Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):m1441–m1442. doi: 10.1107/S1600536811038190

Poly[trans-diaquabis­[μ2-2-(pyridin-3-yl)acetato-κ2 N:O]­zinc]

Yue-Hua Li a,b, Lin Du a, Zong-Ze Li a, Qi-Hua Zhao a,*
PMCID: PMC3201260  PMID: 22058713

Abstract

In the title coordination polymer, [Zn(C7H6NO2)2(H2O)2]n, the ZnII cation is located on an inversion center and is coordinated by four pyridyl­acetate anions and two water mol­ecules in a distorted ZnN2O4 octa­hedral geometry. The pyridine-N and carboxyl­ate-O atoms of the pyridyl­acetate anion connect to two ZnII cations, forming a two-dimensional polymeric complex extending parallel to (212). Inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For related complexes with pyridyl­acetate ligands, see: Li et al. (2004); Du et al. (2006); Martin et al. (2007); Qin et al. (2007); Aakeröy et al. (1999); Evans & Lin (2002); Tong et al. (2003).graphic file with name e-67-m1441-scheme1.jpg

Experimental

Crystal data

  • [Zn(C7H6NO2)2(H2O)2]

  • M r = 373.66

  • Monoclinic, Inline graphic

  • a = 9.175 (2) Å

  • b = 8.686 (2) Å

  • c = 9.574 (2) Å

  • β = 105.928 (3)°

  • V = 733.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.718, T max = 0.723

  • 4934 measured reflections

  • 1732 independent reflections

  • 1178 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.098

  • S = 1.00

  • 1732 reflections

  • 112 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038190/xu5324sup1.cif

e-67-m1441-sup1.cif (14.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038190/xu5324Isup2.hkl

e-67-m1441-Isup2.hkl (85.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—N1 2.168 (3)
Zn1—O2i 2.091 (2)
Zn1—O3 2.125 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O1i 0.81 (3) 1.99 (3) 2.739 (4) 152 (4)
O3—H3C⋯O1ii 0.82 (3) 1.97 (3) 2.764 (4) 161 (3)
C1—H1A⋯O1iii 0.93 2.54 3.443 (5) 163
C3—H3A⋯O1iv 0.93 2.50 3.366 (5) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Yunan Province, China (grant 2009 CD015).

supplementary crystallographic information

Comment

The compounds of pyridine-carboxylic acids have been extensively utilized in the preparation of metal complexes due to their versatile coordination modes. Though various metal-pyridinepolycarboxylate complexes have been reported (Evans et al., 2002; Aakeröy et al., 1999; Li et al., 2004; Du et al., 2006), 3-pyridylacetate complexes are rare. Only a few of complexes as nickel, cobalt and copper species have been combined up to now (Martin et al., 2007). In this paper, we described a new two-dimensional coordination polymer, [Zn(3-pyridylacetato)2(H2O)2]n, (I). The molecular structure of the title complex is similar to those previously reported such as [M(4-pyridylacetato)2(H2O)2]n (M = Cu, Co, Mn, Ni, Zn, Cd)(Du et al., 2006; Qin et al., 2007; Tong et al., 2003) and [M(3-pyridylacetato)2(H2O)2]n (M = Ni, Co, Cu) (Martin et al., 2007;). Single-crystal X-ray diffraction analysis shows that the title compound is crystallized in a space group P21/n. The ZnII center is six-coordinated by two water molecules in the axial positions, two pyridyl nitrogen atoms and two carboxylate oxygen atoms from two 3-pyridylacetate ligands in the plane. Pyridine nitrogen atom and carboxylate oxygen atom of each 3-pyridylacetate anion are connected to one ZnII ions. The coordination geometry of ZnII cation can been described as a distorted octahedral geometry with Zn—N and Zn—O distance range 2.168 (2) Å and 2.091 (3)—2.125 (3) Å, respectively (Fig. 1, Table 1). Four 3-pyridylacetate anionic ligands and four ZnII ions are combined to a tetragon, which is of a side length of 8.653 Å and a diagonal measurement of 14.969*8.686 Å based on the Zn—Zn distances. The tetragon is further extended into a two-dimensional framework structure parallel to (212) with arhombic grid through sharing ZnII ions, 3-pyridylacetate anionic ligands. Adjacent two-dimensional layers are connected by the intermolecular O—H···O and weak C—H···O hydrogen-bonding contacts, forming a three-dimensional framework structure with oxygen as a trifurcated acceptor atom (Fig. 2)

Experimental

A mixture of Zn(COO)2.H2O (0.1 mmol), 3-pyridyl acetic acid (0.1 mmol), DMF (5.0 ml) and methanol (10.0 ml) was stirred for 30 min and and the crude product was isolated by filtration. The filtrate was purified by recrystallization from anhydrous methanol and DMF to give (I) as colorless block crystals in 60% yield. An solution of (I) was stood at room temperature, and upon slowly evaporating methanol and DMF from the solution, colorless block crystals suitable for X-ray diffraction analysis were isolated in room temperature three week later.

Refinement

Water H atoms were located in a difference Fourier map and positional parameters were refined, Uiso(H) = 1.2Ueq(O). Other H atoms were generated geometrically and were included in therefinement in the riding model approximation with C—H = 0.93–0.97 Å, Uiso= 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex with the atom-numbering diagram. Ellipsoids were drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing diagram of (I).

Crystal data

[Zn(C7H6NO2)2(H2O)2] F(000) = 384
Mr = 373.66 Dx = 1.691 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4934 reflections
a = 9.175 (2) Å θ = 3.2–28.2°
b = 8.686 (2) Å µ = 1.71 mm1
c = 9.574 (2) Å T = 298 K
β = 105.928 (3)° Block, colorless
V = 733.8 (3) Å3 0.20 × 0.20 × 0.19 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer 1732 independent reflections
Radiation source: fine-focus sealed tube 1178 reflections with I > 2σ(I)
graphite Rint = 0.054
φ and ω scans θmax = 28.2°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→11
Tmin = 0.718, Tmax = 0.723 k = −11→11
4934 measured reflections l = −9→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.035P)2 + 0.2786P] where P = (Fo2 + 2Fc2)/3
1732 reflections (Δ/σ)max < 0.001
112 parameters Δρmax = 0.39 e Å3
3 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 0.0000 0.0000 0.02624 (18)
O1 0.2006 (3) 0.1719 (3) 0.6106 (3) 0.0400 (6)
O2 0.0333 (3) 0.2812 (3) 0.4230 (2) 0.0331 (6)
O3 0.6282 (3) 0.0534 (3) 0.2153 (3) 0.0359 (6)
H3C 0.694 (3) 0.002 (3) 0.272 (3) 0.043*
H3B 0.676 (4) 0.130 (3) 0.207 (4) 0.043*
N1 0.3007 (3) 0.0777 (3) 0.0596 (3) 0.0293 (6)
C1 0.1913 (4) 0.1572 (4) −0.0326 (4) 0.0346 (8)
H1A 0.2032 0.1814 −0.1235 0.042*
C2 0.0611 (4) 0.2054 (4) 0.0003 (4) 0.0372 (9)
H2A −0.0123 0.2612 −0.0670 0.045*
C3 0.0414 (4) 0.1699 (4) 0.1341 (4) 0.0346 (8)
H3A −0.0460 0.2004 0.1578 0.042*
C4 0.1537 (4) 0.0881 (4) 0.2333 (3) 0.0267 (7)
C5 0.2802 (4) 0.0449 (4) 0.1900 (4) 0.0295 (8)
H5A 0.3557 −0.0104 0.2555 0.035*
C6 0.1407 (4) 0.0437 (4) 0.3815 (4) 0.0341 (9)
H6A 0.2296 −0.0158 0.4302 0.041*
H6B 0.0532 −0.0229 0.3692 0.041*
C7 0.1255 (4) 0.1768 (4) 0.4799 (4) 0.0278 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0299 (3) 0.0285 (3) 0.0225 (3) −0.0017 (3) 0.0111 (2) −0.0004 (2)
O1 0.0477 (16) 0.0369 (14) 0.0309 (14) 0.0064 (12) 0.0033 (12) 0.0006 (11)
O2 0.0417 (15) 0.0324 (13) 0.0259 (12) 0.0088 (11) 0.0106 (11) −0.0015 (10)
O3 0.0426 (16) 0.0340 (14) 0.0279 (14) −0.0022 (12) 0.0044 (11) −0.0018 (11)
N1 0.0336 (17) 0.0316 (16) 0.0256 (15) −0.0012 (13) 0.0130 (12) 0.0007 (12)
C1 0.045 (2) 0.034 (2) 0.0261 (18) 0.0034 (17) 0.0126 (16) 0.0024 (15)
C2 0.037 (2) 0.039 (2) 0.034 (2) 0.0102 (17) 0.0060 (16) 0.0004 (16)
C3 0.029 (2) 0.037 (2) 0.039 (2) 0.0047 (16) 0.0121 (16) −0.0065 (17)
C4 0.033 (2) 0.0232 (18) 0.0263 (17) 0.0001 (14) 0.0123 (15) −0.0021 (14)
C5 0.034 (2) 0.0275 (18) 0.0286 (18) 0.0025 (14) 0.0116 (15) 0.0035 (14)
C6 0.048 (2) 0.0259 (18) 0.035 (2) 0.0059 (16) 0.0234 (17) 0.0035 (14)
C7 0.0286 (19) 0.0282 (18) 0.0314 (19) −0.0034 (15) 0.0160 (15) 0.0037 (15)

Geometric parameters (Å, °)

Zn1—N1 2.168 (3) C1—C2 1.382 (5)
Zn1—N1i 2.168 (3) C1—H1A 0.9300
Zn1—O2ii 2.091 (2) C2—C3 1.377 (5)
Zn1—O2iii 2.091 (2) C2—H2A 0.9300
Zn1—O3 2.125 (2) C3—C4 1.390 (5)
O1—C7 1.252 (4) C3—H3A 0.9300
O2—C7 1.258 (4) C4—C5 1.387 (4)
O2—Zn1iv 2.091 (2) C4—C6 1.507 (4)
O3—H3C 0.825 (18) C5—H5A 0.9300
O3—H3B 0.812 (17) C6—C7 1.522 (4)
N1—C1 1.333 (4) C6—H6A 0.9700
N1—C5 1.344 (4) C6—H6B 0.9700
O2ii—Zn1—O2iii 180.00 (12) C1—C2—H2A 120.4
O2ii—Zn1—O3i 87.23 (9) C2—C3—C4 119.2 (3)
O2iii—Zn1—O3i 92.77 (9) C2—C3—H3A 120.4
O2ii—Zn1—N1i 88.57 (10) C4—C3—H3A 120.4
O2iii—Zn1—N1i 91.43 (10) C5—C4—C3 117.3 (3)
O3i—Zn1—N1i 87.67 (10) C5—C4—C6 120.1 (3)
O2ii—Zn1—N1 91.43 (10) C3—C4—C6 122.6 (3)
O2iii—Zn1—N1 88.57 (10) N1—C5—C4 124.2 (3)
O3i—Zn1—N1 92.33 (10) N1—C5—H5A 117.9
N1i—Zn1—N1 180.00 (12) C4—C5—H5A 117.9
C7—O2—Zn1iv 130.4 (2) C4—C6—C7 115.7 (3)
H3C—O3—H3B 101 (2) C4—C6—H6A 108.4
C1—N1—C5 117.0 (3) C7—C6—H6A 108.4
C1—N1—Zn1 121.5 (2) C4—C6—H6B 108.4
C5—N1—Zn1 121.5 (2) C7—C6—H6B 108.4
N1—C1—C2 123.1 (3) H6A—C6—H6B 107.4
N1—C1—H1A 118.4 O1—C7—O2 125.3 (3)
C2—C1—H1A 118.4 O1—C7—C6 118.3 (3)
C3—C2—C1 119.1 (3) O2—C7—C6 116.4 (3)
C3—C2—H2A 120.4

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1/2, −y+1/2, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3B···O1ii 0.81 (3) 1.99 (3) 2.739 (4) 152 (4)
O3—H3C···O1v 0.82 (3) 1.97 (3) 2.764 (4) 161 (3)
C1—H1A···O1vi 0.93 2.54 3.443 (5) 163
C3—H3A···O1vii 0.93 2.50 3.366 (5) 155

Symmetry codes: (ii) x+1/2, −y+1/2, z−1/2; (v) −x+1, −y, −z+1; (vi) x, y, z−1; (vii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5324).

References

  1. Aakeröy, C. B., Beatty, A. M. & Leinen, D. S. (1999). Angew. Chem. Int. Ed. 38, 1815–1819. [DOI] [PubMed]
  2. Bruker (2001). SADABS Brucker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Brucker AXS Inc., Madison, Wisconsin, USA.
  4. Du, M., Li, C.-P. & Zhao, X.-J. (2006). Cryst. Growth Des. 6, 335–341.
  5. Evans, O. R. & Lin, W. B. (2002). Acc. Chem. Res. 35, 511–522. [DOI] [PubMed]
  6. Li, X., Cao, R., Sun, Y.-Q., Shi, Q., Yuan, D.-Q., Sun, D.-F., Bi, W.-H. & Hong, M.-C. (2004). Cryst. Growth Des. 4, 255–261.
  7. Martin, D. P., Springsteen, C. H. & LaDuca, R. L. (2007). Inorg. Chim. Acta, 360, 599–606.
  8. Qin, S.-N., Liang, F.-P., Chen, Z.-L. & Yan, W.-H. (2007). Acta Cryst. E63, m1492–m1493.
  9. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  10. Tong, M.-L., Li, L.-J., Mochizuki, K., Chang, H.-C., Chen, X.-M., Li, Y. & Kitagawa, S. (2003). Chem. Commun. pp. 428–429. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038190/xu5324sup1.cif

e-67-m1441-sup1.cif (14.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038190/xu5324Isup2.hkl

e-67-m1441-Isup2.hkl (85.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES