Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2794. doi: 10.1107/S1600536811039547

4-Amino­pyridinium cis-2-carb­oxy­cyclo­hexane-1-carboxyl­ate

Graham Smith a,*, Urs D Wermuth a
PMCID: PMC3201255  PMID: 22058823

Abstract

In the structure of the title molecular salt, C5H7N2 +·C8H11O4 , the cis monoanions associate through short O—H⋯O hydrogen bonds in the carb­oxy­lic acid groups [graph set C(7)], forming zigzag chains which extend along the c axis. These are inter­linked through pyridinium and amine N—H⋯O hydrogen bonds, giving a three-dimensional network structure.

Related literature

For the structure of racemic cis-cyclo­hexane-1,2-dicarb­oxy­lic acid, see: Benedetti et al. (1970). For the structure of the racemic ammonium and 2-amino­pyridinium salts of cis-2-carb­oxy­cyclo­hexane-1-carboxyl­ate, see: Smith & Wermuth (2011a ,b ). For graph-set analysis, see Etter et al. (1990). graphic file with name e-67-o2794-scheme1.jpg

Experimental

Crystal data

  • C5H7N2 +·C8H11O4

  • M r = 266.29

  • Orthorhombic, Inline graphic

  • a = 12.1359 (3) Å

  • b = 9.8351 (3) Å

  • c = 11.1850 (3) Å

  • V = 1335.02 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.948, T max = 0.990

  • 9670 measured reflections

  • 1709 independent reflections

  • 1448 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.060

  • S = 0.99

  • 1709 reflections

  • 188 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039547/fj2453sup1.cif

e-67-o2794-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039547/fj2453Isup2.hkl

e-67-o2794-Isup2.hkl (82.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039547/fj2453Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O12i 0.88 (2) 1.91 (2) 2.795 (2) 180 (3)
N41A—H41A⋯O12ii 0.86 (2) 2.14 (2) 2.989 (2) 168 (2)
N41A—H42A⋯O22 0.91 (2) 2.13 (2) 2.974 (2) 152.6 (18)
O21—H21⋯O11iii 0.95 (3) 1.59 (3) 2.5302 (17) 170 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology.

supplementary crystallographic information

Comment

The structures of Lewis base salts of cis-cyclohexane-1,2-dicarboxylic acid (cis-CHDC) are rare in the crystallographic literature and like the parent cis-acid (Benedetti et al., 1970), exist only in the unresolved racemic form. We have reported the structures of the 1:1 ammonium salt (Smith & Wermuth, 2011a) and the 1:1 2-aminopyridinium salt (Smith & Wermuth, 2011b) and in our parallel 1:1 stoichiometric reaction of cis-CHDC anhydride with 4-aminopyridine in 50% ethanol–water solution we also obtained minor crystals of the title compound, cis-C5H7N2+ C8H11O4- (Fig. 1) and the structure is reported here.

In the structure of the title compound, the monoanions associate through strong carboxylic acid–carboxyl O—H···O hydrogen bonds (Table 1) giving zigzag chains [graph set C(7) (Etter et al., 1990)] which extend along c (Fig. 2). The cations provide links between these chains through both pyridinium and amine NH···Ocarboxyl hydrogen bonds, resulting in a three-dimensional structure (Figs. 2,3).

Experimental

The title compound was synthesized by heating a solution of 1 mmol of cyclohexane-1,2-dicarboxylic anhydride and 1 mmol of 4-aminopyridine in 50 ml of 1:1 ethanol–water under reflux for 10 min. After concentration to 30 ml the solution was allowed to evaporate at room temperature, giving finally a residual viscous oil in which minor well formed colourless crystals of the title compound were found.

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions [C–H = 0.93–0.98 Å] and with Uiso(H) = 1.2Ueq(C), using a riding-model approximation. In the absence of a suitable heavy atom in the structure, the Friedel pairs (1332) were merged for the final cycles of the refinement. In the structure reported here, the cis-CHDC anion has the (1S,2R) configuration.

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom naming scheme for the cation the anion species in the title salt. Inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A perspective view of the unit cell showing the hydrogen-bonded zigzag C(7) cis-CHDC monoanion chains and their inter-linking cations, with hydrogen bonds shown as dashed lines. Non-associative H atoms are omitted. For symmetry codes, see Table 1.

Fig. 3.

Fig. 3.

A view of the hydrogen-bonded structure looking down the c axis.

Crystal data

C5H7N2+·C8H11O4 F(000) = 568
Mr = 266.29 Dx = 1.325 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 4840 reflections
a = 12.1359 (3) Å θ = 3.2–28.7°
b = 9.8351 (3) Å µ = 0.10 mm1
c = 11.1850 (3) Å T = 200 K
V = 1335.02 (6) Å3 Block, colourless
Z = 4 0.30 × 0.25 × 0.20 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 1709 independent reflections
Radiation source: Enhance (Mo) X-ray source 1448 reflections with I > 2σ(I)
graphite Rint = 0.029
Detector resolution: 16.077 pixels mm-1 θmax = 28.8°, θmin = 3.2°
ω scans h = −16→15
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −12→13
Tmin = 0.948, Tmax = 0.990 l = −13→15
9670 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0357P)2] where P = (Fo2 + 2Fc2)/3
1709 reflections (Δ/σ)max < 0.001
188 parameters Δρmax = 0.15 e Å3
1 restraint Δρmin = −0.16 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O11 −0.08623 (9) 0.42384 (12) 0.16082 (11) 0.0293 (4)
O12 0.08627 (8) 0.38250 (12) 0.21757 (10) 0.0262 (3)
O21 0.01171 (10) 0.40723 (12) 0.51058 (12) 0.0285 (3)
O22 0.17703 (9) 0.30714 (12) 0.50187 (12) 0.0296 (3)
C1 −0.06239 (12) 0.25883 (16) 0.31330 (14) 0.0202 (4)
C2 0.02258 (13) 0.20096 (16) 0.40246 (15) 0.0223 (5)
C3 0.10393 (14) 0.10098 (18) 0.34520 (18) 0.0311 (5)
C4 0.04378 (15) −0.01169 (19) 0.2767 (2) 0.0410 (6)
C5 −0.03704 (15) 0.04676 (19) 0.18597 (18) 0.0340 (6)
C6 −0.11879 (14) 0.14099 (17) 0.24603 (17) 0.0272 (5)
C11 −0.01574 (12) 0.36284 (16) 0.22481 (14) 0.0200 (5)
C21 0.07930 (13) 0.30994 (17) 0.47466 (14) 0.0222 (5)
N1A 0.16603 (12) 0.28917 (15) 0.99803 (15) 0.0301 (4)
N41A 0.30073 (13) 0.14997 (18) 0.68510 (15) 0.0320 (5)
C2A 0.14635 (14) 0.35553 (19) 0.89470 (16) 0.0306 (5)
C3A 0.18908 (13) 0.31222 (17) 0.78984 (16) 0.0285 (5)
C4A 0.25659 (12) 0.19462 (16) 0.78670 (15) 0.0236 (5)
C5A 0.27516 (14) 0.12848 (18) 0.89698 (16) 0.0289 (5)
C6A 0.22940 (14) 0.17671 (18) 0.99826 (17) 0.0309 (5)
H1 −0.11940 0.30510 0.36020 0.0240*
H2 −0.02010 0.14740 0.46010 0.0270*
H21 0.046 (2) 0.473 (3) 0.561 (3) 0.069 (8)*
H31B 0.15200 0.14990 0.29080 0.0370*
H32B 0.14940 0.06050 0.40700 0.0370*
H41B 0.09730 −0.06800 0.23550 0.0490*
H42B 0.00420 −0.06880 0.33280 0.0490*
H51B 0.00320 0.09640 0.12510 0.0410*
H52B −0.07640 −0.02690 0.14720 0.0410*
H61B −0.16300 0.08910 0.30200 0.0330*
H62B −0.16790 0.17830 0.18600 0.0330*
H1A 0.1408 (18) 0.319 (2) 1.0674 (19) 0.038 (6)*
H2A 0.10230 0.43290 0.89560 0.0370*
H3A 0.17420 0.35960 0.71970 0.0340*
H5A 0.31920 0.05120 0.89970 0.0350*
H6A 0.24190 0.13130 1.06990 0.0370*
H41A 0.3409 (18) 0.078 (2) 0.687 (2) 0.047 (6)*
H42A 0.2841 (16) 0.193 (2) 0.615 (2) 0.038 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O11 0.0297 (6) 0.0270 (6) 0.0312 (7) 0.0010 (5) −0.0051 (5) 0.0106 (6)
O12 0.0244 (6) 0.0291 (6) 0.0251 (6) −0.0047 (5) 0.0004 (5) 0.0028 (5)
O21 0.0321 (6) 0.0263 (6) 0.0272 (6) 0.0042 (5) −0.0021 (6) −0.0066 (6)
O22 0.0304 (6) 0.0316 (6) 0.0269 (6) 0.0036 (5) −0.0062 (5) −0.0019 (6)
C1 0.0205 (7) 0.0188 (8) 0.0212 (8) 0.0009 (6) 0.0009 (6) −0.0003 (7)
C2 0.0267 (8) 0.0193 (8) 0.0209 (8) −0.0009 (7) 0.0007 (7) 0.0046 (7)
C3 0.0325 (9) 0.0253 (9) 0.0354 (10) 0.0084 (8) −0.0064 (8) −0.0016 (8)
C4 0.0439 (10) 0.0247 (9) 0.0543 (13) 0.0080 (8) −0.0046 (10) −0.0118 (9)
C5 0.0387 (10) 0.0270 (9) 0.0363 (11) −0.0064 (8) −0.0040 (9) −0.0106 (8)
C6 0.0269 (8) 0.0226 (8) 0.0322 (10) −0.0068 (7) −0.0053 (7) 0.0039 (8)
C11 0.0254 (8) 0.0166 (8) 0.0179 (8) −0.0006 (6) −0.0006 (6) −0.0031 (6)
C21 0.0287 (8) 0.0222 (8) 0.0157 (8) 0.0017 (7) −0.0004 (6) 0.0051 (7)
N1A 0.0318 (7) 0.0344 (8) 0.0240 (8) 0.0016 (6) 0.0021 (7) −0.0067 (8)
N41A 0.0366 (8) 0.0293 (9) 0.0302 (9) 0.0098 (7) 0.0024 (7) −0.0044 (7)
C2A 0.0324 (9) 0.0258 (9) 0.0335 (10) 0.0077 (8) 0.0012 (8) −0.0007 (9)
C3A 0.0334 (9) 0.0241 (9) 0.0281 (9) 0.0057 (7) −0.0019 (8) 0.0023 (8)
C4A 0.0225 (7) 0.0209 (8) 0.0275 (9) −0.0010 (6) −0.0021 (7) −0.0032 (8)
C5A 0.0305 (9) 0.0233 (9) 0.0329 (10) 0.0054 (7) −0.0085 (8) −0.0012 (8)
C6A 0.0334 (9) 0.0328 (9) 0.0264 (9) −0.0001 (8) −0.0080 (8) 0.0013 (9)

Geometric parameters (Å, °)

O11—C11 1.2665 (19) C1—H1 0.9800
O12—C11 1.2556 (18) C2—H2 0.9800
O21—C21 1.323 (2) C3—H32B 0.9700
O22—C21 1.2248 (19) C3—H31B 0.9700
O21—H21 0.95 (3) C4—H42B 0.9700
N1A—C6A 1.347 (2) C4—H41B 0.9700
N1A—C2A 1.349 (2) C5—H51B 0.9700
N41A—C4A 1.331 (2) C5—H52B 0.9700
N1A—H1A 0.88 (2) C6—H61B 0.9700
N41A—H41A 0.86 (2) C6—H62B 0.9700
N41A—H42A 0.91 (2) C2A—C3A 1.351 (2)
C1—C2 1.543 (2) C3A—C4A 1.418 (2)
C1—C11 1.532 (2) C4A—C5A 1.413 (2)
C1—C6 1.542 (2) C5A—C6A 1.348 (3)
C2—C3 1.534 (2) C2A—H2A 0.9300
C2—C21 1.508 (2) C3A—H3A 0.9300
C3—C4 1.532 (3) C5A—H5A 0.9300
C4—C5 1.524 (3) C6A—H6A 0.9300
C5—C6 1.515 (3)
C21—O21—H21 113.6 (15) C2—C3—H31B 109.00
C2A—N1A—C6A 120.01 (16) C2—C3—H32B 109.00
C6A—N1A—H1A 117.9 (13) C5—C4—H41B 109.00
C2A—N1A—H1A 122.0 (13) C5—C4—H42B 109.00
H41A—N41A—H42A 122 (2) C3—C4—H42B 109.00
C4A—N41A—H41A 118.6 (15) C3—C4—H41B 109.00
C4A—N41A—H42A 119.4 (13) H41B—C4—H42B 108.00
C2—C1—C6 109.55 (13) C6—C5—H51B 109.00
C2—C1—C11 114.64 (12) C4—C5—H52B 109.00
C6—C1—C11 110.53 (13) C6—C5—H52B 109.00
C1—C2—C21 112.88 (13) H51B—C5—H52B 108.00
C1—C2—C3 113.38 (14) C4—C5—H51B 109.00
C3—C2—C21 112.67 (13) C5—C6—H62B 109.00
C2—C3—C4 111.46 (14) H61B—C6—H62B 108.00
C3—C4—C5 111.52 (15) C1—C6—H61B 109.00
C4—C5—C6 110.92 (16) C1—C6—H62B 109.00
C1—C6—C5 112.68 (14) C5—C6—H61B 109.00
O11—C11—C1 115.58 (13) N1A—C2A—C3A 121.56 (17)
O11—C11—O12 123.82 (14) C2A—C3A—C4A 120.03 (16)
O12—C11—C1 120.59 (13) N41A—C4A—C3A 121.53 (16)
O21—C21—C2 113.18 (13) C3A—C4A—C5A 116.50 (15)
O22—C21—C2 123.99 (15) N41A—C4A—C5A 121.97 (15)
O21—C21—O22 122.77 (15) C4A—C5A—C6A 120.41 (16)
C6—C1—H1 107.00 N1A—C6A—C5A 121.50 (17)
C2—C1—H1 107.00 N1A—C2A—H2A 119.00
C11—C1—H1 107.00 C3A—C2A—H2A 119.00
C1—C2—H2 106.00 C2A—C3A—H3A 120.00
C3—C2—H2 106.00 C4A—C3A—H3A 120.00
C21—C2—H2 106.00 C4A—C5A—H5A 120.00
C4—C3—H32B 109.00 C6A—C5A—H5A 120.00
H31B—C3—H32B 108.00 N1A—C6A—H6A 119.00
C4—C3—H31B 109.00 C5A—C6A—H6A 119.00
C6A—N1A—C2A—C3A −0.2 (3) C3—C2—C21—O21 171.15 (14)
C2A—N1A—C6A—C5A 0.6 (3) C3—C2—C21—O22 −11.6 (2)
C6—C1—C2—C3 51.98 (17) C1—C2—C21—O21 41.13 (19)
C11—C1—C2—C21 56.73 (18) C1—C2—C21—O22 −141.58 (16)
C6—C1—C2—C21 −178.36 (13) C2—C3—C4—C5 53.7 (2)
C11—C1—C2—C3 −72.93 (17) C3—C4—C5—C6 −56.2 (2)
C2—C1—C11—O11 −171.66 (14) C4—C5—C6—C1 57.4 (2)
C2—C1—C11—O12 9.2 (2) N1A—C2A—C3A—C4A −0.2 (3)
C6—C1—C11—O11 63.95 (18) C2A—C3A—C4A—N41A −179.40 (16)
C6—C1—C11—O12 −115.22 (16) C2A—C3A—C4A—C5A 0.0 (2)
C11—C1—C6—C5 72.82 (18) N41A—C4A—C5A—C6A 179.81 (17)
C2—C1—C6—C5 −54.43 (19) C3A—C4A—C5A—C6A 0.4 (2)
C21—C2—C3—C4 177.72 (15) C4A—C5A—C6A—N1A −0.7 (3)
C1—C2—C3—C4 −52.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O12i 0.88 (2) 1.91 (2) 2.795 (2) 180 (3)
N41A—H41A···O12ii 0.86 (2) 2.14 (2) 2.989 (2) 168 (2)
N41A—H42A···O22 0.91 (2) 2.13 (2) 2.974 (2) 152.6 (18)
O21—H21···O11iii 0.95 (3) 1.59 (3) 2.5302 (17) 170 (3)
C2A—H2A···O21iii 0.93 2.46 3.287 (2) 149
C3A—H3A···O22 0.93 2.49 3.225 (2) 136
C3A—H3A···O11iii 0.93 2.47 3.222 (2) 138
C6A—H6A···O11iv 0.93 2.38 3.048 (2) 128
C3—H31B···O12 0.97 2.56 3.123 (2) 117

Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, y−1/2, z+1/2; (iii) −x, −y+1, z+1/2; (iv) x+1/2, −y+1/2, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2453).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Benedetti, E., Pedone, C. & Allegra, G. (1970). J. Phys. Chem. 74, 512–516.
  3. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Smith, G. & Wermuth, U. D. (2011a). Acta Cryst. E67, o174. [DOI] [PMC free article] [PubMed]
  8. Smith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, o1900. [DOI] [PMC free article] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039547/fj2453sup1.cif

e-67-o2794-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039547/fj2453Isup2.hkl

e-67-o2794-Isup2.hkl (82.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039547/fj2453Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES