Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1338. doi: 10.1107/S1600536811035215

Bromidotetra­kis­(2-isopropyl-1H-imidazole-κN 3)copper(II) bromide

Sylwia Godlewska a, Joanna Socha a, Katarzyna Baranowska a, Anna Dołęga a,*
PMCID: PMC3201253  PMID: 22064905

Abstract

The CuII atom in the title salt, [CuBr(C6H10N2)4]Br, is coordinated in a square-pyramidal geometry by four imidazole N atoms and one bromide anion that is located at the apex of the pyramid. The cations and the anions form a two-dimensional network parallel to (001) through N—H⋯Br hydrogen bonds.

Related literature

For similar compounds, see: Hossaini Sadr et al. (2004); Li et al. (2007); Liu et al. (2007).graphic file with name e-67-m1338-scheme1.jpg

Experimental

Crystal data

  • [CuBr(C6H10N2)4]Br

  • M r = 664

  • Monoclinic, Inline graphic

  • a = 10.7094 (7) Å

  • b = 19.9917 (6) Å

  • c = 16.7885 (19) Å

  • β = 121.552 (7)°

  • V = 3063.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.35 mm−1

  • T = 120 K

  • 0.41 × 0.25 × 0.23 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.628, T max = 1

  • 11133 measured reflections

  • 5710 independent reflections

  • 4597 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.092

  • S = 1.05

  • 5710 reflections

  • 324 parameters

  • H-atom parameters constrained

  • Δρmax = 1.86 e Å−3

  • Δρmin = −1.04 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035215/ng5221sup1.cif

e-67-m1338-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035215/ng5221Isup2.hkl

e-67-m1338-Isup2.hkl (273.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br2 0.88 2.48 3.358 (2) 175
N4—H4A⋯Br2i 0.88 2.48 3.342 (2) 167
N6—H6D⋯Br2ii 0.88 2.53 3.351 (2) 155
N8—H8A⋯Br2iii 0.88 2.49 3.362 (2) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

SA thanks the Polish Ministry of Science and Higher Education for financial support (decision Nr 155/03/E-359/M/2011).

supplementary crystallographic information

Comment

Title compound was synthesized as a substrate for further synthesis of mixed ligand copper complexes.

The structure of the complex ion in (I) is similar to those described earlier (Hossaini Sadr et al. (2004); Li et al. (2007); Liu et al. (2007)). However, Cu1—Br1 bond in (I) [2.6608 (6) Å] is significantly shorter compared to the Cu1—Br1 bond found in bromotetrakis(1H-imidazole-κN3)copper(II) bromide [2.755 (1) Å] (Hossaini Sadr et al. (2004)). The steric hindrance introduced with the isopropyl group causes the rotation of the planes of imidazole rings and the hydrogen bond formed by Br1 in (1H-imidazole-κN3)copper(II) bromide is no longer present in (I). This obviously results in the strengthening and shortening of Cu1—Br1. The two-dimensional hydrogen bonding network in (I) consists of four NH···Br hydrogen bonds formed by Br2.

The structure of (I) is shown in Fig. 1 and crystal packing diagram is presented in Fig.2.

Experimental

Compound (I) was prepared by the reaction of 2-isopropylimidazole (0.496 g, 4.5 mmol) with CuBr2 (0.223 g, 1 mmol) in methanol and slow evaporation of solvent from the reaction solution.

Refinement

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, methine C–H = 1 Å, aromatic C–H = 0.95 Å and Uiso(H)=1.2 Ueq(C)for aromatic and methine CH and 1.5Ueq(C) for methyl groups. The final difference Fourier map had a peak/hole in the vicinity of the Br atoms.

Figures

Fig. 1.

Fig. 1.

A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms of isopropyl groups have been omitted. Hydrogen bonds indicated with dashed lines.

Fig. 2.

Fig. 2.

The packing of (I) along the c axis. H atoms of isopropyl groups have been omitted. Hydrogen bonds indicated with dashed lines.

Crystal data

[CuBr(C6H10N2)4]Br F(000) = 1356
Mr = 664 Dx = 1.44 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4456 reflections
a = 10.7094 (7) Å θ = 2.5–30.0°
b = 19.9917 (6) Å µ = 3.35 mm1
c = 16.7885 (19) Å T = 120 K
β = 121.552 (7)° Prism, blue
V = 3063.0 (4) Å3 0.41 × 0.25 × 0.23 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer 5710 independent reflections
graphite 4597 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1 Rint = 0.017
ω scans θmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) h = −12→11
Tmin = 0.628, Tmax = 1 k = −14→24
11133 measured reflections l = −18→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0602P)2] where P = (Fo2 + 2Fc2)/3
5710 reflections (Δ/σ)max = 0.001
324 parameters Δρmax = 1.86 e Å3
0 restraints Δρmin = −1.04 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.31171 (3) 0.779079 (15) 0.001639 (19) 0.02020 (10)
Cu1 0.45146 (4) 0.766296 (16) 0.18655 (2) 0.01437 (10)
N1 0.6390 (3) 0.71702 (11) 0.21910 (16) 0.0171 (5)
N2 0.8002 (3) 0.64385 (13) 0.23226 (17) 0.0223 (6)
H2A 0.8388 0.6095 0.22 0.027*
N3 0.5719 (3) 0.85202 (11) 0.22788 (16) 0.0161 (5)
N4 0.7488 (3) 0.92415 (12) 0.26694 (17) 0.0215 (6)
H4A 0.8168 0.9478 0.2654 0.026*
N5 0.3114 (2) 0.81177 (11) 0.21723 (16) 0.0157 (5)
N6 0.1974 (3) 0.88848 (12) 0.24787 (17) 0.0219 (6)
H6D 0.1516 0.926 0.2444 0.026*
N7 0.3763 (3) 0.67785 (11) 0.20488 (16) 0.0176 (5)
N8 0.2343 (3) 0.60629 (12) 0.21834 (18) 0.0247 (6)
H8A 0.1554 0.5839 0.206 0.03*
C1 0.7738 (3) 0.73116 (15) 0.2985 (2) 0.0209 (7)
H1 0.7924 0.7669 0.3406 0.025*
C2 0.8743 (3) 0.68637 (15) 0.3069 (2) 0.0233 (7)
H2 0.9752 0.6847 0.3544 0.028*
C3 0.6587 (3) 0.66308 (14) 0.1806 (2) 0.0179 (6)
C4 0.5460 (3) 0.62848 (14) 0.0936 (2) 0.0194 (6)
H4 0.4525 0.6542 0.0673 0.023*
C5 0.5900 (4) 0.62837 (17) 0.0204 (2) 0.0294 (8)
H5A 0.6099 0.6743 0.0098 0.044*
H5B 0.5099 0.6097 −0.0382 0.044*
H5C 0.6782 0.6011 0.0428 0.044*
C6 0.5164 (4) 0.55681 (15) 0.1124 (2) 0.0303 (8)
H6A 0.6051 0.5298 0.1354 0.046*
H6B 0.4365 0.5373 0.0544 0.046*
H6C 0.4885 0.5576 0.1595 0.046*
C7 0.6050 (3) 0.88407 (14) 0.3097 (2) 0.0194 (6)
H7 0.5584 0.8759 0.3438 0.023*
C8 0.7131 (3) 0.92847 (15) 0.3338 (2) 0.0229 (7)
H8 0.7562 0.9571 0.3867 0.028*
C9 0.6617 (3) 0.87732 (14) 0.2031 (2) 0.0174 (6)
C10 0.6682 (3) 0.86072 (15) 0.1187 (2) 0.0220 (7)
H10 0.6014 0.8219 0.0865 0.026*
C11 0.8215 (4) 0.84085 (19) 0.1435 (3) 0.0378 (9)
H11A 0.8889 0.8783 0.1749 0.057*
H11B 0.8203 0.8294 0.0864 0.057*
H11C 0.8543 0.802 0.1853 0.057*
C12 0.6135 (4) 0.9195 (2) 0.0515 (3) 0.0472 (11)
H12A 0.5132 0.9307 0.0342 0.071*
H12B 0.6146 0.9076 −0.0048 0.071*
H12C 0.6774 0.9582 0.0817 0.071*
C13 0.2988 (3) 0.79106 (15) 0.2919 (2) 0.0196 (6)
H13 0.3342 0.7499 0.3244 0.023*
C14 0.2289 (3) 0.83811 (15) 0.3109 (2) 0.0231 (7)
H14 0.2059 0.8368 0.3584 0.028*
C15 0.2480 (3) 0.87125 (14) 0.1918 (2) 0.0177 (6)
C16 0.2259 (3) 0.91264 (15) 0.1117 (2) 0.0217 (7)
H16 0.2855 0.8924 0.0878 0.026*
C17 0.2765 (4) 0.98551 (15) 0.1391 (2) 0.0305 (8)
H17A 0.2169 1.0072 0.1604 0.046*
H17B 0.2651 1.0096 0.0848 0.046*
H17C 0.3797 0.9862 0.1896 0.046*
C18 0.0635 (4) 0.90979 (17) 0.0320 (2) 0.0328 (8)
H18A 0.0343 0.8631 0.0144 0.049*
H18B 0.0506 0.9345 −0.0222 0.049*
H18C 0.0024 0.93 0.0532 0.049*
C19 0.4603 (3) 0.64040 (14) 0.2861 (2) 0.0225 (7)
H19 0.5627 0.6452 0.3285 0.027*
C20 0.3729 (4) 0.59637 (16) 0.2946 (2) 0.0273 (7)
H20 0.4012 0.5648 0.3434 0.033*
C21 0.2391 (3) 0.65596 (14) 0.1655 (2) 0.0184 (6)
C22 0.1103 (3) 0.67838 (15) 0.0751 (2) 0.0223 (7)
H22 0.1356 0.7223 0.0585 0.027*
C23 0.0812 (4) 0.62825 (19) −0.0015 (2) 0.0395 (9)
H23A 0.17 0.6229 −0.0041 0.059*
H23B 0.0013 0.6447 −0.0619 0.059*
H23C 0.0536 0.585 0.0123 0.059*
C24 −0.0242 (4) 0.68883 (19) 0.0820 (3) 0.0389 (9)
H24A −0.054 0.646 0.0955 0.058*
H24B −0.1044 0.7066 0.0227 0.058*
H24C −0.0011 0.7206 0.1324 0.058*
Br2 0.96167 (4) 0.511235 (15) 0.20034 (3) 0.03505 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02145 (17) 0.02243 (16) 0.01668 (16) −0.00041 (12) 0.00995 (13) −0.00114 (12)
Cu1 0.01376 (19) 0.01431 (18) 0.01683 (19) −0.00066 (14) 0.00923 (16) −0.00082 (14)
N1 0.0161 (13) 0.0162 (12) 0.0198 (13) 0.0008 (10) 0.0100 (11) 0.0018 (11)
N2 0.0202 (14) 0.0239 (13) 0.0251 (14) 0.0077 (11) 0.0134 (12) 0.0037 (11)
N3 0.0166 (13) 0.0150 (11) 0.0185 (12) −0.0001 (10) 0.0105 (11) −0.0006 (10)
N4 0.0186 (13) 0.0196 (13) 0.0272 (14) −0.0056 (11) 0.0126 (12) −0.0028 (11)
N5 0.0147 (12) 0.0163 (12) 0.0173 (12) −0.0005 (10) 0.0092 (11) −0.0004 (10)
N6 0.0195 (14) 0.0232 (13) 0.0267 (14) 0.0048 (11) 0.0146 (12) −0.0015 (12)
N7 0.0159 (13) 0.0158 (12) 0.0213 (13) −0.0006 (10) 0.0099 (11) −0.0008 (11)
N8 0.0226 (14) 0.0224 (13) 0.0306 (15) −0.0056 (12) 0.0150 (13) 0.0033 (12)
C1 0.0190 (16) 0.0221 (15) 0.0180 (15) −0.0021 (13) 0.0072 (13) 0.0001 (13)
C2 0.0159 (16) 0.0271 (16) 0.0214 (15) 0.0014 (13) 0.0059 (13) 0.0038 (14)
C3 0.0191 (16) 0.0183 (14) 0.0217 (15) 0.0013 (12) 0.0144 (13) 0.0052 (13)
C4 0.0203 (16) 0.0205 (15) 0.0203 (15) 0.0027 (13) 0.0125 (13) −0.0015 (13)
C5 0.0328 (19) 0.0355 (19) 0.0232 (17) 0.0018 (16) 0.0170 (16) 0.0001 (15)
C6 0.036 (2) 0.0236 (16) 0.0334 (18) −0.0031 (15) 0.0194 (17) −0.0055 (15)
C7 0.0193 (16) 0.0206 (15) 0.0193 (15) 0.0007 (13) 0.0107 (13) −0.0015 (13)
C8 0.0195 (16) 0.0241 (16) 0.0203 (16) −0.0013 (13) 0.0071 (14) −0.0078 (13)
C9 0.0152 (15) 0.0146 (14) 0.0216 (15) −0.0002 (12) 0.0091 (13) 0.0000 (12)
C10 0.0230 (16) 0.0237 (15) 0.0236 (16) −0.0039 (13) 0.0151 (14) −0.0014 (13)
C11 0.038 (2) 0.048 (2) 0.041 (2) 0.0064 (18) 0.0295 (18) 0.0013 (18)
C12 0.052 (3) 0.066 (3) 0.030 (2) 0.022 (2) 0.027 (2) 0.018 (2)
C13 0.0194 (16) 0.0228 (15) 0.0194 (15) 0.0000 (13) 0.0121 (13) 0.0015 (13)
C14 0.0223 (16) 0.0285 (16) 0.0216 (15) −0.0029 (14) 0.0136 (14) −0.0033 (14)
C15 0.0129 (14) 0.0197 (15) 0.0184 (15) −0.0025 (12) 0.0068 (13) −0.0043 (12)
C16 0.0212 (16) 0.0219 (15) 0.0216 (15) 0.0047 (13) 0.0109 (14) 0.0013 (13)
C17 0.033 (2) 0.0225 (17) 0.0296 (18) 0.0012 (15) 0.0117 (16) 0.0066 (14)
C18 0.0311 (19) 0.0294 (17) 0.0248 (17) 0.0028 (15) 0.0056 (16) 0.0034 (15)
C19 0.0202 (16) 0.0223 (15) 0.0236 (15) 0.0034 (13) 0.0106 (14) 0.0060 (14)
C20 0.0262 (18) 0.0272 (17) 0.0256 (17) 0.0012 (14) 0.0115 (15) 0.0094 (15)
C21 0.0201 (16) 0.0158 (14) 0.0234 (15) −0.0011 (12) 0.0141 (14) −0.0008 (13)
C22 0.0182 (16) 0.0210 (15) 0.0267 (16) −0.0027 (13) 0.0111 (14) 0.0018 (14)
C23 0.028 (2) 0.045 (2) 0.0281 (19) −0.0014 (17) 0.0028 (16) −0.0066 (17)
C24 0.0246 (19) 0.047 (2) 0.045 (2) 0.0101 (17) 0.0181 (18) 0.0131 (19)
Br2 0.0299 (2) 0.01770 (17) 0.0730 (3) 0.00417 (13) 0.0376 (2) 0.00779 (16)

Geometric parameters (Å, °)

Br1—Cu1 2.6608 (6) C7—H7 0.95
Cu1—N7 2.032 (2) C8—H8 0.95
Cu1—N3 2.036 (2) C9—C10 1.492 (4)
Cu1—N5 2.037 (2) C10—C12 1.519 (5)
Cu1—N1 2.038 (2) C10—C11 1.521 (4)
N1—C3 1.330 (4) C10—H10 1
N1—C1 1.388 (4) C11—H11A 0.98
N2—C3 1.350 (4) C11—H11B 0.98
N2—C2 1.371 (4) C11—H11C 0.98
N2—H2A 0.88 C12—H12A 0.98
N3—C9 1.332 (4) C12—H12B 0.98
N3—C7 1.384 (3) C12—H12C 0.98
N4—C9 1.360 (4) C13—C14 1.340 (4)
N4—C8 1.364 (4) C13—H13 0.95
N4—H4A 0.88 C14—H14 0.95
N5—C15 1.324 (4) C15—C16 1.489 (4)
N5—C13 1.392 (4) C16—C17 1.539 (4)
N6—C15 1.354 (4) C16—C18 1.544 (4)
N6—C14 1.369 (4) C16—H16 1
N6—H6D 0.88 C17—H17A 0.98
N7—C21 1.330 (4) C17—H17B 0.98
N7—C19 1.394 (4) C17—H17C 0.98
N8—C21 1.350 (4) C18—H18A 0.98
N8—C20 1.375 (4) C18—H18B 0.98
N8—H8A 0.88 C18—H18C 0.98
C1—C2 1.350 (4) C19—C20 1.346 (4)
C1—H1 0.95 C19—H19 0.95
C2—H2 0.95 C20—H20 0.95
C3—C4 1.490 (4) C21—C22 1.489 (4)
C4—C5 1.529 (4) C22—C24 1.520 (4)
C4—C6 1.536 (4) C22—C23 1.528 (5)
C4—H4 1 C22—H22 1
C5—H5A 0.98 C23—H23A 0.98
C5—H5B 0.98 C23—H23B 0.98
C5—H5C 0.98 C23—H23C 0.98
C6—H6A 0.98 C24—H24A 0.98
C6—H6B 0.98 C24—H24B 0.98
C6—H6C 0.98 C24—H24C 0.98
C7—C8 1.342 (4)
N7—Cu1—N3 155.70 (9) C9—C10—C11 112.2 (3)
N7—Cu1—N5 87.00 (9) C12—C10—C11 110.3 (3)
N3—Cu1—N5 87.54 (9) C9—C10—H10 108.1
N7—Cu1—N1 87.23 (9) C12—C10—H10 108.1
N3—Cu1—N1 87.47 (9) C11—C10—H10 108.1
N5—Cu1—N1 154.22 (9) C10—C11—H11A 109.5
N7—Cu1—Br1 103.58 (7) C10—C11—H11B 109.5
N3—Cu1—Br1 100.72 (7) H11A—C11—H11B 109.5
N5—Cu1—Br1 102.30 (7) C10—C11—H11C 109.5
N1—Cu1—Br1 103.47 (7) H11A—C11—H11C 109.5
C3—N1—C1 106.4 (2) H11B—C11—H11C 109.5
C3—N1—Cu1 130.2 (2) C10—C12—H12A 109.5
C1—N1—Cu1 122.86 (19) C10—C12—H12B 109.5
C3—N2—C2 109.2 (2) H12A—C12—H12B 109.5
C3—N2—H2A 125.4 C10—C12—H12C 109.5
C2—N2—H2A 125.4 H12A—C12—H12C 109.5
C9—N3—C7 106.4 (2) H12B—C12—H12C 109.5
C9—N3—Cu1 130.20 (19) C14—C13—N5 109.6 (3)
C7—N3—Cu1 121.06 (18) C14—C13—H13 125.2
C9—N4—C8 108.7 (2) N5—C13—H13 125.2
C9—N4—H4A 125.7 C13—C14—N6 106.0 (3)
C8—N4—H4A 125.7 C13—C14—H14 127
C15—N5—C13 106.4 (2) N6—C14—H14 127
C15—N5—Cu1 129.80 (19) N5—C15—N6 109.2 (3)
C13—N5—Cu1 121.74 (19) N5—C15—C16 127.1 (3)
C15—N6—C14 108.9 (2) N6—C15—C16 123.7 (3)
C15—N6—H6D 125.6 C15—C16—C17 113.0 (3)
C14—N6—H6D 125.6 C15—C16—C18 109.7 (3)
C21—N7—C19 106.8 (2) C17—C16—C18 110.8 (3)
C21—N7—Cu1 129.27 (19) C15—C16—H16 107.7
C19—N7—Cu1 120.74 (19) C17—C16—H16 107.7
C21—N8—C20 108.9 (2) C18—C16—H16 107.7
C21—N8—H8A 125.5 C16—C17—H17A 109.5
C20—N8—H8A 125.5 C16—C17—H17B 109.5
C2—C1—N1 109.7 (3) H17A—C17—H17B 109.5
C2—C1—H1 125.2 C16—C17—H17C 109.5
N1—C1—H1 125.2 H17A—C17—H17C 109.5
C1—C2—N2 105.5 (3) H17B—C17—H17C 109.5
C1—C2—H2 127.3 C16—C18—H18A 109.5
N2—C2—H2 127.3 C16—C18—H18B 109.5
N1—C3—N2 109.2 (3) H18A—C18—H18B 109.5
N1—C3—C4 126.9 (3) C16—C18—H18C 109.5
N2—C3—C4 124.0 (3) H18A—C18—H18C 109.5
C3—C4—C5 110.9 (3) H18B—C18—H18C 109.5
C3—C4—C6 112.4 (3) C20—C19—N7 109.0 (3)
C5—C4—C6 110.3 (3) C20—C19—H19 125.5
C3—C4—H4 107.7 N7—C19—H19 125.5
C5—C4—H4 107.7 C19—C20—N8 106.2 (3)
C6—C4—H4 107.7 C19—C20—H20 126.9
C4—C5—H5A 109.5 N8—C20—H20 126.9
C4—C5—H5B 109.5 N7—C21—N8 109.1 (3)
H5A—C5—H5B 109.5 N7—C21—C22 126.9 (3)
C4—C5—H5C 109.5 N8—C21—C22 123.9 (3)
H5A—C5—H5C 109.5 C21—C22—C24 111.9 (3)
H5B—C5—H5C 109.5 C21—C22—C23 109.4 (3)
C4—C6—H6A 109.5 C24—C22—C23 111.7 (3)
C4—C6—H6B 109.5 C21—C22—H22 107.9
H6A—C6—H6B 109.5 C24—C22—H22 107.9
C4—C6—H6C 109.5 C23—C22—H22 107.9
H6A—C6—H6C 109.5 C22—C23—H23A 109.5
H6B—C6—H6C 109.5 C22—C23—H23B 109.5
C8—C7—N3 109.7 (3) H23A—C23—H23B 109.5
C8—C7—H7 125.1 C22—C23—H23C 109.5
N3—C7—H7 125.1 H23A—C23—H23C 109.5
C7—C8—N4 106.2 (3) H23B—C23—H23C 109.5
C7—C8—H8 126.9 C22—C24—H24A 109.5
N4—C8—H8 126.9 C22—C24—H24B 109.5
N3—C9—N4 108.9 (2) H24A—C24—H24B 109.5
N3—C9—C10 127.8 (3) C22—C24—H24C 109.5
N4—C9—C10 123.3 (3) H24A—C24—H24C 109.5
C9—C10—C12 110.0 (3) H24B—C24—H24C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Br2 0.88 2.48 3.358 (2) 175.
N4—H4A···Br2i 0.88 2.48 3.342 (2) 167.
N6—H6D···Br2ii 0.88 2.53 3.351 (2) 155.
N8—H8A···Br2iii 0.88 2.49 3.362 (2) 169.

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5221).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  3. Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324–m1326.
  4. Li, T. B., Hu, Y. L., Li, J. K. & He, G. F. (2007). Acta Cryst. E63, m2536.
  5. Liu, F.-Q., Liu, W.-L., Li, W., Li, R.-X. & Liu, G.-Y. (2007). Acta Cryst. E63, m2454.
  6. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035215/ng5221sup1.cif

e-67-m1338-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035215/ng5221Isup2.hkl

e-67-m1338-Isup2.hkl (273.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES