Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1373. doi: 10.1107/S1600536811035963

catena-Poly[[dichloridozinc(II)]-μ-1,4-bis­(pyridin-2-ylmeth­oxy)benzene-κ2 N:N′]

Ying Liu a,*, Hong-Sen Zhang b, Ming-Xing Hu a, Guang-Feng Hou c, Jin-Sheng Gao c
PMCID: PMC3201249  PMID: 22058696

Abstract

In the title compound, [ZnCl2(C18H16N2O2)]n, the ZnII ion is tetra­hedrally coordinated by two Cl atoms and by two N atoms from different 1,4-bis­(pyridin-2-ylmeth­oxy)benzene ligands. The ligand shows a non-planar configuration, in which the dihedral angles between the two terminal pyridine rings and the linking benzene ring are 7.86 (12) and 70.74 (11)°. The flexible ligand coordinates to the ZnII ions, generating an infinite chain propagating along [001].

Related literature

For the synthesis and general background to flexible pyridyl-based ligands, see: Wang et al. (2007); Liu et al. (2010a ,b )graphic file with name e-67-m1373-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C18H16N2O2)]

  • M r = 428.62

  • Triclinic, Inline graphic

  • a = 8.8797 (18) Å

  • b = 10.458 (2) Å

  • c = 10.561 (2) Å

  • α = 87.55 (3)°

  • β = 73.50 (3)°

  • γ = 72.31 (3)°

  • V = 894.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.17 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.719, T max = 0.760

  • 8755 measured reflections

  • 4028 independent reflections

  • 3222 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.073

  • S = 1.05

  • 4028 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035963/fj2447sup1.cif

e-67-m1373-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035963/fj2447Isup2.hkl

e-67-m1373-Isup2.hkl (197.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Educational Commission of Heilongjiang Province of China (project No. 12511472), Heilongjiang Institute of Technology and Heilongjiang University for supporting this work.

supplementary crystallographic information

Comment

The metal-organic frameworks are determined by many factors, in which the organic ligands as building blocks and the kinds of metal ions are most important. Many pyridyl-containing ligands with strong coordination ability and functional characteristics have been studied over the recent years (Wang et al., 2007). The flexible bipyridyl ligands could react with transitional metals to construct the helical-like structures. Recently, as a continuration of previous works (Liu et al., 2010a, b), we report the crystal structure of the title compound here.

In the title compound, [(ZnCl2)(C18H16N2O2)]n, each ZnII atom is four-coordinated by two Cl atoms and two N atoms from different 1,4-bis(pyridin-2-ylmethoxy)benzene ligands to form a distorted tetrahedral geometry configuration. The Zn-Cl bond lengths are 2.228 (1) and 2.253 (1) Å, and Zn-N bond lengths are 2.090 (2) and 2.080 (2) Å. The Cl(1)-Zn-Cl(2) bond angle (110.45 °) and the N(1)-Zn-N(2) bond angle (111.03 °) are nearly equal to 120 ° in order to minimize the steric hindrance (Fig. 1, Table 1).

The ligand is oriented in a divergent fashion, in which the dihedral angles between two terminal pyridine rings with the linking benzene ring are 7.86 (12) and 70.74 (11)°. In the crystal packing, the flexible ligands link the ZnII atoms to generate an infinite chain running along [001].

Experimental

The 1,4-bis(pyridin-2-ylmethoxy)benzene ligand was synthesized as the reference method (Liu et al., 2010a,b). The title compound was produced by reaction of ZnCl2 (0.50 mmol,0.068 g) in water (5 mL) and 1,4-bis(pyridin-2-ylmethoxy)benzene (0.5 mmol, 0.146 g) in 5 mL methanol under constant stirring, and filtered after stirring for about one hour. The filtate was maintained for about one week under the room temperature to give colorless block-like crystals suitable for X-ray analysis.

Refinement

The anormal reflection datas (4 -5 6), (-3 2 0) and (2 -3 1) have been omitted during the refinement. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms [Symmetry code I = x, y, z-1; II = x, y, z+1].

Fig. 2.

Fig. 2.

A partial packing view, showing the chain structure along b axis.

Crystal data

[ZnCl2(C18H16N2O2)] Z = 2
Mr = 428.62 F(000) = 436
Triclinic, P1 Dx = 1.591 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8797 (18) Å Cell parameters from 6941 reflections
b = 10.458 (2) Å θ = 3.6–27.5°
c = 10.561 (2) Å µ = 1.69 mm1
α = 87.55 (3)° T = 293 K
β = 73.50 (3)° Block, colorless
γ = 72.31 (3)° 0.21 × 0.19 × 0.17 mm
V = 894.9 (3) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 4028 independent reflections
Radiation source: fine-focus sealed tube 3222 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scan θmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −10→11
Tmin = 0.719, Tmax = 0.760 k = −13→13
8755 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.1894P] where P = (Fo2 + 2Fc2)/3
4028 reflections (Δ/σ)max = 0.001
226 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8929 (3) 0.5157 (2) 1.3377 (2) 0.0426 (5)
H1 0.8933 0.5634 1.4099 0.051*
C2 0.9801 (3) 0.3817 (2) 1.3198 (3) 0.0503 (6)
H2 1.0380 0.3394 1.3786 0.060*
C3 0.9800 (3) 0.3111 (2) 1.2128 (3) 0.0508 (6)
H3 1.0393 0.2203 1.1976 0.061*
C4 0.8915 (3) 0.3759 (2) 1.1287 (2) 0.0438 (6)
H4 0.8894 0.3293 1.0565 0.053*
C5 0.8052 (3) 0.5115 (2) 1.1526 (2) 0.0331 (5)
C6 0.7058 (3) 0.5875 (2) 1.0652 (2) 0.0369 (5)
H6A 0.5895 0.6153 1.1133 0.044*
H6B 0.7376 0.6674 1.0367 0.044*
C7 0.6566 (3) 0.5573 (2) 0.8599 (2) 0.0377 (5)
C8 0.6904 (3) 0.4718 (2) 0.7515 (2) 0.0415 (5)
H8 0.7590 0.3840 0.7478 0.050*
C9 0.6227 (3) 0.5165 (2) 0.6498 (2) 0.0401 (5)
H9 0.6442 0.4583 0.5782 0.048*
C10 0.5228 (3) 0.6472 (2) 0.6532 (2) 0.0353 (5)
C11 0.4855 (3) 0.7321 (2) 0.7619 (2) 0.0438 (6)
H11 0.4157 0.8194 0.7658 0.053*
C12 0.5525 (3) 0.6863 (2) 0.8651 (2) 0.0448 (6)
H12 0.5270 0.7432 0.9386 0.054*
C13 0.3676 (3) 0.8196 (2) 0.5444 (2) 0.0373 (5)
H13A 0.4243 0.8803 0.5609 0.045*
H13B 0.2650 0.8351 0.6145 0.045*
C14 0.3322 (3) 0.8458 (2) 0.4139 (2) 0.0325 (5)
C15 0.1734 (3) 0.8713 (2) 0.4044 (2) 0.0396 (5)
H15 0.0900 0.8629 0.4778 0.047*
C16 0.1382 (3) 0.9091 (2) 0.2865 (3) 0.0450 (6)
H16 0.0322 0.9250 0.2792 0.054*
C17 0.2624 (3) 0.9227 (2) 0.1811 (3) 0.0460 (6)
H17 0.2419 0.9512 0.1013 0.055*
C18 0.4196 (3) 0.8933 (2) 0.1949 (2) 0.0407 (5)
H18 0.5040 0.9021 0.1225 0.049*
Cl1 0.76914 (7) 0.83611 (6) 0.47450 (6) 0.04153 (14)
Cl2 0.81884 (8) 0.89409 (6) 0.12085 (6) 0.04904 (16)
N1 0.8066 (2) 0.58173 (17) 1.25574 (17) 0.0322 (4)
N2 0.4562 (2) 0.85272 (17) 0.30782 (18) 0.0329 (4)
O1 0.7344 (2) 0.50350 (16) 0.95442 (16) 0.0488 (4)
O2 0.4678 (2) 0.68394 (15) 0.54293 (15) 0.0416 (4)
Zn1 0.70586 (3) 0.78909 (2) 0.29601 (3) 0.03361 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0489 (14) 0.0418 (12) 0.0389 (13) −0.0072 (11) −0.0224 (11) 0.0025 (10)
C2 0.0581 (16) 0.0458 (14) 0.0492 (16) −0.0070 (12) −0.0297 (13) 0.0140 (12)
C3 0.0563 (16) 0.0348 (12) 0.0540 (17) −0.0014 (12) −0.0184 (13) 0.0058 (11)
C4 0.0527 (14) 0.0372 (12) 0.0387 (14) −0.0083 (11) −0.0142 (11) −0.0014 (10)
C5 0.0334 (11) 0.0354 (11) 0.0295 (11) −0.0095 (9) −0.0089 (9) 0.0034 (9)
C6 0.0449 (13) 0.0384 (11) 0.0287 (12) −0.0084 (10) −0.0169 (10) −0.0003 (9)
C7 0.0503 (13) 0.0351 (11) 0.0323 (12) −0.0120 (11) −0.0201 (11) 0.0018 (9)
C8 0.0590 (15) 0.0292 (11) 0.0384 (13) −0.0087 (11) −0.0219 (12) 0.0011 (9)
C9 0.0594 (15) 0.0318 (11) 0.0343 (13) −0.0152 (11) −0.0192 (11) −0.0026 (9)
C10 0.0442 (13) 0.0363 (11) 0.0307 (12) −0.0130 (10) −0.0181 (10) 0.0022 (9)
C11 0.0543 (15) 0.0378 (12) 0.0378 (13) −0.0029 (11) −0.0218 (12) −0.0034 (10)
C12 0.0567 (15) 0.0397 (12) 0.0347 (13) 0.0002 (11) −0.0226 (12) −0.0082 (10)
C13 0.0384 (12) 0.0391 (11) 0.0310 (12) −0.0038 (10) −0.0127 (10) −0.0028 (9)
C14 0.0351 (11) 0.0269 (10) 0.0356 (12) −0.0034 (9) −0.0161 (10) −0.0033 (8)
C15 0.0367 (12) 0.0382 (12) 0.0448 (14) −0.0080 (10) −0.0164 (10) −0.0017 (10)
C16 0.0382 (13) 0.0423 (13) 0.0575 (16) −0.0031 (11) −0.0271 (12) −0.0031 (11)
C17 0.0532 (15) 0.0444 (13) 0.0433 (14) −0.0020 (12) −0.0321 (13) 0.0031 (11)
C18 0.0440 (13) 0.0407 (12) 0.0342 (13) −0.0026 (11) −0.0175 (11) 0.0029 (10)
Cl1 0.0482 (3) 0.0434 (3) 0.0426 (3) −0.0150 (3) −0.0264 (3) 0.0013 (2)
Cl2 0.0539 (4) 0.0542 (3) 0.0416 (3) −0.0198 (3) −0.0154 (3) 0.0129 (3)
N1 0.0331 (9) 0.0344 (9) 0.0291 (9) −0.0069 (8) −0.0127 (8) 0.0033 (7)
N2 0.0343 (9) 0.0324 (9) 0.0307 (10) −0.0022 (8) −0.0155 (8) −0.0011 (7)
O1 0.0704 (12) 0.0377 (8) 0.0383 (10) −0.0005 (8) −0.0320 (9) −0.0043 (7)
O2 0.0607 (10) 0.0338 (8) 0.0359 (9) −0.0084 (8) −0.0287 (8) −0.0001 (6)
Zn1 0.03523 (15) 0.03499 (14) 0.03301 (15) −0.00713 (11) −0.01731 (11) 0.00198 (10)

Geometric parameters (Å, °)

C1—N1 1.348 (3) C11—C12 1.387 (3)
C1—C2 1.371 (3) C11—H11 0.9300
C1—H1 0.9300 C12—H12 0.9300
C2—C3 1.376 (4) C13—O2 1.426 (3)
C2—H2 0.9300 C13—C14 1.495 (3)
C3—C4 1.374 (3) C13—H13A 0.9700
C3—H3 0.9300 C13—H13B 0.9700
C4—C5 1.387 (3) C14—N2 1.346 (3)
C4—H4 0.9300 C14—C15 1.385 (3)
C5—N1 1.344 (3) C15—C16 1.381 (3)
C5—C6 1.496 (3) C15—H15 0.9300
C6—O1 1.410 (3) C16—C17 1.364 (4)
C6—H6A 0.9700 C16—H16 0.9300
C6—H6B 0.9700 C17—C18 1.384 (3)
C7—C12 1.377 (3) C17—H17 0.9300
C7—O1 1.378 (3) C18—N2 1.341 (3)
C7—C8 1.390 (3) C18—H18 0.9300
C8—C9 1.373 (3) Cl1—Zn1 2.2271 (7)
C8—H8 0.9300 Cl2—Zn1 2.2530 (10)
C9—C10 1.380 (3) N1—Zn1i 2.0898 (18)
C9—H9 0.9300 N2—Zn1 2.0803 (18)
C10—C11 1.381 (3) Zn1—N1ii 2.0898 (18)
C10—O2 1.383 (3)
N1—C1—C2 123.2 (2) C7—C12—H12 119.7
N1—C1—H1 118.4 C11—C12—H12 119.7
C2—C1—H1 118.4 O2—C13—C14 109.20 (17)
C1—C2—C3 118.5 (2) O2—C13—H13A 109.8
C1—C2—H2 120.8 C14—C13—H13A 109.8
C3—C2—H2 120.8 O2—C13—H13B 109.8
C4—C3—C2 119.4 (2) C14—C13—H13B 109.8
C4—C3—H3 120.3 H13A—C13—H13B 108.3
C2—C3—H3 120.3 N2—C14—C15 120.9 (2)
C3—C4—C5 119.4 (2) N2—C14—C13 118.31 (19)
C3—C4—H4 120.3 C15—C14—C13 120.6 (2)
C5—C4—H4 120.3 C16—C15—C14 120.4 (2)
N1—C5—C4 121.7 (2) C16—C15—H15 119.8
N1—C5—C6 116.45 (18) C14—C15—H15 119.8
C4—C5—C6 121.9 (2) C17—C16—C15 118.5 (2)
O1—C6—C5 108.69 (18) C17—C16—H16 120.8
O1—C6—H6A 110.0 C15—C16—H16 120.8
C5—C6—H6A 110.0 C16—C17—C18 118.8 (2)
O1—C6—H6B 110.0 C16—C17—H17 120.6
C5—C6—H6B 110.0 C18—C17—H17 120.6
H6A—C6—H6B 108.3 N2—C18—C17 123.1 (2)
C12—C7—O1 125.3 (2) N2—C18—H18 118.4
C12—C7—C8 119.3 (2) C17—C18—H18 118.4
O1—C7—C8 115.4 (2) C5—N1—C1 117.94 (18)
C9—C8—C7 120.1 (2) C5—N1—Zn1i 127.03 (14)
C9—C8—H8 119.9 C1—N1—Zn1i 114.79 (14)
C7—C8—H8 119.9 C18—N2—C14 118.08 (19)
C8—C9—C10 120.5 (2) C18—N2—Zn1 115.68 (15)
C8—C9—H9 119.8 C14—N2—Zn1 125.98 (14)
C10—C9—H9 119.8 C7—O1—C6 117.33 (17)
C9—C10—C11 119.8 (2) C10—O2—C13 116.16 (17)
C9—C10—O2 115.81 (19) N2—Zn1—N1ii 111.05 (7)
C11—C10—O2 124.4 (2) N2—Zn1—Cl1 115.74 (6)
C10—C11—C12 119.6 (2) N1ii—Zn1—Cl1 107.18 (6)
C10—C11—H11 120.2 N2—Zn1—Cl2 103.67 (6)
C12—C11—H11 120.2 N1ii—Zn1—Cl2 108.57 (6)
C7—C12—C11 120.6 (2) Cl1—Zn1—Cl2 110.47 (3)

Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2447).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559–1568.
  3. Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630–632.
  4. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, S.-N., Xing, H., Li, Y.-Z., Bai, J., Scheer, M., Pan, Y. & You, X.-Z. (2007). Chem. Commun. pp. 2293–2295. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035963/fj2447sup1.cif

e-67-m1373-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035963/fj2447Isup2.hkl

e-67-m1373-Isup2.hkl (197.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES