Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1336. doi: 10.1107/S1600536811035379

Dichlorido(η4-cyclo­octa-1,5-diene)bis­(propane­nitrile-κN)ruthenium(II)

Haleden Chiririwa a,*, Reinout Meijboom a
PMCID: PMC3201259  PMID: 22065023

Abstract

In the title complex, [RuCl2(C8H12)(C3H5N)2], the metal ion is coordinated to both double bonds of the cyclo­octa-1,5-diene ligand, two chloride ions (in cis positions) and two N-atom donors from two propane­nitrile mol­ecules that complete the coordination sphere for the neutral complex. The coordination around the RuII atom can thus be considered as octa­hedral with slight trigonal distortion.

Related literature

For the structure of the acetonitrile derivative, see: Ashworth et al. (1987); Chiririwa et al. (2011). For the synthesis of starting materials, see: Ashworth et al. (1987).graphic file with name e-67-m1336-scheme1.jpg

Experimental

Crystal data

  • [RuCl2(C8H12)(C3H5N)2]

  • M r = 390.31

  • Triclinic, Inline graphic

  • a = 7.593 (5) Å

  • b = 8.800 (5) Å

  • c = 12.658 (5) Å

  • α = 108.156 (5)°

  • β = 96.281 (5)°

  • γ = 90.536 (5)°

  • V = 798.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 100 K

  • 0.29 × 0.28 × 0.21 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 15438 measured reflections

  • 3949 independent reflections

  • 3911 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017

  • wR(F 2) = 0.043

  • S = 1.07

  • 3949 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035379/im2311sup1.cif

e-67-m1336-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035379/im2311Isup2.hkl

e-67-m1336-Isup2.hkl (189.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged.

supplementary crystallographic information

Comment

The present ruthenium complex, Fig.1, has been synthesized in a similar way as done earlier for the acetonitrile derivative (Chiririwa et al. 2011). Organonitrile solvate complexes are widely useful for synthesis of organometallic compounds because of facile substitution at the solvate coordination sites. Similarly, 1,5-cyclooctadiene complexes have found considerable use in organometallic chemistry as well.

The two propanenitrile ligands are trans to each other, although the N(2)—Ru(1)—N(1) angle is widened to 164.95 (5)° due to repulsion by the alkene bonds of the COD ligand. The corresponding angle is 163.15 (6)° in the acetonitrile derivative. One of the propanenitrile ligands is slightly bent as we observed earlier in the acetonitrile derivative. The N(2)—C(21)—C(22) bond angle is 176.8 (2)°. The C(21)—C(22)—C(23) and C(11)—C(12)—C(13) bond angles are slightly bigger than the ideal tetrahedral angle and are almost similar with values of 111.3 (1)° and 111.8 (1)° respectively.

Experimental

A suspension of [{RuCl2(COD)}x] (0.5 g) in propanenitrile (30 ml) was refluxed for 8 h. The orange solution was filtered hot and concentrated on a steam bath to ca. half volume. Cooling to 0 °C overnight afforded orange crystals suitable for X-ray diffraction studies in 50% yield.

Refinement

The methylene and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Crystal data

[RuCl2(C8H12)(C3H5N)2] Z = 2
Mr = 390.31 F(000) = 396
Triclinic, P1 Dx = 1.624 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 7.593 (5) Å Cell parameters from 9962 reflections
b = 8.800 (5) Å θ = 3.0–28.3°
c = 12.658 (5) Å µ = 1.31 mm1
α = 108.156 (5)° T = 100 K
β = 96.281 (5)° Block, orange
γ = 90.536 (5)° 0.29 × 0.28 × 0.21 mm
V = 798.0 (8) Å3

Data collection

Bruker APEXII CCD diffractometer 3911 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.029
graphite θmax = 28.3°, θmin = 1.7°
φ and ω scans h = −10→10
15438 measured reflections k = −11→10
3949 independent reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0132P)2 + 0.6531P] where P = (Fo2 + 2Fc2)/3
3949 reflections (Δ/σ)max = 0.002
174 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.11889 (18) 0.24062 (16) 0.86381 (11) 0.0132 (2)
H1 −0.0776 0.3394 0.9141 0.016*
C2 −0.21829 (18) 0.23779 (16) 0.76462 (12) 0.0134 (2)
H2 −0.2427 0.3352 0.7532 0.016*
C3 −0.28956 (19) 0.08642 (17) 0.67378 (12) 0.0159 (3)
H3A −0.3375 0.114 0.6083 0.019*
H3B −0.3862 0.04 0.6995 0.019*
C4 −0.14983 (19) −0.04040 (16) 0.63958 (12) 0.0147 (3)
H4A −0.1537 −0.1125 0.6838 0.018*
H4B −0.1805 −0.103 0.5616 0.018*
C5 0.03841 (18) 0.03064 (15) 0.65508 (11) 0.0121 (2)
H5 0.0783 0.0616 0.5976 0.015*
C6 0.15194 (18) 0.05054 (15) 0.75234 (11) 0.0125 (2)
H6 0.2672 0.0906 0.7565 0.015*
C7 0.09657 (19) 0.00994 (16) 0.85206 (12) 0.0151 (3)
H7A 0.1929 0.0421 0.9126 0.018*
H7B 0.0776 −0.1052 0.8317 0.018*
C8 −0.0737 (2) 0.09040 (17) 0.89491 (12) 0.0161 (3)
H8A −0.1728 0.0129 0.8656 0.019*
H8B −0.0608 0.1179 0.9758 0.019*
C11 0.30431 (19) 0.35812 (17) 0.98608 (12) 0.0154 (3)
C12 0.4147 (2) 0.37569 (18) 1.09193 (12) 0.0177 (3)
H12A 0.339 0.3788 1.1494 0.021*
H12B 0.4839 0.4762 1.1147 0.021*
C13 0.5395 (2) 0.2387 (2) 1.08180 (15) 0.0295 (4)
H13A 0.4716 0.1407 1.0687 0.044*
H13B 0.6184 0.2599 1.1499 0.044*
H13C 0.6072 0.2291 1.0205 0.044*
C21 −0.12818 (18) 0.32906 (16) 0.52863 (11) 0.0132 (2)
C22 −0.2237 (2) 0.37027 (19) 0.43512 (12) 0.0181 (3)
H22A −0.1637 0.3277 0.3689 0.022*
H22B −0.2228 0.4858 0.453 0.022*
C23 −0.4155 (2) 0.3029 (2) 0.41046 (14) 0.0225 (3)
H23A −0.4167 0.1881 0.384 0.034*
H23B −0.4781 0.341 0.3543 0.034*
H23C −0.472 0.3374 0.4777 0.034*
N1 0.22016 (16) 0.33593 (14) 0.90225 (10) 0.0129 (2)
N2 −0.05984 (15) 0.30029 (13) 0.60433 (10) 0.0119 (2)
Cl1 0.33515 (4) 0.32622 (4) 0.67591 (3) 0.01333 (7)
Cl2 0.01618 (5) 0.57453 (4) 0.81456 (3) 0.01527 (7)
Ru1 0.065082 (13) 0.290208 (11) 0.752556 (8) 0.00846 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0144 (6) 0.0121 (6) 0.0140 (6) −0.0003 (5) 0.0058 (5) 0.0043 (5)
C2 0.0118 (6) 0.0124 (6) 0.0170 (6) 0.0000 (5) 0.0043 (5) 0.0051 (5)
C3 0.0133 (6) 0.0147 (6) 0.0187 (6) −0.0016 (5) 0.0014 (5) 0.0041 (5)
C4 0.0167 (6) 0.0120 (6) 0.0144 (6) −0.0016 (5) 0.0013 (5) 0.0026 (5)
C5 0.0153 (6) 0.0089 (6) 0.0128 (6) 0.0013 (5) 0.0028 (5) 0.0036 (5)
C6 0.0158 (6) 0.0088 (6) 0.0139 (6) 0.0016 (5) 0.0025 (5) 0.0047 (5)
C7 0.0200 (7) 0.0128 (6) 0.0144 (6) 0.0010 (5) 0.0016 (5) 0.0073 (5)
C8 0.0226 (7) 0.0146 (6) 0.0142 (6) 0.0005 (5) 0.0056 (5) 0.0077 (5)
C11 0.0175 (7) 0.0137 (6) 0.0153 (6) −0.0010 (5) 0.0027 (5) 0.0047 (5)
C12 0.0179 (7) 0.0207 (7) 0.0129 (6) −0.0012 (5) −0.0017 (5) 0.0041 (5)
C13 0.0230 (8) 0.0353 (9) 0.0248 (8) 0.0108 (7) −0.0039 (6) 0.0039 (7)
C21 0.0141 (6) 0.0112 (6) 0.0147 (6) −0.0006 (5) 0.0019 (5) 0.0044 (5)
C22 0.0171 (7) 0.0238 (7) 0.0169 (6) 0.0001 (5) −0.0019 (5) 0.0129 (6)
C23 0.0172 (7) 0.0272 (8) 0.0218 (7) −0.0018 (6) −0.0044 (6) 0.0084 (6)
N1 0.0158 (5) 0.0117 (5) 0.0119 (5) −0.0009 (4) 0.0018 (4) 0.0045 (4)
N2 0.0128 (5) 0.0101 (5) 0.0130 (5) 0.0004 (4) 0.0019 (4) 0.0039 (4)
Cl1 0.01152 (14) 0.01657 (15) 0.01382 (14) 0.00017 (11) 0.00207 (11) 0.00737 (12)
Cl2 0.02060 (16) 0.00875 (14) 0.01670 (15) 0.00064 (11) 0.00411 (12) 0.00369 (11)
Ru1 0.01012 (6) 0.00786 (6) 0.00801 (6) 0.00031 (4) 0.00092 (4) 0.00342 (4)

Geometric parameters (Å, °)

C1—C2 1.386 (2) C8—H8A 0.97
C1—C8 1.524 (2) C8—H8B 0.97
C1—Ru1 2.2197 (15) C11—N1 1.1368 (19)
C1—H1 0.93 C11—C12 1.465 (2)
C2—C3 1.512 (2) C12—C13 1.523 (2)
C2—Ru1 2.2278 (19) C12—H12A 0.97
C2—H2 0.93 C12—H12B 0.97
C3—C4 1.543 (2) C13—H13A 0.96
C3—H3A 0.97 C13—H13B 0.96
C3—H3B 0.97 C13—H13C 0.96
C4—C5 1.522 (2) C21—N2 1.1387 (19)
C4—H4A 0.97 C21—C22 1.4639 (19)
C4—H4B 0.97 C22—C23 1.529 (2)
C5—C6 1.386 (2) C22—H22A 0.97
C5—Ru1 2.2274 (17) C22—H22B 0.97
C5—H5 0.93 C23—H23A 0.96
C6—C7 1.5140 (19) C23—H23B 0.96
C6—Ru1 2.2150 (17) C23—H23C 0.96
C6—H6 0.93 N1—Ru1 2.0413 (14)
C7—C8 1.549 (2) N2—Ru1 2.0356 (14)
C7—H7A 0.97 Cl1—Ru1 2.4211 (13)
C7—H7B 0.97 Cl2—Ru1 2.4231 (14)
C2—C1—C8 123.45 (12) C11—C12—H12B 109.3
C2—C1—Ru1 72.16 (9) C13—C12—H12B 109.3
C8—C1—Ru1 112.17 (9) H12A—C12—H12B 107.9
C2—C1—H1 118.3 C12—C13—H13A 109.5
C8—C1—H1 118.3 C12—C13—H13B 109.5
Ru1—C1—H1 85.7 H13A—C13—H13B 109.5
C1—C2—C3 124.17 (13) C12—C13—H13C 109.5
C1—C2—Ru1 71.53 (8) H13A—C13—H13C 109.5
C3—C2—Ru1 111.07 (9) H13B—C13—H13C 109.5
C1—C2—H2 117.9 N2—C21—C22 176.82 (15)
C3—C2—H2 117.9 C21—C22—C23 111.33 (13)
Ru1—C2—H2 87.4 C21—C22—H22A 109.4
C2—C3—C4 113.93 (12) C23—C22—H22A 109.4
C2—C3—H3A 108.8 C21—C22—H22B 109.4
C4—C3—H3A 108.8 C23—C22—H22B 109.4
C2—C3—H3B 108.8 H22A—C22—H22B 108
C4—C3—H3B 108.8 C22—C23—H23A 109.5
H3A—C3—H3B 107.7 C22—C23—H23B 109.5
C5—C4—C3 113.59 (12) H23A—C23—H23B 109.5
C5—C4—H4A 108.8 C22—C23—H23C 109.5
C3—C4—H4A 108.8 H23A—C23—H23C 109.5
C5—C4—H4B 108.8 H23B—C23—H23C 109.5
C3—C4—H4B 108.8 C11—N1—Ru1 178.21 (12)
H4A—C4—H4B 107.7 C21—N2—Ru1 170.17 (11)
C6—C5—C4 121.89 (12) N2—Ru1—N1 164.95 (5)
C6—C5—Ru1 71.34 (8) N2—Ru1—C6 115.27 (5)
C4—C5—Ru1 113.47 (9) N1—Ru1—C6 76.54 (5)
C6—C5—H5 119.1 N2—Ru1—C1 113.39 (6)
C4—C5—H5 119.1 N1—Ru1—C1 76.63 (6)
Ru1—C5—H5 85.4 C6—Ru1—C1 80.71 (6)
C5—C6—C7 122.86 (13) N2—Ru1—C5 79.67 (5)
C5—C6—Ru1 72.32 (8) N1—Ru1—C5 112.85 (5)
C7—C6—Ru1 111.05 (9) C6—Ru1—C5 36.35 (5)
C5—C6—H6 118.6 C1—Ru1—C5 87.81 (5)
C7—C6—H6 118.6 N2—Ru1—C2 77.11 (5)
Ru1—C6—H6 86.7 N1—Ru1—C2 112.46 (6)
C6—C7—C8 114.14 (11) C6—Ru1—C2 94.63 (6)
C6—C7—H7A 108.7 C1—Ru1—C2 36.30 (5)
C8—C7—H7A 108.7 C5—Ru1—C2 79.57 (5)
C6—C7—H7B 108.7 N2—Ru1—Cl1 84.91 (5)
C8—C7—H7B 108.7 N1—Ru1—Cl1 86.21 (5)
H7A—C7—H7B 107.6 C6—Ru1—Cl1 88.31 (4)
C1—C8—C7 115.40 (11) C1—Ru1—Cl1 161.35 (4)
C1—C8—H8A 108.4 C5—Ru1—Cl1 92.24 (4)
C7—C8—H8A 108.4 C2—Ru1—Cl1 161.29 (4)
C1—C8—H8B 108.4 N2—Ru1—Cl2 83.36 (4)
C7—C8—H8B 108.4 N1—Ru1—Cl2 85.00 (4)
H8A—C8—H8B 107.5 C6—Ru1—Cl2 161.36 (4)
N1—C11—C12 176.32 (15) C1—Ru1—Cl2 92.67 (4)
C11—C12—C13 111.76 (13) C5—Ru1—Cl2 161.68 (4)
C11—C12—H12A 109.3 C2—Ru1—Cl2 90.02 (4)
C13—C12—H12A 109.3 Cl1—Ru1—Cl2 93.06 (2)
C8—C1—C2—C3 −1.8 (2) C8—C1—Ru1—C6 8.48 (10)
Ru1—C1—C2—C3 103.38 (13) C2—C1—Ru1—C5 −75.28 (9)
C8—C1—C2—Ru1 −105.22 (13) C8—C1—Ru1—C5 44.33 (10)
C1—C2—C3—C4 −49.30 (18) C8—C1—Ru1—C2 119.61 (13)
Ru1—C2—C3—C4 32.14 (15) C2—C1—Ru1—Cl1 −165.82 (9)
C2—C3—C4—C5 −28.89 (17) C8—C1—Ru1—Cl1 −46.21 (17)
C3—C4—C5—C6 93.14 (16) C2—C1—Ru1—Cl2 86.39 (8)
C3—C4—C5—Ru1 11.23 (15) C8—C1—Ru1—Cl2 −154.00 (9)
C4—C5—C6—C7 −2.5 (2) C6—C5—Ru1—N2 168.49 (9)
Ru1—C5—C6—C7 104.06 (12) C4—C5—Ru1—N2 −74.04 (10)
C4—C5—C6—Ru1 −106.56 (12) C6—C5—Ru1—N1 −2.75 (9)
C5—C6—C7—C8 −53.39 (18) C4—C5—Ru1—N1 114.72 (10)
Ru1—C6—C7—C8 28.63 (14) C4—C5—Ru1—C6 117.46 (13)
C2—C1—C8—C7 87.27 (17) C6—C5—Ru1—C1 −77.26 (9)
Ru1—C1—C8—C7 4.58 (15) C4—C5—Ru1—C1 40.21 (10)
C6—C7—C8—C1 −22.28 (17) C6—C5—Ru1—C2 −112.87 (9)
C5—C6—Ru1—N2 −12.53 (9) C4—C5—Ru1—C2 4.60 (10)
C7—C6—Ru1—N2 −131.71 (10) C6—C5—Ru1—Cl1 84.08 (9)
C5—C6—Ru1—N1 177.40 (9) C4—C5—Ru1—Cl1 −158.46 (9)
C7—C6—Ru1—N1 58.22 (10) C6—C5—Ru1—Cl2 −169.16 (9)
C5—C6—Ru1—C1 99.03 (9) C4—C5—Ru1—Cl2 −51.69 (17)
C7—C6—Ru1—C1 −20.15 (10) C1—C2—Ru1—N2 −177.67 (9)
C7—C6—Ru1—C5 −119.18 (14) C3—C2—Ru1—N2 61.93 (10)
C5—C6—Ru1—C2 65.39 (9) C1—C2—Ru1—N1 −9.89 (9)
C7—C6—Ru1—C2 −53.79 (10) C3—C2—Ru1—N1 −130.28 (10)
C5—C6—Ru1—Cl1 −96.10 (8) C1—C2—Ru1—C6 67.44 (8)
C7—C6—Ru1—Cl1 144.72 (9) C3—C2—Ru1—C6 −52.95 (11)
C5—C6—Ru1—Cl2 169.34 (9) C3—C2—Ru1—C1 −120.39 (14)
C7—C6—Ru1—Cl2 50.16 (18) C1—C2—Ru1—C5 100.66 (9)
C2—C1—Ru1—N2 2.47 (9) C3—C2—Ru1—C5 −19.73 (10)
C8—C1—Ru1—N2 122.09 (10) C1—C2—Ru1—Cl1 165.87 (9)
C2—C1—Ru1—N1 170.61 (9) C3—C2—Ru1—Cl1 45.47 (18)
C8—C1—Ru1—N1 −69.77 (10) C1—C2—Ru1—Cl2 −94.49 (8)
C2—C1—Ru1—C6 −111.14 (9) C3—C2—Ru1—Cl2 145.12 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2311).

References

  1. Ashworth, T. V., Liles, D. C., Robinson, D. J., Singleton, E., Coville, N. J., Darling, E. & Markwell, J. (1987). S. Afr. J. Chem. 40(3), 183–188.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). APEX2, SADABS, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chiririwa, H., Meijboom, R., Owalude, S. O., Eke, U. B. & Arderne, C. (2011). Acta Cryst. E67, m1096. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035379/im2311sup1.cif

e-67-m1336-sup1.cif (24.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035379/im2311Isup2.hkl

e-67-m1336-Isup2.hkl (189.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES