Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2604. doi: 10.1107/S1600536811036075

N-(3-Chloro-4-fluoro­phen­yl)-2,2-diphenyl­acetamide

A S Praveen a, Jerry P Jasinski b,*, James A Golen b, B Narayana c, H S Yathirajan a
PMCID: PMC3201262  PMID: 22058752

Abstract

In the title compound, C20H15ClFNO, the dihedral angles between the mean planes of the acetamide group and the chloro­fluoro-substituted benzene ring and the two phenyl rings are 10.8 (8), 81.9 (7) and 85.8 (5)°, respectively. The crystal packing is stabilized by N—H⋯O hydrogen bonds and weak C—H⋯O inter­molecular inter­actions, forming infinite chains along the c axis.

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For their coordination abilities, see: Wu et al. (2008, 2010). For related structures, see: Davis & Healy (2010); Li et al. (2010); Li & Wu (2010); Wang et al. (2010); Xiao et al. (2010).graphic file with name e-67-o2604-scheme1.jpg

Experimental

Crystal data

  • C20H15ClFNO

  • M r = 339.78

  • Monoclinic, Inline graphic

  • a = 9.3665 (17) Å

  • b = 10.2069 (12) Å

  • c = 9.7774 (16) Å

  • β = 114.42 (2)°

  • V = 851.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.35 × 0.12 × 0.12 mm

Data collection

  • Oxford Diffractio Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.921, T max = 0.972

  • 7456 measured reflections

  • 3794 independent reflections

  • 3265 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.109

  • S = 1.01

  • 3794 reflections

  • 220 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 1668 Friedel pairs

  • Flack parameter: −0.06 (6)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811036075/ya2145sup1.cif

e-67-o2604-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036075/ya2145Isup2.hkl

e-67-o2604-Isup2.hkl (186KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036075/ya2145Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.95 2.49 3.256 (3) 138
N1—H1N⋯O1i 0.85 (2) 2.09 (2) 2.895 (2) 158 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

ASP thanks the UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Amides are extensively used as ligands due to their excellent coordination abilities (Wu et al., 2008; 2010). N-Substituted 2-arylacetamides are especially remarkable due to their structural similarity to the lateral chain of natural benzylpenicillin (Mijin & Marinkovic, 2006; Mijin et al., 2008). Crystal structures of some acetamide derivatives, viz., 2-(4-bromophenyl)-N-(2-methoxyphenyl)acetamide (Xiao et al., 2010), N-benzyl-2-(3-chloro-4-hydroxyphenyl)acetamide (Davis & Healy, 2010), 2-(2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yloxy)-N- (o-tolyl)acetamide (Li et al., 2010), N-benzyl-2-(2-bromophenyl)-2- (2-nitrophenoxy)acetamide (Li & Wu, 2010) and N-(4-chlorophenyl)-2-(8-quinolyloxy)acetamide monohydrate (Wang et al., 2010) have been reported. In view of the importance of amides, we report herein the crystal structure of the title compound, C20H15ClFNO.

In the title compound, the dihedral angles between the mean planes of the acetamide group 01/N1/C6/C7/C8 and the chloro, fluoro substituted benzene ring C1-C6 and two phenyl rings C9-C14 and C15-C20 are 10.8 (8)°, 81.9 (7)° and 85.8 (5)°, respectively (Fig. 2). Crystal packing is stabilized by N1—H1N···O1i hydrogen bonds and weak C1—H1A···O1i (symmetry code i: x, 1-y, z+1/2) intermolecular interactions forming infinite one-dimensional chains along the c axis (Fig. 3, Table 1).

Experimental

Diphenylacetyl chloride (0.230 g, 1 mmol) and 3-chloro-4-fluoroaniline (0.145 g, 1 mmol) were dissolved in dichloromethane (20 mL). The mixture was stirred in the presence of triethylamine at 273 K for about 3 h (Fig. 1). The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted three times with dichloromethane. The organic layer was washed with saturated NaHCO3 and brine solutions, dried and concentrated under reduced pressure to give the title compound. Single crystals were grown from toluene by the slow evaporation method (M.P.: 427 K).

Refinement

The N–H atom bonded to N1 was located in the diference Fourier map and refined isotropically with N-H distance constrained to 0.86 (2) Å. All C-bound H atoms were placed in their calculated positions and included in the refinement in the riding model approximation with C–H lengths of 0.95 Å for aromatic and 1.00 Å for methyne H atoms and temperature factors set to 1.2 times Ueq of the parent atom. 1668 Friedel pairs were measured.

Figures

Fig. 1.

Fig. 1.

Synthesis of the title compound; reaction scheme.

Fig. 2.

Fig. 2.

Molecular structure of the title compound; thermal displacement ellipsoids are drawn at the 50° probability level.

Fig. 3.

Fig. 3.

Packing diagram of the title compound viewed down the b axis. Dashed lines represent N—H···O hydrogen bonds forming infinite one-dimensional chains along the c axis; weak C-H···O interactions are not shown.

Crystal data

C20H15ClFNO F(000) = 352
Mr = 339.78 Dx = 1.326 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 3667 reflections
a = 9.3665 (17) Å θ = 3.0–32.4°
b = 10.2069 (12) Å µ = 0.24 mm1
c = 9.7774 (16) Å T = 173 K
β = 114.42 (2)° Block, colorless
V = 851.1 (2) Å3 0.35 × 0.12 × 0.12 mm
Z = 2

Data collection

Oxford Diffractio Xcalibur Eos Gemini diffractometer 3794 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3265 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 16.1500 pixels mm-1 θmax = 28.3°, θmin = 3.0°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −13→13
Tmin = 0.921, Tmax = 0.972 l = −12→13
7456 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0597P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
3794 reflections Δρmax = 0.17 e Å3
220 parameters Δρmin = −0.17 e Å3
3 restraints Absolute structure: Flack (1983), 1668 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.06 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.25355 (8) 0.11734 (7) 0.82272 (8) 0.0727 (2)
F1 0.15076 (18) 0.07394 (14) 0.50254 (19) 0.0658 (4)
O1 0.6516 (2) 0.52072 (16) 0.54006 (16) 0.0550 (4)
N1 0.6367 (2) 0.42807 (16) 0.74325 (18) 0.0431 (4)
H1N 0.665 (3) 0.433 (2) 0.837 (2) 0.052*
C1 0.4496 (3) 0.28097 (19) 0.7678 (2) 0.0446 (4)
H1A 0.4915 0.3022 0.8716 0.053*
C2 0.3294 (3) 0.19290 (18) 0.7097 (3) 0.0454 (5)
C3 0.2684 (2) 0.16238 (19) 0.5588 (3) 0.0461 (5)
C4 0.3265 (3) 0.2195 (2) 0.4665 (3) 0.0543 (5)
H4A 0.2836 0.1976 0.3628 0.065*
C5 0.4470 (3) 0.3086 (2) 0.5227 (2) 0.0506 (5)
H5A 0.4865 0.3489 0.4579 0.061*
C6 0.5107 (2) 0.33973 (18) 0.6746 (2) 0.0387 (4)
C7 0.6985 (2) 0.51195 (18) 0.6763 (2) 0.0390 (4)
C8 0.8312 (2) 0.59755 (18) 0.7841 (2) 0.0393 (4)
H8A 0.8897 0.5446 0.8765 0.047*
C9 0.7663 (3) 0.71731 (18) 0.8311 (2) 0.0433 (4)
C10 0.8448 (3) 0.7672 (2) 0.9741 (3) 0.0582 (6)
H10A 0.9365 0.7245 1.0431 0.070*
C11 0.7909 (4) 0.8791 (3) 1.0177 (4) 0.0751 (8)
H11A 0.8460 0.9124 1.1165 0.090*
C12 0.6600 (4) 0.9418 (3) 0.9208 (4) 0.0796 (9)
H12A 0.6245 1.0189 0.9515 0.096*
C13 0.5799 (4) 0.8935 (3) 0.7795 (4) 0.0767 (8)
H13A 0.4882 0.9370 0.7117 0.092*
C14 0.6317 (3) 0.7811 (3) 0.7341 (3) 0.0628 (6)
H14A 0.5745 0.7476 0.6357 0.075*
C15 0.9445 (2) 0.62793 (18) 0.7125 (2) 0.0416 (4)
C16 1.0589 (3) 0.5378 (2) 0.7245 (3) 0.0532 (5)
H16A 1.0688 0.4600 0.7810 0.064*
C17 1.1594 (3) 0.5589 (3) 0.6554 (3) 0.0649 (6)
H17A 1.2372 0.4956 0.6645 0.078*
C18 1.1470 (3) 0.6703 (3) 0.5742 (3) 0.0662 (7)
H18A 1.2167 0.6854 0.5277 0.079*
C19 1.0328 (3) 0.7606 (3) 0.5601 (3) 0.0662 (7)
H19A 1.0229 0.8377 0.5024 0.079*
C20 0.9324 (3) 0.7403 (2) 0.6290 (3) 0.0570 (6)
H20A 0.8545 0.8038 0.6191 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0985 (5) 0.0717 (4) 0.0713 (4) −0.0219 (4) 0.0586 (4) −0.0035 (3)
F1 0.0645 (8) 0.0659 (8) 0.0738 (10) −0.0204 (7) 0.0356 (7) −0.0198 (7)
O1 0.0727 (10) 0.0649 (9) 0.0269 (7) −0.0149 (8) 0.0200 (7) 0.0038 (6)
N1 0.0602 (10) 0.0470 (8) 0.0244 (7) −0.0089 (8) 0.0197 (8) −0.0019 (7)
C1 0.0650 (12) 0.0413 (9) 0.0328 (10) −0.0007 (9) 0.0257 (9) 0.0003 (7)
C2 0.0594 (12) 0.0392 (9) 0.0494 (12) 0.0018 (9) 0.0342 (10) 0.0011 (8)
C3 0.0482 (11) 0.0405 (9) 0.0520 (13) −0.0027 (8) 0.0232 (10) −0.0059 (9)
C4 0.0603 (13) 0.0646 (13) 0.0345 (10) −0.0093 (10) 0.0161 (10) −0.0079 (9)
C5 0.0651 (13) 0.0580 (11) 0.0328 (10) −0.0110 (10) 0.0242 (10) −0.0025 (9)
C6 0.0514 (10) 0.0391 (8) 0.0298 (9) 0.0015 (8) 0.0208 (8) 0.0004 (7)
C7 0.0512 (10) 0.0387 (9) 0.0299 (9) 0.0038 (7) 0.0196 (8) 0.0012 (7)
C8 0.0477 (10) 0.0413 (9) 0.0305 (9) 0.0021 (8) 0.0177 (8) 0.0030 (7)
C9 0.0516 (10) 0.0440 (9) 0.0401 (10) −0.0048 (9) 0.0248 (9) −0.0031 (8)
C10 0.0589 (14) 0.0617 (13) 0.0506 (13) −0.0039 (11) 0.0193 (11) −0.0142 (11)
C11 0.0766 (17) 0.0792 (17) 0.0691 (19) −0.0120 (15) 0.0299 (15) −0.0369 (14)
C12 0.088 (2) 0.0621 (14) 0.101 (3) 0.0039 (15) 0.0507 (19) −0.0263 (16)
C13 0.0832 (18) 0.0728 (17) 0.076 (2) 0.0251 (15) 0.0355 (16) −0.0065 (15)
C14 0.0691 (15) 0.0664 (13) 0.0487 (13) 0.0169 (12) 0.0202 (12) −0.0032 (11)
C15 0.0491 (10) 0.0435 (10) 0.0333 (10) −0.0019 (8) 0.0181 (8) 0.0004 (7)
C16 0.0645 (13) 0.0484 (11) 0.0518 (13) 0.0084 (10) 0.0293 (11) 0.0037 (9)
C17 0.0640 (14) 0.0715 (15) 0.0666 (17) 0.0085 (12) 0.0344 (13) −0.0051 (13)
C18 0.0688 (15) 0.0879 (18) 0.0563 (16) −0.0157 (14) 0.0403 (14) −0.0130 (13)
C19 0.0809 (17) 0.0669 (14) 0.0597 (16) −0.0054 (13) 0.0381 (14) 0.0155 (12)
C20 0.0653 (14) 0.0548 (12) 0.0586 (15) 0.0061 (11) 0.0332 (12) 0.0135 (10)

Geometric parameters (Å, °)

Cl1—C2 1.723 (2) C10—C11 1.385 (4)
F1—C3 1.353 (3) C10—H10A 0.9500
O1—C7 1.221 (2) C11—C12 1.360 (5)
N1—C7 1.346 (3) C11—H11A 0.9500
N1—C6 1.414 (3) C12—C13 1.363 (5)
N1—H1N 0.847 (17) C12—H12A 0.9500
C1—C2 1.367 (3) C13—C14 1.388 (4)
C1—C6 1.396 (3) C13—H13A 0.9500
C1—H1A 0.9500 C14—H14A 0.9500
C2—C3 1.379 (3) C15—C16 1.380 (3)
C3—C4 1.363 (3) C15—C20 1.385 (3)
C4—C5 1.374 (3) C16—C17 1.384 (4)
C4—H4A 0.9500 C16—H16A 0.9500
C5—C6 1.389 (3) C17—C18 1.364 (4)
C5—H5A 0.9500 C17—H17A 0.9500
C7—C8 1.528 (3) C18—C19 1.375 (4)
C8—C9 1.519 (3) C18—H18A 0.9500
C8—C15 1.526 (3) C19—C20 1.380 (4)
C8—H8A 1.0000 C19—H19A 0.9500
C9—C10 1.380 (3) C20—H20A 0.9500
C9—C14 1.387 (3)
C7—N1—C6 128.12 (17) C9—C10—C11 120.4 (3)
C7—N1—H1N 118.9 (18) C9—C10—H10A 119.8
C6—N1—H1N 112.4 (18) C11—C10—H10A 119.8
C2—C1—C6 120.06 (19) C12—C11—C10 120.8 (3)
C2—C1—H1A 120.0 C12—C11—H11A 119.6
C6—C1—H1A 120.0 C10—C11—H11A 119.6
C1—C2—C3 119.92 (19) C11—C12—C13 119.7 (3)
C1—C2—Cl1 120.96 (17) C11—C12—H12A 120.1
C3—C2—Cl1 119.12 (17) C13—C12—H12A 120.1
F1—C3—C4 119.8 (2) C12—C13—C14 120.3 (3)
F1—C3—C2 119.5 (2) C12—C13—H13A 119.9
C4—C3—C2 120.61 (19) C14—C13—H13A 119.9
C3—C4—C5 120.3 (2) C9—C14—C13 120.6 (3)
C3—C4—H4A 119.8 C9—C14—H14A 119.7
C5—C4—H4A 119.8 C13—C14—H14A 119.7
C4—C5—C6 119.8 (2) C16—C15—C20 118.3 (2)
C4—C5—H5A 120.1 C16—C15—C8 119.25 (18)
C6—C5—H5A 120.1 C20—C15—C8 122.37 (19)
C5—C6—C1 119.23 (19) C15—C16—C17 121.1 (2)
C5—C6—N1 123.94 (18) C15—C16—H16A 119.5
C1—C6—N1 116.83 (17) C17—C16—H16A 119.5
O1—C7—N1 122.95 (18) C18—C17—C16 120.2 (2)
O1—C7—C8 122.26 (17) C18—C17—H17A 119.9
N1—C7—C8 114.79 (17) C16—C17—H17A 119.9
C9—C8—C15 114.64 (16) C17—C18—C19 119.5 (3)
C9—C8—C7 110.86 (16) C17—C18—H18A 120.2
C15—C8—C7 108.75 (16) C19—C18—H18A 120.2
C9—C8—H8A 107.4 C18—C19—C20 120.6 (2)
C15—C8—H8A 107.4 C18—C19—H19A 119.7
C7—C8—H8A 107.4 C20—C19—H19A 119.7
C10—C9—C14 118.2 (2) C19—C20—C15 120.4 (2)
C10—C9—C8 119.4 (2) C19—C20—H20A 119.8
C14—C9—C8 122.4 (2) C15—C20—H20A 119.8
C6—C1—C2—C3 −0.1 (3) C15—C8—C9—C14 88.2 (3)
C6—C1—C2—Cl1 179.12 (15) C7—C8—C9—C14 −35.4 (3)
C1—C2—C3—F1 179.20 (19) C14—C9—C10—C11 −0.9 (4)
Cl1—C2—C3—F1 −0.1 (3) C8—C9—C10—C11 177.7 (3)
C1—C2—C3—C4 −0.2 (3) C9—C10—C11—C12 0.0 (5)
Cl1—C2—C3—C4 −179.44 (18) C10—C11—C12—C13 0.6 (5)
F1—C3—C4—C5 −179.4 (2) C11—C12—C13—C14 −0.2 (6)
C2—C3—C4—C5 −0.1 (3) C10—C9—C14—C13 1.2 (4)
C3—C4—C5—C6 0.6 (4) C8—C9—C14—C13 −177.3 (3)
C4—C5—C6—C1 −0.9 (3) C12—C13—C14—C9 −0.7 (5)
C4—C5—C6—N1 178.7 (2) C9—C8—C15—C16 152.1 (2)
C2—C1—C6—C5 0.7 (3) C7—C8—C15—C16 −83.2 (2)
C2—C1—C6—N1 −178.94 (18) C9—C8—C15—C20 −31.1 (3)
C7—N1—C6—C5 12.1 (3) C7—C8—C15—C20 93.6 (2)
C7—N1—C6—C1 −168.3 (2) C20—C15—C16—C17 0.2 (3)
C6—N1—C7—O1 −1.1 (3) C8—C15—C16—C17 177.0 (2)
C6—N1—C7—C8 177.97 (18) C15—C16—C17—C18 0.2 (4)
O1—C7—C8—C9 95.3 (2) C16—C17—C18—C19 −0.8 (4)
N1—C7—C8—C9 −83.8 (2) C17—C18—C19—C20 0.9 (4)
O1—C7—C8—C15 −31.6 (2) C18—C19—C20—C15 −0.5 (4)
N1—C7—C8—C15 149.28 (17) C16—C15—C20—C19 0.0 (4)
C15—C8—C9—C10 −90.3 (3) C8—C15—C20—C19 −176.8 (2)
C7—C8—C9—C10 146.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1i 0.95 2.49 3.256 (3) 138.
N1—H1N···O1i 0.85 (2) 2.09 (2) 2.895 (2) 158 (2)

Symmetry codes: (i) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2145).

References

  1. Davis, R. A. & Healy, P. C. (2010). Acta Cryst. E66, o2521. [DOI] [PMC free article] [PubMed]
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Li, W.-S., Luo, X.-F., Wang, Y. & Hu, A.-X. (2010). Acta Cryst. E66, o1460. [DOI] [PMC free article] [PubMed]
  4. Li, H. M. & Wu, J.-L. (2010). Acta Cryst. E66, o1274. [DOI] [PMC free article] [PubMed]
  5. Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.
  6. Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945– 950.
  7. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, Y., Li, Y.-W. & Li, X.-X. (2010). Acta Cryst. E66, o1977.
  10. Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207– 2215.
  11. Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288. [DOI] [PMC free article] [PubMed]
  12. Xiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811036075/ya2145sup1.cif

e-67-o2604-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036075/ya2145Isup2.hkl

e-67-o2604-Isup2.hkl (186KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036075/ya2145Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES