Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2618. doi: 10.1107/S1600536811034866

2,4-Dibromo-6-tert-butyl­benzene-1,3-diol

Xia Wang a,*, Jun-long Niu b, Cai-xia Zhi b
PMCID: PMC3201261  PMID: 22058763

Abstract

In the title compound, C10H12Br2O2, a multiply substituted bromo­arene, the C—C—C angles within the aromatic ring are in the range 115.7 (7)-122.4 (7)°. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, but no π–π stacking is observed.

Related literature

For similar compounds, see: Butler & Walker (1993); Seevers & Counsell (1982); Zheng et al. (2004).graphic file with name e-67-o2618-scheme1.jpg

Experimental

Crystal data

  • C10H12Br2O2

  • M r = 324.02

  • Tetragonal, Inline graphic

  • a = 11.618 (3) Å

  • c = 17.761 (4) Å

  • V = 2397.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.74 mm−1

  • T = 290 K

  • 0.22 × 0.20 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.319, T max = 0.346

  • 4935 measured reflections

  • 1367 independent reflections

  • 775 reflections with I > 2σ(I)

  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.059

  • S = 1.08

  • 1367 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034866/vm2103sup1.cif

e-67-o2618-sup1.cif (15.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034866/vm2103Isup2.hkl

e-67-o2618-Isup2.hkl (67.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034866/vm2103Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 2.67 3.246 (13) 129
O2—H2⋯O2ii 0.82 2.36 2.979 (9) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professors Hong-Wei Hou and Yu Zhu of Zhengzhou University for their help.

supplementary crystallographic information

Comment

Bromoarenes have proven to be important and valuable precursors for the synthesis of a wide variety of target compounds by functionalization through cross-coupling reactions, and have been used as key intermediates in the synthesis of a large number of natural products and bioactive materials (Butler & Walker, 1993; Seevers & Counsell, 1982). In this paper, we synthesized the title compound and reported its crystal structure. In the title compound, C—C—C angles within the phenyl ring span a range of 115.7 (7) ° to 122.4 (7) ° with the smallest angle found on the C6 atom bearing the tert-butyl substituent, and the largest angle is found for the unsubstituted C5 atom (Fig. 1). In the crystal, molecules are linked by O—H···O hydrogen bonds (Table 1, Fig. 2). In addition, the benzene rings between the adjacent molecules are stacked in a face-to-face orientation with the distance of 3.858 Å, a distance longer than the π–π stacking distances of 3.33 - 3.53 Å reported elsewhere (Zheng et al., 2004), indicating no π–π stacking is observed for this compound.

Experimental

A mixture of 4,6-di-tert-butylbenzene-1,3-diol (111 mg, 0.5 mmol), p-toluenesulfonic acid monohydrate (285 mg, 1.5 mmol) and N-bromosuccinimide in acetonitrile (2 ml) was heated to reflux for 3 h. Subsequently, the solvent was removed under reduced pressure, and the residue was purified by preparative TLC on silica gel plates (eluent: petroleum ether/EtOAc, 4:1) to give the product as a white solid (282 mg, 87% yield). Colourless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement

H atoms were generated geometrically and refined as riding atoms with C-H = 0.93Å, O-H = 0.82Å, and Uiso(H) = 1.2 times Ueq(C), Uiso(H) = 1.5 times Ueq(O)

Figures

Fig. 1.

Fig. 1.

View of the title compound, showing the labeling of the 30% probability ellipsolids.

Fig. 2.

Fig. 2.

A view of the crystal packing along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H12Br2O2 Dx = 1.795 Mg m3
Mr = 324.02 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4b2 Cell parameters from 1414 reflections
Hall symbol: P -4 -2ab θ = 3.4–29.0°
a = 11.618 (3) Å µ = 6.74 mm1
c = 17.761 (4) Å T = 290 K
V = 2397.4 (9) Å3 Prismatic, colorless
Z = 8 0.22 × 0.20 × 0.20 mm
F(000) = 1264

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 1367 independent reflections
Radiation source: fine-focus sealed tube 775 reflections with I > 2σ(I)
graphite Rint = 0.087
Detector resolution: 16.2312 pixels mm-1 θmax = 26.4°, θmin = 3.4°
ω scans h = −7→14
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −13→11
Tmin = 0.319, Tmax = 0.346 l = −22→11
4935 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0056P)2] where P = (Fo2 + 2Fc2)/3
1367 reflections (Δ/σ)max < 0.001
132 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Experimental. CrysAlisPro (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.54152 (12) 0.82654 (10) 0.57359 (5) 0.1038 (5)
Br2 0.26935 (9) 0.44073 (9) 0.65318 (6) 0.0780 (4)
O1 0.5347 (6) 0.8647 (5) 0.7424 (3) 0.076 (2)
H1 0.5215 0.9175 0.7131 0.114*
O2 0.4052 (6) 0.6107 (6) 0.5499 (2) 0.085 (2)
H2 0.4250 0.5434 0.5444 0.128*
C1 0.4723 (7) 0.7689 (7) 0.7214 (4) 0.045 (2)
C2 0.4666 (7) 0.7357 (7) 0.6471 (4) 0.058 (2)
C3 0.4069 (7) 0.6383 (8) 0.6250 (4) 0.055 (3)
C4 0.3557 (7) 0.5756 (6) 0.6803 (5) 0.050 (2)
C5 0.3603 (7) 0.6096 (7) 0.7559 (4) 0.047 (2)
H5 0.3220 0.5655 0.7917 0.056*
C6 0.4188 (7) 0.7050 (7) 0.7788 (4) 0.046 (2)
C7 0.4255 (8) 0.7422 (9) 0.8617 (4) 0.065 (3)
C8 0.3682 (9) 0.8603 (8) 0.8714 (4) 0.090 (4)
H8A 0.2916 0.8579 0.8512 0.134*
H8B 0.4123 0.9176 0.8452 0.134*
H8C 0.3648 0.8794 0.9240 0.134*
C9 0.5530 (9) 0.7473 (11) 0.8882 (5) 0.121 (4)
H9A 0.5558 0.7698 0.9402 0.182*
H9B 0.5943 0.8024 0.8583 0.182*
H9C 0.5877 0.6728 0.8825 0.182*
C10 0.3623 (9) 0.6572 (8) 0.9131 (4) 0.093 (3)
H10A 0.3963 0.5822 0.9082 0.139*
H10B 0.2827 0.6536 0.8990 0.139*
H10C 0.3684 0.6825 0.9644 0.139*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1535 (13) 0.0852 (10) 0.0726 (6) −0.0324 (7) 0.0515 (8) 0.0131 (6)
Br2 0.0772 (8) 0.0694 (8) 0.0875 (7) −0.0210 (6) 0.0110 (7) −0.0109 (6)
O1 0.080 (6) 0.068 (5) 0.079 (4) −0.032 (5) 0.013 (3) −0.007 (3)
O2 0.130 (7) 0.084 (6) 0.041 (3) −0.009 (5) 0.028 (3) −0.012 (3)
C1 0.049 (6) 0.037 (6) 0.050 (4) −0.005 (4) 0.010 (5) 0.001 (4)
C2 0.070 (7) 0.054 (6) 0.049 (5) −0.013 (5) 0.023 (5) 0.002 (5)
C3 0.070 (7) 0.053 (7) 0.043 (5) −0.009 (5) 0.019 (5) 0.011 (5)
C4 0.047 (6) 0.026 (5) 0.076 (6) −0.007 (4) 0.009 (5) −0.004 (4)
C5 0.038 (6) 0.060 (7) 0.041 (5) 0.003 (5) 0.011 (4) 0.013 (5)
C6 0.047 (6) 0.048 (6) 0.044 (4) −0.002 (5) 0.010 (4) 0.012 (5)
C7 0.067 (7) 0.084 (8) 0.046 (5) −0.005 (6) 0.000 (5) 0.007 (5)
C8 0.120 (11) 0.094 (10) 0.055 (6) 0.009 (7) 0.022 (6) −0.011 (5)
C9 0.108 (11) 0.162 (13) 0.094 (7) −0.020 (8) −0.047 (7) 0.023 (7)
C10 0.112 (11) 0.112 (10) 0.054 (6) −0.013 (7) 0.006 (6) 0.009 (6)

Geometric parameters (Å, °)

Br1—C2 1.891 (7) C6—C7 1.536 (10)
Br2—C4 1.922 (7) C7—C10 1.532 (11)
O1—C1 1.379 (8) C7—C8 1.536 (11)
O1—H1 0.8200 C7—C9 1.556 (11)
O2—C3 1.373 (8) C8—H8A 0.9600
O2—H2 0.8200 C8—H8B 0.9600
C1—C2 1.377 (9) C8—H8C 0.9600
C1—C6 1.406 (9) C9—H9A 0.9600
C2—C3 1.384 (10) C9—H9B 0.9600
C3—C4 1.360 (10) C9—H9C 0.9600
C4—C5 1.400 (9) C10—H10A 0.9600
C5—C6 1.362 (10) C10—H10B 0.9600
C5—H5 0.9300 C10—H10C 0.9600
C1—O1—H1 109.5 C6—C7—C8 109.7 (6)
C3—O2—H2 109.5 C10—C7—C9 107.5 (7)
C2—C1—O1 120.7 (7) C6—C7—C9 110.4 (7)
C2—C1—C6 121.7 (7) C8—C7—C9 110.2 (10)
O1—C1—C6 117.5 (7) C7—C8—H8A 109.5
C1—C2—C3 121.6 (7) C7—C8—H8B 109.5
C1—C2—Br1 118.9 (6) H8A—C8—H8B 109.5
C3—C2—Br1 119.5 (5) C7—C8—H8C 109.5
C4—C3—O2 124.7 (8) H8A—C8—H8C 109.5
C4—C3—C2 117.0 (7) H8B—C8—H8C 109.5
O2—C3—C2 118.3 (7) C7—C9—H9A 109.5
C3—C4—C5 121.6 (7) C7—C9—H9B 109.5
C3—C4—Br2 119.0 (6) H9A—C9—H9B 109.5
C5—C4—Br2 119.4 (6) C7—C9—H9C 109.5
C6—C5—C4 122.4 (7) H9A—C9—H9C 109.5
C6—C5—H5 118.8 H9B—C9—H9C 109.5
C4—C5—H5 118.8 C7—C10—H10A 109.5
C5—C6—C1 115.7 (7) C7—C10—H10B 109.5
C5—C6—C7 122.7 (7) H10A—C10—H10B 109.5
C1—C6—C7 121.6 (8) C7—C10—H10C 109.5
C10—C7—C6 111.5 (8) H10A—C10—H10C 109.5
C10—C7—C8 107.5 (7) H10B—C10—H10C 109.5
O1—C1—C2—C3 178.4 (9) Br2—C4—C5—C6 −179.3 (7)
C6—C1—C2—C3 0.7 (14) C4—C5—C6—C1 1.4 (13)
O1—C1—C2—Br1 −2.1 (12) C4—C5—C6—C7 −179.3 (7)
C6—C1—C2—Br1 −179.8 (7) C2—C1—C6—C5 −0.8 (13)
C1—C2—C3—C4 −1.1 (13) O1—C1—C6—C5 −178.6 (8)
Br1—C2—C3—C4 179.4 (6) C2—C1—C6—C7 179.9 (8)
C1—C2—C3—O2 −180.0 (8) O1—C1—C6—C7 2.1 (12)
Br1—C2—C3—O2 0.5 (12) C5—C6—C7—C10 1.8 (12)
O2—C3—C4—C5 −179.5 (7) C1—C6—C7—C10 −178.9 (8)
C2—C3—C4—C5 1.7 (12) C5—C6—C7—C8 −117.2 (10)
O2—C3—C4—Br2 −2.2 (12) C1—C6—C7—C8 62.1 (11)
C2—C3—C4—Br2 179.0 (7) C5—C6—C7—C9 121.2 (10)
C3—C4—C5—C6 −2.0 (13) C1—C6—C7—C9 −59.5 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O1i 0.82 2.67 3.246 (13) 129.
O2—H2···O2ii 0.82 2.36 2.979 (9) 133.

Symmetry codes: (i) −x+1, −y+2, z; (ii) −y+1, x, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2103).

References

  1. Butler, A. & Walker, J.-V. (1993). Chem. Rev. 93, 1937–1944.
  2. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  3. Seevers, R.-H. & Counsell, R.-E. (1982). Chem. Rev. 82, 575–590.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Zheng, S.-L., Yang, J.-H., Yu, X.-L., Chen, X.-M. & Wong, W.-T. (2004). Inorg. Chem. 43, 830–838. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034866/vm2103sup1.cif

e-67-o2618-sup1.cif (15.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034866/vm2103Isup2.hkl

e-67-o2618-Isup2.hkl (67.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034866/vm2103Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES