cv5150Isup2.hkl

e-67-m1397-Isup2.hkl (92.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H2W⋯O3 0.84 (3) 1.90 (3) 2.734 (2) 170 (3)
O1—H1W⋯O3i 0.79 (3) 1.90 (3) 2.683 (2) 171 (3)
O2—H3W⋯O4ii 0.85 (3) 1.86 (3) 2.701 (2) 172 (3)
O2—H4W⋯O4iii 0.82 (3) 1.95 (3) 2.754 (2) 167 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Research Start-Up Fund for New Staff of Huaibei Normal University.

supplementary crystallographic information

Comment

In recent years, supramolecular frameworks have attracted considerable attention because of their intriguing architectures and potential applications (Li et al., 2010). Polycarboxylates and dipyridyl ligands have proved to be good linkers for the construction of supramolecular compounds (Li et al., 2010). In this paper, we report the hydrothermal synthesis and structure of a supramolecular compound assembled by the mixed ligands of 4,4'-bipyridyl (bipy) and 3,3'-(1,4-phenylene)-diacrylate (L2-), respectively.

The aymmetric unit of the title compound (I) (Fig. 1) contains half of a [Ni(H2O)4(bipy)] unit, half of a L2- anion (L2- = 3,3'-(1,4-phenylene)-diacrylate) and two water molecules. Each Ni center has a distorted octahedral environment being coordinated by four water molecules at the basal positions and two N atoms from two different bipy ligand at the apical position. The Ni–O and Ni–N bond lengths are comparable with those in reported Ni-complexes (Batten & Harris, 2001; Dong, 2009; Li et al., 2010). The Ni centers are bridged by bipy ligands to form one-dimensional [Ni(H2O)4(bipy)]n polymeric chain (Fig. 2). The adjacent chains are further interconnected by the L2- ligands via intermolecular O—H···O hydrogen bonds (Table 1) to form a three-dimensional supramolecular framework (Fig. 3).

Experimental

10 mL Pyrex glass tube was loaded by NiCl2.6H2O (24 mg, 0.1 mmol), 3,3'-(1,4-phenylene)-diacrylic acid (22 mg, 0.1 mmol), 4,4'-bipyridyl (16 mg, 0.1 mmol), and 3 ml of H2O. The tube was sealed and heated in an oven to 170°C for 3 d, and then cooled to ambient temperature at the rate of 5°C h-1 to form blue crystals.

Refinement

The H atoms of the coordinated water molecules were located on a difference Fourier map and isotropically refined. All the rest H atoms were placed in geometrically idealized positions (C–H = 0.94 Å) and constrained to ride on their parent atoms with, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A portion of the crystal structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids [symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x + 2, -y + 2, -z + 1; (iii) x - 1, y, z - 1; (iv) -x + 1, -y + 1, -z + 1].

Fig. 2.

Fig. 2.

View of the positively charged polymeric chain in (I).

Fig. 3.

Fig. 3.

View of the three-dimensional supramolecular network of the title compound. The green dashed lines represent intermolecular hydrogen bonds.

Crystal data

[Ni(C10H8N2)(H2O)4](C12H8O4) Z = 1
Mr = 503.12 F(000) = 262
Triclinic, P1 Dx = 1.600 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0867 (14) Å Cell parameters from 2063 reflections
b = 7.3614 (15) Å θ = 3.2–25.4°
c = 10.418 (2) Å µ = 0.98 mm1
α = 95.51 (3)° T = 223 K
β = 102.51 (3)° Block, blue
γ = 97.27 (3)° 0.40 × 0.40 × 0.25 mm
V = 522.0 (2) Å3

Data collection

Rigaku Mercury CCD area-detector diffractometer 1884 independent reflections
Radiation source: fine-focus sealed tube 1807 reflections with I > 2σ(I)
graphite Rint = 0.018
ω scans θmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan (REQAB; Jacobson, 1998) h = −8→8
Tmin = 0.694, Tmax = 0.791 k = −8→7
4910 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.2568P] where P = (Fo2 + 2Fc2)/3
1884 reflections (Δ/σ)max < 0.001
167 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 1.0000 0.0000 0.01822 (12)
N1 0.6792 (2) 1.0320 (2) 0.19330 (14) 0.0216 (3)
O1 0.2663 (2) 1.0289 (2) 0.08405 (13) 0.0259 (3)
H1W 0.209 (4) 1.105 (4) 0.052 (3) 0.044 (8)*
H2W 0.182 (4) 0.935 (4) 0.075 (3) 0.055 (8)*
O2 0.4632 (2) 0.72250 (19) 0.01349 (16) 0.0302 (3)
H3W 0.565 (5) 0.678 (4) 0.048 (3) 0.062 (9)*
H4W 0.391 (4) 0.643 (4) −0.042 (3) 0.056 (8)*
O3 −0.03762 (19) 0.74413 (19) 0.03648 (14) 0.0323 (3)
O4 −0.22675 (19) 0.58018 (19) 0.14203 (14) 0.0303 (3)
C1 0.6170 (3) 0.9485 (3) 0.28808 (19) 0.0298 (4)
H1 0.4846 0.8961 0.2712 0.036*
C2 0.7352 (3) 0.9347 (3) 0.40847 (19) 0.0297 (4)
H2 0.6832 0.8755 0.4720 0.036*
C3 0.9324 (3) 1.0085 (2) 0.43649 (17) 0.0206 (4)
C4 0.9949 (3) 1.0998 (3) 0.33922 (18) 0.0262 (4)
H4 1.1259 1.1554 0.3539 0.031*
C5 0.8665 (3) 1.1094 (3) 0.22164 (18) 0.0249 (4)
H5 0.9127 1.1735 0.1581 0.030*
C6 0.3586 (3) 0.5704 (3) 0.5528 (2) 0.0317 (5)
H6 0.2626 0.6181 0.5898 0.038*
C7 0.4735 (3) 0.4638 (3) 0.3653 (2) 0.0325 (5)
H7 0.4564 0.4381 0.2730 0.039*
C8 0.3284 (3) 0.5354 (3) 0.41562 (19) 0.0266 (4)
C9 0.1461 (3) 0.5739 (3) 0.3316 (2) 0.0303 (4)
H9 0.0401 0.5840 0.3713 0.036*
C10 0.1196 (3) 0.5953 (3) 0.2054 (2) 0.0308 (4)
H10 0.2231 0.5798 0.1642 0.037*
C11 −0.0630 (3) 0.6423 (3) 0.12331 (19) 0.0246 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01467 (17) 0.02099 (18) 0.01691 (18) 0.00316 (12) −0.00192 (12) 0.00425 (12)
N1 0.0182 (7) 0.0255 (8) 0.0190 (8) 0.0030 (6) −0.0006 (6) 0.0042 (6)
O1 0.0187 (7) 0.0328 (8) 0.0264 (7) 0.0062 (7) 0.0024 (6) 0.0080 (6)
O2 0.0252 (8) 0.0213 (7) 0.0382 (8) 0.0035 (6) −0.0057 (6) 0.0043 (6)
O3 0.0262 (7) 0.0367 (8) 0.0355 (8) 0.0076 (6) 0.0036 (6) 0.0165 (7)
O4 0.0220 (7) 0.0323 (7) 0.0343 (8) 0.0025 (6) 0.0005 (6) 0.0086 (6)
C1 0.0180 (9) 0.0406 (12) 0.0268 (10) −0.0029 (8) −0.0017 (8) 0.0102 (9)
C2 0.0216 (9) 0.0417 (12) 0.0227 (10) −0.0039 (8) 0.0000 (8) 0.0125 (9)
C3 0.0198 (9) 0.0205 (9) 0.0185 (9) 0.0022 (7) −0.0013 (7) 0.0026 (7)
C4 0.0177 (9) 0.0336 (11) 0.0228 (9) −0.0028 (8) −0.0023 (7) 0.0064 (8)
C5 0.0228 (9) 0.0298 (10) 0.0197 (9) −0.0010 (8) 0.0010 (7) 0.0063 (8)
C6 0.0256 (10) 0.0386 (12) 0.0336 (11) 0.0115 (9) 0.0085 (9) 0.0054 (9)
C7 0.0359 (11) 0.0406 (12) 0.0205 (10) 0.0101 (9) 0.0025 (8) 0.0059 (9)
C8 0.0228 (9) 0.0247 (10) 0.0298 (10) 0.0034 (8) −0.0009 (8) 0.0074 (8)
C9 0.0242 (10) 0.0321 (11) 0.0340 (11) 0.0048 (8) 0.0033 (8) 0.0078 (9)
C10 0.0228 (10) 0.0344 (11) 0.0342 (11) 0.0049 (8) 0.0022 (8) 0.0087 (9)
C11 0.0225 (9) 0.0214 (9) 0.0261 (10) 0.0034 (7) −0.0018 (8) 0.0011 (8)

Geometric parameters (Å, °)

Ni1—O2i 2.0486 (14) C2—H2 0.9400
Ni1—O2 2.0487 (14) C3—C4 1.387 (3)
Ni1—O1i 2.0582 (14) C3—C3ii 1.483 (3)
Ni1—O1 2.0582 (14) C4—C5 1.372 (3)
Ni1—N1i 2.1093 (16) C4—H4 0.9400
Ni1—N1 2.1093 (16) C5—H5 0.9400
N1—C5 1.334 (2) C6—C7iii 1.373 (3)
N1—C1 1.336 (2) C6—C8 1.391 (3)
O1—H1W 0.79 (3) C6—H6 0.9400
O1—H2W 0.84 (3) C7—C6iii 1.373 (3)
O2—H3W 0.85 (3) C7—C8 1.389 (3)
O2—H4W 0.82 (3) C7—H7 0.9400
O3—C11 1.257 (2) C8—C9 1.472 (3)
O4—C11 1.255 (2) C9—C10 1.314 (3)
C1—C2 1.370 (3) C9—H9 0.9400
C1—H1 0.9400 C10—C11 1.489 (3)
C2—C3 1.391 (3) C10—H10 0.9400
O2i—Ni1—O2 180.0 C3—C2—H2 120.1
O2i—Ni1—O1i 90.45 (7) C4—C3—C2 116.20 (16)
O2—Ni1—O1i 89.55 (7) C4—C3—C3ii 122.0 (2)
O2i—Ni1—O1 89.55 (7) C2—C3—C3ii 121.8 (2)
O2—Ni1—O1 90.45 (7) C5—C4—C3 120.40 (17)
O1i—Ni1—O1 180.0 C5—C4—H4 119.8
O2i—Ni1—N1i 86.37 (7) C3—C4—H4 119.8
O2—Ni1—N1i 93.63 (7) N1—C5—C4 123.09 (17)
O1i—Ni1—N1i 88.07 (6) N1—C5—H5 118.5
O1—Ni1—N1i 91.93 (6) C4—C5—H5 118.5
O2i—Ni1—N1 93.63 (7) C7iii—C6—C8 120.99 (19)
O2—Ni1—N1 86.37 (7) C7iii—C6—H6 119.5
O1i—Ni1—N1 91.93 (6) C8—C6—H6 119.5
O1—Ni1—N1 88.07 (6) C6iii—C7—C8 121.49 (18)
N1i—Ni1—N1 180.0 C6iii—C7—H7 119.3
C5—N1—C1 116.72 (15) C8—C7—H7 119.3
C5—N1—Ni1 122.36 (12) C7—C8—C6 117.51 (18)
C1—N1—Ni1 120.09 (12) C7—C8—C9 123.34 (18)
Ni1—O1—H1W 109.4 (19) C6—C8—C9 119.14 (18)
Ni1—O1—H2W 116.4 (19) C10—C9—C8 125.23 (19)
H1W—O1—H2W 105 (3) C10—C9—H9 117.4
Ni1—O2—H3W 116 (2) C8—C9—H9 117.4
Ni1—O2—H4W 125 (2) C9—C10—C11 124.51 (19)
H3W—O2—H4W 109 (3) C9—C10—H10 117.7
N1—C1—C2 123.70 (17) C11—C10—H10 117.7
N1—C1—H1 118.1 O4—C11—O3 124.63 (17)
C2—C1—H1 118.1 O4—C11—C10 120.49 (17)
C1—C2—C3 119.80 (17) O3—C11—C10 114.88 (17)
C1—C2—H2 120.1

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H2W···O3 0.84 (3) 1.90 (3) 2.734 (2) 170 (3)
O1—H1W···O3iv 0.79 (3) 1.90 (3) 2.683 (2) 171 (3)
O2—H3W···O4v 0.85 (3) 1.86 (3) 2.701 (2) 172 (3)
O2—H4W···O4vi 0.82 (3) 1.95 (3) 2.754 (2) 167 (3)

Symmetry codes: (iv) −x, −y+2, −z; (v) x+1, y, z; (vi) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5150).

References

  1. Batten, S. R. & Harris, A. R. (2001). Acta Cryst. E57, m7–m8.
  2. Dong, L. Y. (2009). Acta Cryst. E65, m962–m963. [DOI] [PMC free article] [PubMed]
  3. Huang, K. L., Zuo, Y. Q., Sun, J., Chen, X., Miao, H. J., Liu, X. & Xu, H. (2008). Chin. J. Struct. Chem. 27, 1393–1397.
  4. Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  5. Li, C. P., Yu, Q., Chen, J. & Du, M. (2010). Cryst. Growth Des. 10, 2650–2660.
  6. Rigaku (2001). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036993/cv5150sup1.cif

e-67-m1397-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036993/cv5150Isup2.hkl

e-67-m1397-Isup2.hkl (92.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES