Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):m1399. doi: 10.1107/S1600536811037299

Tris(2,2′-bi-1H-imidazole-κ2 N 3,N 3′)cobalt(II) hydrogen phosphate

Zhiqiang Liang a, Fuxiang Wang b, Qihui Wu b, Xia Zhi b, Qinhe Pan b,*
PMCID: PMC3201263  PMID: 22058703

Abstract

The title compound, [Co(C6H6N4)3]HPO4, was synthesized under hydro­thermal conditions. In the cation, the CoII atom is octa­hedrally coordinated by six N atoms from three 2,2′-bi-1H-imidazole ligands [Co—N bond lengths are in the range 2.084 (5)–2.133 (6) Å]. Inter­molecular N—H⋯O hydrogen bonds form an extensive hydrogen-bonding network, which links cations and anions into a three-dimensional crystal structure.

Related literature

For related compounds, see Pan et al. (2005, 2008, 2010a ,b , 2011); Rothammel et al. (1998); Stalder & Wilkinson (1997); Tong & Pan (2011); Wang et al. (2003a ,b ).graphic file with name e-67-m1399-scheme1.jpg

Experimental

Crystal data

  • [Co(C6H6N4)3]HPO4

  • M r = 557.35

  • Monoclinic, Inline graphic

  • a = 12.700 (3) Å

  • b = 21.447 (4) Å

  • c = 9.1140 (18) Å

  • β = 95.84 (3)°

  • V = 2469.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.20 × 0.17 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) T min = 0.850, T max = 0.886

  • 12597 measured reflections

  • 5593 independent reflections

  • 3373 reflections with I > 2σ(I)

  • R int = 0.098

Refinement

  • R[F 2 > 2σ(F 2)] = 0.077

  • wR(F 2) = 0.152

  • S = 1.06

  • 5593 reflections

  • 325 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983), 2755 Friedel pairs

  • Flack parameter: −0.02 (2)

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811037299/aa2021sup1.cif

e-67-m1399-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037299/aa2021Isup2.hkl

e-67-m1399-Isup2.hkl (273.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.86 1.82 2.678 (7) 172.1
N4—H4⋯O2 0.86 1.87 2.717 (7) 168.3
N6—H6A⋯O3i 0.86 1.96 2.725 (8) 148.3
N8—H8⋯O3i 0.86 1.89 2.669 (8) 149.3
N10—H10⋯O2ii 0.86 2.23 2.887 (7) 133.7
N10—H10⋯O4iii 0.86 2.39 3.034 (9) 132.5
N12—H12A⋯O4iii 0.86 1.93 2.685 (8) 146.0

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21001052 and 21101047), the Natural Science Foundation of Hainan Province (No. 211010) and the Priming Scientific Research Foundation of Hainan University (No. kyqd1051).

supplementary crystallographic information

Comment

Recently, more attention has been paid to chiral metal complexes, which could be employed as an interesting template for the synthesis of novel materials, because they are versatile and can be made with a wide of shapes, charges and particularly chirality. Up to now, series of open-frameworks, such as metal phosphates (for example: Stalder & Wilkinson (1997); Wang et al. (2003a,b)) and germanates (for example: Pan et al. (2005, 2008)), have been synthesized with [M(dien)2]n+ or [M(en)3]n+ (M = Co, Ni; n = 2, 3; dien = diethylenediamine, en = ethylenediamine) cations. Recently the chiral metal complexes have been introduced into coordination polymers, see Pan et al. (2010a, 2010b, 2011), Tong et al. (2011). In this paper, we present an other metal complex [Co(biim)3]HPO4 (biim is 2,2'-biimidazole).

As shown in Fig. 1, the crystal structure of title compound consists of a discrete [Co(biim)3]2+ cations and HPO42- anions. In [Co(biim)3]2+, the CoII center is six coorinated and linked by six N atoms from three different biim ligands, resulting in a slightly distorted octahedral geometry. The CoII—N bond distances are in the range of 2.084 (5)–2.133 (6) Å. The P atom displays a slightly distorted tetrahedal geometry and is bonded to three O atoms and one OH group with the P—O distances of 1.484 (6)–1.564 (5) Å. N—H···O hydrogen bonds connect cations and anions into a three-dimensional network (see Table 1).

Experimental

In a typical synthesis, a mixture of Co(OAc)2.2H2O (0.25 g), biimidazole (0.067 g), H3PO4 (0.12 ml) and H2O (10 ml) were added to a 25 ml Teflon-lined reactor and kept under autogenous pressure at 120 °C for 3 days.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å) and allowed to ride on their parent atoms,with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

A view of the structure of complex. Ellipsoids are drawn at the 30% probability level.

Crystal data

[Co(C6H6N4)3]HPO4 F(000) = 1140
Mr = 557.35 Dx = 1.499 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 12761 reflections
a = 12.700 (3) Å θ = 3.1–27.5°
b = 21.447 (4) Å µ = 0.81 mm1
c = 9.1140 (18) Å T = 293 K
β = 95.84 (3)° Block, blue
V = 2469.6 (8) Å3 0.2 × 0.17 × 0.15 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID-S diffractometer 5593 independent reflections
Radiation source: fine-focus sealed tube 3373 reflections with I > 2σ(I)
graphite Rint = 0.098
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) h = −16→16
Tmin = 0.850, Tmax = 0.886 k = −27→27
12597 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077 H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0453P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.042
5593 reflections Δρmax = 0.40 e Å3
325 parameters Δρmin = −0.32 e Å3
2 restraints Absolute structure: Flack (1983), 2755 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.02 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.61255 (7) 0.33459 (3) 0.15859 (9) 0.0466 (3)
P1 0.12445 (13) 0.48617 (7) 0.34051 (17) 0.0397 (4)
O1 0.1291 (4) 0.5348 (2) 0.4686 (5) 0.0560 (13)
H1 0.1900 0.5375 0.5077 0.067*
O2 0.1932 (4) 0.5113 (2) 0.2233 (4) 0.0512 (12)
O3 0.0119 (4) 0.4852 (3) 0.2777 (6) 0.0828 (17)
O4 0.1658 (4) 0.4249 (2) 0.4011 (5) 0.0699 (15)
N1 0.4828 (5) 0.3189 (3) 0.2765 (7) 0.0619 (18)
N2 0.3328 (5) 0.3553 (3) 0.3473 (7) 0.0648 (18)
H2 0.2794 0.3792 0.3565 0.078*
N3 0.5206 (5) 0.4153 (2) 0.0992 (6) 0.0513 (14)
N4 0.3842 (4) 0.4723 (3) 0.1484 (6) 0.0566 (16)
H4 0.3274 0.4838 0.1847 0.068*
N5 0.7019 (4) 0.3812 (2) 0.3368 (6) 0.0513 (15)
N6 0.8457 (5) 0.4352 (3) 0.4042 (7) 0.0584 (16)
H6A 0.9047 0.4544 0.3993 0.070*
N7 0.7434 (4) 0.3656 (3) 0.0530 (6) 0.0477 (14)
N8 0.8950 (4) 0.4176 (2) 0.0763 (7) 0.0482 (14)
H8 0.9473 0.4395 0.1150 0.058*
N9 0.6751 (5) 0.2470 (3) 0.2311 (8) 0.0603 (17)
N10 0.6751 (6) 0.1449 (3) 0.1916 (9) 0.074 (2)
H10 0.6636 0.1093 0.1498 0.089*
N11 0.5563 (4) 0.2775 (3) −0.0218 (8) 0.0625 (18)
N12 0.5553 (5) 0.1820 (3) −0.1166 (9) 0.077 (2)
H12A 0.5652 0.1426 −0.1244 0.092*
C1 0.4432 (7) 0.2771 (4) 0.3717 (12) 0.095 (3)
H1A 0.4748 0.2395 0.4015 0.114*
C2 0.3535 (7) 0.2987 (4) 0.4145 (12) 0.097 (3)
H2A 0.3118 0.2790 0.4787 0.116*
C3 0.4129 (5) 0.3662 (3) 0.2641 (8) 0.0511 (18)
C4 0.4347 (5) 0.4180 (3) 0.1736 (8) 0.0449 (17)
C5 0.4392 (7) 0.5059 (4) 0.0548 (10) 0.078 (3)
H5 0.4226 0.5454 0.0177 0.094*
C6 0.5240 (6) 0.4697 (3) 0.0261 (9) 0.063 (2)
H6 0.5756 0.4811 −0.0342 0.076*
C7 0.7044 (7) 0.3963 (3) 0.4839 (9) 0.064 (2)
H7 0.6529 0.3853 0.5447 0.077*
C8 0.7923 (8) 0.4291 (4) 0.5266 (9) 0.071 (2)
H8A 0.8128 0.4446 0.6205 0.086*
C9 0.7899 (5) 0.4063 (3) 0.2959 (8) 0.0446 (16)
C10 0.8109 (5) 0.3975 (3) 0.1443 (8) 0.0415 (16)
C11 0.8805 (6) 0.3960 (3) −0.0667 (8) 0.0520 (17)
H11 0.9254 0.4018 −0.1400 0.062*
C12 0.7866 (6) 0.3645 (3) −0.0789 (8) 0.0562 (19)
H12 0.7563 0.3452 −0.1643 0.067*
C13 0.7277 (7) 0.2186 (4) 0.3508 (9) 0.070 (2)
H13 0.7583 0.2388 0.4348 0.083*
C14 0.7284 (8) 0.1565 (4) 0.3283 (12) 0.078 (3)
H14 0.7593 0.1268 0.3933 0.094*
C15 0.6450 (5) 0.2012 (3) 0.1372 (9) 0.057 (2)
C16 0.5860 (6) 0.2179 (3) 0.0014 (10) 0.061 (2)
C17 0.5049 (8) 0.2208 (5) −0.2230 (12) 0.094 (3)
H17 0.4756 0.2088 −0.3164 0.113*
C18 0.5058 (7) 0.2797 (4) −0.1671 (12) 0.086 (3)
H18 0.4781 0.3151 −0.2158 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0401 (4) 0.0300 (4) 0.0746 (6) −0.0043 (5) 0.0292 (4) −0.0064 (5)
P1 0.0473 (10) 0.0415 (9) 0.0323 (8) −0.0023 (8) 0.0134 (8) −0.0013 (8)
O1 0.075 (4) 0.048 (3) 0.046 (3) 0.005 (3) 0.012 (3) −0.004 (2)
O2 0.057 (3) 0.051 (3) 0.048 (3) −0.002 (2) 0.014 (2) 0.009 (2)
O3 0.058 (3) 0.100 (4) 0.091 (4) −0.007 (3) 0.011 (3) −0.023 (3)
O4 0.104 (4) 0.042 (3) 0.068 (3) 0.020 (3) 0.028 (3) 0.011 (2)
N1 0.053 (4) 0.043 (3) 0.098 (5) −0.005 (3) 0.047 (4) 0.000 (3)
N2 0.055 (4) 0.047 (3) 0.100 (5) −0.002 (3) 0.043 (4) −0.002 (4)
N3 0.049 (3) 0.045 (3) 0.063 (4) 0.004 (3) 0.020 (3) 0.001 (3)
N4 0.047 (4) 0.060 (4) 0.064 (4) 0.018 (3) 0.013 (3) 0.009 (3)
N5 0.055 (4) 0.038 (3) 0.065 (4) −0.004 (3) 0.026 (3) −0.007 (3)
N6 0.059 (4) 0.054 (4) 0.064 (4) −0.014 (3) 0.016 (4) −0.006 (3)
N7 0.040 (3) 0.048 (3) 0.057 (4) −0.006 (3) 0.016 (3) −0.004 (3)
N8 0.036 (3) 0.044 (3) 0.066 (4) −0.005 (2) 0.016 (3) 0.005 (3)
N9 0.057 (4) 0.046 (4) 0.084 (5) 0.002 (3) 0.038 (4) −0.004 (4)
N10 0.079 (5) 0.034 (3) 0.115 (6) −0.005 (3) 0.036 (5) −0.005 (4)
N11 0.040 (3) 0.040 (4) 0.112 (6) −0.001 (3) 0.026 (4) −0.015 (4)
N12 0.063 (4) 0.038 (3) 0.129 (6) −0.006 (3) 0.012 (4) −0.022 (4)
C1 0.076 (6) 0.051 (5) 0.171 (9) 0.006 (4) 0.075 (7) 0.029 (6)
C2 0.084 (6) 0.053 (5) 0.167 (10) 0.006 (5) 0.082 (7) 0.029 (6)
C3 0.053 (4) 0.035 (4) 0.070 (5) −0.008 (3) 0.028 (4) −0.011 (4)
C4 0.030 (4) 0.046 (4) 0.060 (5) 0.002 (3) 0.013 (3) −0.007 (3)
C5 0.086 (6) 0.070 (6) 0.084 (6) 0.015 (5) 0.037 (6) 0.031 (5)
C6 0.060 (5) 0.058 (5) 0.077 (5) 0.006 (4) 0.033 (4) 0.022 (4)
C7 0.079 (6) 0.056 (5) 0.062 (5) −0.003 (4) 0.031 (5) −0.009 (4)
C8 0.089 (6) 0.069 (6) 0.060 (5) −0.010 (5) 0.025 (5) −0.010 (4)
C9 0.037 (4) 0.038 (4) 0.060 (5) −0.001 (3) 0.014 (4) 0.006 (3)
C10 0.043 (4) 0.032 (3) 0.052 (4) −0.002 (3) 0.019 (4) 0.002 (3)
C11 0.043 (4) 0.063 (5) 0.052 (4) −0.009 (4) 0.016 (4) 0.000 (4)
C12 0.061 (5) 0.055 (5) 0.053 (5) −0.007 (4) 0.009 (4) −0.007 (4)
C13 0.080 (6) 0.058 (5) 0.074 (6) −0.006 (4) 0.023 (5) 0.004 (4)
C14 0.090 (7) 0.042 (5) 0.107 (8) 0.007 (4) 0.029 (6) 0.005 (5)
C15 0.046 (4) 0.035 (4) 0.094 (6) −0.003 (3) 0.027 (4) −0.002 (4)
C16 0.041 (4) 0.035 (4) 0.111 (7) −0.005 (3) 0.031 (5) −0.009 (5)
C17 0.081 (7) 0.064 (6) 0.134 (9) −0.013 (5) −0.007 (6) −0.029 (6)
C18 0.059 (6) 0.079 (7) 0.116 (8) −0.001 (5) −0.006 (6) 0.003 (6)

Geometric parameters (Å, °)

Co1—N1 2.084 (5) N9—C15 1.332 (9)
Co1—N7 2.110 (5) N9—C13 1.364 (10)
Co1—N11 2.115 (7) N10—C15 1.346 (9)
Co1—N9 2.120 (6) N10—C14 1.379 (11)
Co1—N3 2.127 (6) N10—H10 0.8600
Co1—N5 2.133 (6) N11—C16 1.344 (9)
P1—O3 1.485 (6) N11—C18 1.412 (11)
P1—O4 1.500 (4) N12—C16 1.348 (10)
P1—O2 1.544 (4) N12—C17 1.384 (11)
P1—O1 1.563 (5) N12—H12A 0.8600
O1—H1 0.8200 C1—C2 1.325 (10)
N1—C3 1.344 (9) C1—H1A 0.9300
N1—C1 1.378 (9) C2—H2A 0.9300
N2—C3 1.350 (8) C3—C4 1.429 (9)
N2—C2 1.373 (9) C5—C6 1.373 (10)
N2—H2 0.8600 C5—H5 0.9300
N3—C4 1.343 (8) C6—H6 0.9300
N3—C6 1.347 (8) C7—C8 1.343 (11)
N4—C4 1.337 (8) C7—H7 0.9300
N4—C5 1.363 (9) C8—H8A 0.9300
N4—H4 0.8600 C9—C10 1.446 (9)
N5—C9 1.327 (8) C11—C12 1.365 (9)
N5—C7 1.376 (8) C11—H11 0.9300
N6—C9 1.311 (8) C12—H12 0.9300
N6—C8 1.370 (9) C13—C14 1.347 (10)
N6—H6A 0.8600 C13—H13 0.9300
N7—C10 1.323 (8) C14—H14 0.9300
N7—C12 1.372 (8) C15—C16 1.426 (11)
N8—C10 1.358 (8) C17—C18 1.361 (11)
N8—C11 1.377 (9) C17—H17 0.9300
N8—H8 0.8600 C18—H18 0.9300
N1—Co1—N7 170.6 (2) C16—N12—H12A 126.5
N1—Co1—N11 94.9 (2) C17—N12—H12A 126.5
N7—Co1—N11 92.7 (2) C2—C1—N1 109.8 (7)
N1—Co1—N9 89.3 (2) C2—C1—H1A 125.1
N7—Co1—N9 97.7 (2) N1—C1—H1A 125.1
N11—Co1—N9 79.4 (3) C1—C2—N2 108.0 (7)
N1—Co1—N3 79.6 (2) C1—C2—H2A 126.0
N7—Co1—N3 93.7 (2) N2—C2—H2A 126.0
N11—Co1—N3 98.0 (2) N1—C3—N2 110.6 (6)
N9—Co1—N3 168.4 (2) N1—C3—C4 118.0 (6)
N1—Co1—N5 94.0 (2) N2—C3—C4 131.3 (7)
N7—Co1—N5 79.5 (2) N4—C4—N3 110.6 (6)
N11—Co1—N5 167.1 (2) N4—C4—C3 131.2 (6)
N9—Co1—N5 91.4 (2) N3—C4—C3 118.2 (6)
N3—Co1—N5 92.8 (2) N4—C5—C6 106.4 (6)
O3—P1—O4 114.6 (4) N4—C5—H5 126.8
O3—P1—O2 109.2 (3) C6—C5—H5 126.8
O4—P1—O2 111.0 (3) N3—C6—C5 109.3 (6)
O3—P1—O1 105.1 (3) N3—C6—H6 125.4
O4—P1—O1 109.0 (3) C5—C6—H6 125.4
O2—P1—O1 107.6 (3) C8—C7—N5 110.0 (7)
P1—O1—H1 109.5 C8—C7—H7 125.0
C3—N1—C1 105.3 (6) N5—C7—H7 125.0
C3—N1—Co1 112.7 (5) C7—C8—N6 106.3 (7)
C1—N1—Co1 142.0 (5) C7—C8—H8A 126.9
C3—N2—C2 106.4 (6) N6—C8—H8A 126.9
C3—N2—H2 126.8 N6—C9—N5 112.7 (6)
C2—N2—H2 126.8 N6—C9—C10 130.0 (6)
C4—N3—C6 106.3 (6) N5—C9—C10 117.3 (6)
C4—N3—Co1 111.1 (4) N7—C10—N8 111.5 (6)
C6—N3—Co1 141.9 (5) N7—C10—C9 119.8 (6)
C4—N4—C5 107.4 (6) N8—C10—C9 128.7 (7)
C4—N4—H4 126.3 C12—C11—N8 106.0 (6)
C5—N4—H4 126.3 C12—C11—H11 127.0
C9—N5—C7 104.0 (6) N8—C11—H11 127.0
C9—N5—Co1 112.0 (5) C11—C12—N7 110.2 (6)
C7—N5—Co1 144.1 (5) C11—C12—H12 124.9
C9—N6—C8 107.0 (6) N7—C12—H12 124.9
C9—N6—H6A 126.5 C14—C13—N9 109.3 (8)
C8—N6—H6A 126.5 C14—C13—H13 125.4
C10—N7—C12 105.5 (5) N9—C13—H13 125.4
C10—N7—Co1 111.5 (4) C13—C14—N10 107.8 (8)
C12—N7—Co1 143.0 (5) C13—C14—H14 126.1
C10—N8—C11 106.8 (6) N10—C14—H14 126.1
C10—N8—H8 126.6 N9—C15—N10 111.8 (8)
C11—N8—H8 126.6 N9—C15—C16 117.7 (7)
C15—N9—C13 105.7 (6) N10—C15—C16 130.5 (7)
C15—N9—Co1 112.2 (6) N11—C16—N12 111.3 (8)
C13—N9—Co1 141.6 (6) N11—C16—C15 119.3 (7)
C15—N10—C14 105.5 (7) N12—C16—C15 129.3 (7)
C15—N10—H10 127.3 C18—C17—N12 108.0 (9)
C14—N10—H10 127.3 C18—C17—H17 126.0
C16—N11—C18 105.8 (7) N12—C17—H17 126.0
C16—N11—Co1 111.2 (6) C17—C18—N11 107.9 (8)
C18—N11—Co1 142.7 (6) C17—C18—H18 126.1
C16—N12—C17 107.0 (7) N11—C18—H18 126.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O4 0.86 1.82 2.678 (7) 172.1
N4—H4···O2 0.86 1.87 2.717 (7) 168.3
N6—H6A···O3i 0.86 1.96 2.725 (8) 148.3
N8—H8···O3i 0.86 1.89 2.669 (8) 149.3
N10—H10···O2ii 0.86 2.23 2.887 (7) 133.7
N10—H10···O4iii 0.86 2.39 3.034 (9) 132.5
N12—H12A···O4iii 0.86 1.93 2.685 (8) 146.0

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y−1/2, z; (iii) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2021).

References

  1. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  2. Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204.
  3. Pan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531.
  4. Pan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Micropor. Mesopor. Mater. 132, 453–457.
  5. Pan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202.
  6. Pan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372.
  7. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC (2002). CrystalStructureand CrystalClear Rigaku/MSC Inc., USA.
  9. Rothammel, W., Spengler, R., Burzlaff, H., Jarraya, S. & Ben Salah, A. (1998). Acta Cryst. C54, IUC9800059.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Stalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168–2173.
  12. Tong, J. & Pan, Q. (2011). Acta Cryst. E67, m579–m580. [DOI] [PMC free article] [PubMed]
  13. Wang, Y., Yu, J. H. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089–4092. [DOI] [PubMed]
  14. Wang, Y., Yu, J. H. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048–5055.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811037299/aa2021sup1.cif

e-67-m1399-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037299/aa2021Isup2.hkl

e-67-m1399-Isup2.hkl (273.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES