Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 3;67(Pt 10):o2560. doi: 10.1107/S1600536811035276

3-{[(Benz­yloxy)carbon­yl]amino}­butanoic acid

Taira Kimino a, Isao Fujii b,*
PMCID: PMC3201247  PMID: 22058733

Abstract

In the title compound, C12H15NO4, the butyric acid group has a stretched trans conformation. The dihedral angle between the phenyl ring and the oxycarb­oxy­amino N—(C=O)—O—C plane is 56.6 (2)°. In the crystal, an inversion dimer is formed by a pair of O—H⋯O hydrogen bonds. The dimers are further linked by N—H⋯O hydrogen bonds between amide groups, forming a tape along the b axis.

Related literature

For general background to 3-amino­butanoic acid, see: Cohen et al. (2011). For bond-length data, see: Allen et al. (1987). For structures of related metallo-organic compounds, see: Bryan et al. (1961); Böhm & Seebach (2000); Gross & Vahrenkamo (2005).graphic file with name e-67-o2560-scheme1.jpg

Experimental

Crystal data

  • C12H15NO4

  • M r = 237.25

  • Monoclinic, Inline graphic

  • a = 23.1413 (7) Å

  • b = 4.9589 (4) Å

  • c = 11.0879 (6) Å

  • β = 103.075 (6)°

  • V = 1239.41 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.8 mm−1

  • T = 297 K

  • 0.4 × 0.2 × 0.2 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.74, T max = 0.856

  • 2696 measured reflections

  • 2547 independent reflections

  • 1669 reflections with > 2σ(i)

  • R int = 0.023

  • 3 standard reflections every 300 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.131

  • S = 1.02

  • 2547 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035276/is2769sup1.cif

e-67-o2560-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035276/is2769Isup2.hkl

e-67-o2560-Isup2.hkl (122.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035276/is2769Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 1.18 (3) 1.48 (3) 2.650 (2) 177 (2)
N1—HN1⋯O3ii 0.85 (2) 2.04 (2) 2.865 (2) 165 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors would like to thank T. Watadani of Daito Chem and Dr Y. Takahasi for their experimental support.

supplementary crystallographic information

Comment

Solid-phase synthesis is now the accepted method for peptide synthesis, in which the protected natural or non-natural amino acids are widely used. 3-Aminobutanoic acid (BABA) is one of the non-protein amino acids, and it attracts attentions to building block. At the same time, BABA potentially possesses various bioactivities. Downy mildew of lettuce (Bremia lactucae) is a serious disease, but BABA is considered with one of the disease resistance inducers (Cohen et al., 2011). Despite the agrichemical or pharmaceutical desires, crystal structures of BABA derivatives have not been cleared except for the structures of some metallo-organic compounds (Bryan et al., 1961; Gross & Vahrenkamo, 2005; Böhm & Seebach, 2000) because of its difficulty in crystallization.

Fortunately, the title compound, 3-benzyloxycarbonylaminobutanoic acid (Cbz-BABA), (I), was crystallized, and we herein report on the crystal structure. The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges except for the O-H bond length at the carboxy dimer. The part of BABA is essentially similar with that reported by Gross & Vahrenkamo (2005). The butyric acid group owns a stretched trans-conformation (O1-C1-C2-C3-C4). At the β-position the benzyloxycarboxyamino group is attached perpendicular to the butyric acid group. The phenyl group is twisted against the least-squares plane of the oxycarboxyamino group (N1/C5/O3/O4/C6/C7) with the dihedral angle of 56.6 (2)°.

In the crystal structure, an enantiomer makes a planar structure with the intermolecular hydrogen bond (N1—HN1···O3) along the b axis. The planar structure is stacked to the enantiopure layer along the c axis. The carboxy dimer is made from the enantiomeric isomers with the intermolecular hydrogen bond (O1—H1···O2). The H atom is shared by carboxy dimer then the bond distance O1—H1 is longer than that of general carboxy group. The hydrophobic and hydrophilic layers are well separated along the a axis. The structure shows a herring bone stacking mode (Fig. 2).

Experimental

The title compound was purchased from Aldrich-Sigma Co. Ltd. Rod-like colourless crystals suitable for X-ray diffraction were obtained by vapour-phase diffusion of an ethanol and chloroform mixture solution at 297 K.

Refinement

All H atoms were located in a difference-Fourier map. H atoms bonded to N and O atoms were then refined isotropically. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing view of the title compound. Dashed lines indicate O—H···O and N—H···O interactions [symmetry codes: (i) - x, 1 - y, 1 - z; (ii) x, y - 1, z].

Crystal data

C12H15NO4 F(000) = 504
Mr = 237.25 Dx = 1.271 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 23.1413 (7) Å θ = 30.0–35.0°
b = 4.9589 (4) Å µ = 0.8 mm1
c = 11.0879 (6) Å T = 297 K
β = 103.075 (6)° Rod, colourless
V = 1239.41 (13) Å3 0.4 × 0.2 × 0.2 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.023
Radiation source: sealed X-ray tube θmax = 74.9°, θmin = 2.0°
ω/2θ scans h = −28→28
Absorption correction: ψ scan (North et al., 1968) k = −6→0
Tmin = 0.74, Tmax = 0.856 l = −13→0
2696 measured reflections 3 standard reflections every 300 reflections
2547 independent reflections intensity decay: none
1669 reflections with > 2σ(i)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3091P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2547 reflections Δρmax = 0.14 e Å3
164 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0020 (4)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.00381 (6) 0.2239 (3) 0.60261 (14) 0.0693 (5)
O2 0.05705 (6) 0.5990 (3) 0.61469 (14) 0.0671 (5)
O3 0.20820 (7) 0.8467 (3) 0.78378 (18) 0.0841 (7)
O4 0.25967 (6) 0.5196 (3) 0.71327 (15) 0.0686 (5)
N1 0.18104 (7) 0.4105 (3) 0.78288 (15) 0.0513 (5)
C1 0.04634 (8) 0.3818 (4) 0.65874 (18) 0.0501 (6)
C2 0.07918 (8) 0.2819 (4) 0.78120 (17) 0.0536 (6)
C3 0.13228 (8) 0.4484 (4) 0.84471 (16) 0.0511 (6)
C4 0.15096 (11) 0.3763 (6) 0.9808 (2) 0.0862 (9)
C5 0.21503 (8) 0.6116 (4) 0.76220 (18) 0.0536 (6)
C6 0.29917 (11) 0.7210 (6) 0.6843 (3) 0.1074 (13)
C7 0.34503 (10) 0.5785 (5) 0.6328 (3) 0.0770 (9)
C8 0.40323 (12) 0.6072 (8) 0.6870 (3) 0.1103 (13)
C9 0.44560 (14) 0.4824 (10) 0.6379 (4) 0.142 (2)
C10 0.4307 (2) 0.3267 (10) 0.5382 (5) 0.150 (2)
C11 0.3731 (2) 0.2940 (10) 0.4833 (4) 0.1460 (19)
C12 0.32992 (13) 0.4217 (8) 0.5303 (3) 0.1111 (13)
H1 −0.0229 (13) 0.297 (7) 0.505 (3) 0.135 (11)*
HN1 0.1926 (9) 0.252 (5) 0.7727 (19) 0.066 (6)*
H2A 0.09260 0.09990 0.77080 0.0640*
H2B 0.05180 0.27210 0.83560 0.0640*
H3 0.12080 0.63910 0.83810 0.0610*
H4A 0.16100 0.18830 0.98910 0.1290*
H4B 0.11890 0.41270 1.02020 0.1290*
H4C 0.18490 0.48230 1.01930 0.1290*
H6A 0.31780 0.82000 0.75840 0.1290*
H6B 0.27740 0.84750 0.62410 0.1290*
H8 0.41460 0.71210 0.75800 0.1320*
H9 0.48550 0.50720 0.67510 0.1710*
H10 0.45980 0.24110 0.50670 0.1790*
H11 0.36230 0.18520 0.41350 0.1750*
H12 0.29020 0.39990 0.49140 0.1330*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0694 (9) 0.0549 (8) 0.0760 (10) −0.0139 (7) 0.0005 (7) 0.0066 (7)
O2 0.0658 (9) 0.0513 (8) 0.0775 (10) −0.0062 (7) 0.0023 (7) 0.0186 (7)
O3 0.0803 (11) 0.0347 (7) 0.1441 (16) 0.0014 (7) 0.0394 (10) −0.0024 (8)
O4 0.0618 (8) 0.0487 (8) 0.1039 (11) −0.0028 (6) 0.0369 (8) 0.0035 (8)
N1 0.0533 (9) 0.0339 (8) 0.0699 (10) 0.0031 (7) 0.0207 (7) −0.0012 (7)
C1 0.0456 (9) 0.0415 (9) 0.0642 (11) 0.0040 (8) 0.0145 (8) 0.0028 (9)
C2 0.0532 (10) 0.0466 (10) 0.0626 (12) 0.0030 (8) 0.0162 (9) 0.0091 (9)
C3 0.0533 (10) 0.0466 (10) 0.0551 (11) 0.0056 (8) 0.0161 (8) −0.0010 (8)
C4 0.0801 (15) 0.119 (2) 0.0582 (13) 0.0027 (16) 0.0129 (11) 0.0025 (14)
C5 0.0518 (10) 0.0385 (10) 0.0696 (12) 0.0031 (8) 0.0119 (9) 0.0036 (9)
C6 0.0802 (16) 0.0665 (16) 0.194 (3) −0.0051 (13) 0.0697 (19) 0.0239 (19)
C7 0.0555 (12) 0.0749 (16) 0.1052 (19) −0.0028 (11) 0.0281 (12) 0.0230 (15)
C8 0.0677 (16) 0.140 (3) 0.124 (2) −0.0100 (18) 0.0234 (16) −0.005 (2)
C9 0.0618 (17) 0.180 (4) 0.190 (4) 0.009 (2) 0.038 (2) 0.004 (3)
C10 0.123 (3) 0.147 (4) 0.212 (5) 0.000 (3) 0.108 (3) −0.013 (3)
C11 0.148 (3) 0.170 (4) 0.142 (3) −0.040 (3) 0.079 (3) −0.037 (3)
C12 0.0780 (18) 0.142 (3) 0.113 (2) −0.017 (2) 0.0209 (17) 0.007 (2)

Geometric parameters (Å, °)

O1—C1 1.301 (2) C9—C10 1.328 (7)
O2—C1 1.231 (2) C10—C11 1.344 (7)
O3—C5 1.208 (2) C11—C12 1.381 (6)
O4—C5 1.350 (2) C2—H2A 0.9700
O4—C6 1.438 (3) C2—H2B 0.9700
O1—H1 1.18 (3) C3—H3 0.9800
N1—C3 1.459 (2) C4—H4A 0.9600
N1—C5 1.322 (3) C4—H4B 0.9600
N1—HN1 0.85 (2) C4—H4C 0.9600
C1—C2 1.483 (3) C6—H6A 0.9700
C2—C3 1.515 (3) C6—H6B 0.9700
C3—C4 1.515 (3) C8—H8 0.9300
C6—C7 1.492 (4) C9—H9 0.9300
C7—C12 1.356 (5) C10—H10 0.9300
C7—C8 1.353 (4) C11—H11 0.9300
C8—C9 1.372 (5) C12—H12 0.9300
O1···C2i 3.357 (2) H1···O1iii 2.74 (3)
O1···O1ii 3.156 (2) H1···O2iii 1.48 (3)
O1···O2iii 2.650 (2) H1···C1iii 2.38 (3)
O2···O1iii 2.650 (2) H1···H1iii 2.29 (5)
O2···N1 3.188 (2) HN1···O3vii 2.04 (2)
O2···C1iii 3.412 (2) HN1···H2A 2.4300
O3···N1iv 2.865 (2) H2A···HN1 2.4300
O1···H2Bi 2.7500 H2A···H3vii 2.4500
O1···H1iii 2.74 (3) H2B···H4B 2.3800
O2···H2Bv 2.8300 H2B···O1v 2.7500
O2···H3 2.5900 H2B···O2i 2.8300
O2···H1iii 1.48 (3) H2B···C1i 3.0000
O3···HN1iv 2.04 (2) H3···O2 2.5900
O3···H3 2.4600 H3···O3 2.4600
O3···H6A 2.6200 H3···H2Aiv 2.4500
O3···H6B 2.6400 H4B···H2B 2.3800
O3···H12vi 2.9200 H4B···C1ix 2.9100
O4···H12 2.7700 H4C···H6Bvi 2.3500
N1···O2 3.188 (2) H6A···O3 2.6200
N1···O3vii 2.865 (2) H6A···H8 2.3000
C1···O2iii 3.412 (2) H6B···O3 2.6400
C2···O1v 3.357 (2) H6B···H4Cx 2.3500
C1···H2Bv 3.0000 H8···H6A 2.3000
C1···H1iii 2.38 (3) H12···O4 2.7700
C1···H4Bviii 2.9100 H12···O3x 2.9200
C5—O4—C6 115.96 (18) C3—C2—H2B 108.00
C1—O1—H1 116.0 (16) H2A—C2—H2B 107.00
C3—N1—C5 122.56 (16) N1—C3—H3 108.00
C5—N1—HN1 117.3 (15) C2—C3—H3 108.00
C3—N1—HN1 118.9 (15) C4—C3—H3 108.00
O1—C1—O2 122.37 (18) C3—C4—H4A 109.00
O1—C1—C2 114.36 (17) C3—C4—H4B 109.00
O2—C1—C2 123.24 (18) C3—C4—H4C 109.00
C1—C2—C3 115.92 (16) H4A—C4—H4B 110.00
C2—C3—C4 110.66 (17) H4A—C4—H4C 109.00
N1—C3—C2 110.09 (15) H4B—C4—H4C 109.00
N1—C3—C4 111.15 (17) O4—C6—H6A 110.00
O3—C5—N1 125.75 (19) O4—C6—H6B 110.00
O3—C5—O4 123.51 (18) C7—C6—H6A 110.00
O4—C5—N1 110.74 (17) C7—C6—H6B 110.00
O4—C6—C7 107.4 (2) H6A—C6—H6B 109.00
C6—C7—C8 120.2 (3) C7—C8—H8 120.00
C6—C7—C12 121.4 (3) C9—C8—H8 120.00
C8—C7—C12 118.4 (3) C8—C9—H9 119.00
C7—C8—C9 120.4 (3) C10—C9—H9 119.00
C8—C9—C10 121.2 (4) C9—C10—H10 120.00
C9—C10—C11 119.4 (4) C11—C10—H10 120.00
C10—C11—C12 120.1 (4) C10—C11—H11 120.00
C7—C12—C11 120.5 (3) C12—C11—H11 120.00
C1—C2—H2A 108.00 C7—C12—H12 120.00
C1—C2—H2B 108.00 C11—C12—H12 120.00
C3—C2—H2A 108.00
C6—O4—C5—O3 −1.5 (3) O4—C6—C7—C8 −122.5 (3)
C6—O4—C5—N1 178.82 (19) O4—C6—C7—C12 58.6 (4)
C5—O4—C6—C7 179.6 (2) C6—C7—C8—C9 −178.2 (3)
C5—N1—C3—C2 139.00 (18) C12—C7—C8—C9 0.7 (5)
C5—N1—C3—C4 −98.0 (2) C6—C7—C12—C11 179.3 (3)
C3—N1—C5—O3 −4.8 (3) C8—C7—C12—C11 0.3 (5)
C3—N1—C5—O4 174.88 (16) C7—C8—C9—C10 −1.4 (7)
O1—C1—C2—C3 175.10 (16) C8—C9—C10—C11 1.0 (8)
O2—C1—C2—C3 −6.8 (3) C9—C10—C11—C12 0.1 (7)
C1—C2—C3—N1 −73.0 (2) C10—C11—C12—C7 −0.8 (7)
C1—C2—C3—C4 163.72 (18)

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y+1, z; (v) −x, y+1/2, −z+3/2; (vi) x, −y+3/2, z+1/2; (vii) x, y−1, z; (viii) x, −y+1/2, z−1/2; (ix) x, −y+1/2, z+1/2; (x) x, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2iii 1.18 (3) 1.48 (3) 2.650 (2) 177 (2)
N1—HN1···O3vii 0.85 (2) 2.04 (2) 2.865 (2) 165 (2)
C3—H3···O3 0.98 2.46 2.825 (3) 101.

Symmetry codes: (iii) −x, −y+1, −z+1; (vii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2769).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Böhm, A. & Seebach, D. (2000). Helv. Chim. Acta, 83, 3262–3278.
  3. Bryan, R. F., Poltak, R. J. & Tomita, K.-I. (1961). Acta Cryst. 14, 1125–1130.
  4. Cohen, Y., Rubin, A. E. & Vaknin, M. (2011). Eur. J. Plant Pathol. 130, 13–27.
  5. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Gross, F. & Vahrenkamo, H. (2005). Inorg. Chem. 44, 4433–4440. [DOI] [PubMed]
  9. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  10. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035276/is2769sup1.cif

e-67-o2560-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035276/is2769Isup2.hkl

e-67-o2560-Isup2.hkl (122.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035276/is2769Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES