Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2626. doi: 10.1107/S1600536811036609

1-(3-Chloro­phen­yl)-2-methyl-4-nitro-1H-imidazole-5-carboxamide

Artur Korzański a, Paweł Wagner b, Maciej Kubicki a,*
PMCID: PMC3201265  PMID: 22058768

Abstract

In the crystal structure of the title compound, C11H9ClN4O3, pairs of N—H⋯N(imidazole) hydrogen bonds connect the mol­ecules into centrosymmetric dimers, which are further connected by N—H⋯O(carbamo­yl) hydrogen bonds into C(4) chains along [010]. Inter­play of these two kinds of hydrogen bonds connect the mol­ecules into layers perpendicular to [101]. The imidazole [maximum deviation 0.0069 (9) Å] and phenyl rings are inclined at a dihedral angle of 58.44 (6)°; the nitro group is almost coplanar [dihedral angle 5.8 (2)°] with the imidazole ring while the carbamoyl group is almost perpendicular [70.15 (13)°] to it.

Related literature

For the synthesis, see: Suwiński et al. (1994). For similar nitro­imidazole derivatives, see: Kubicki (2004a ,b ). For a recent experimental charge density study of a nitro­imidazole derivative, see: Paul et al. (2011).graphic file with name e-67-o2626-scheme1.jpg

Experimental

Crystal data

  • C11H9ClN4O3

  • M r = 280.67

  • Monoclinic, Inline graphic

  • a = 21.8417 (14) Å

  • b = 7.3710 (4) Å

  • c = 16.2467 (10) Å

  • β = 108.680 (7)°

  • V = 2477.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.25 × 0.2 × 0.08 mm

Data collection

  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.833, T max = 1.000

  • 4943 measured reflections

  • 2702 independent reflections

  • 2185 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.104

  • S = 1.04

  • 2702 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036609/zk2021sup1.cif

e-67-o2626-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036609/zk2021Isup2.hkl

e-67-o2626-Isup2.hkl (130.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036609/zk2021Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N51—H51A⋯N3i 0.85 (2) 2.29 (2) 3.130 (2) 169.2 (18)
N51—H51B⋯O51ii 0.87 (2) 2.03 (2) 2.8938 (19) 171.3 (18)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

In the course of our studies on nitroimidazole derivatives (e.g. Kubicki, 2004a, 2004b; Paul et al., 2011) we have determined the crystal structure of another member of the family of 1-aryl-4-nitro substituted imidazole, 1(3-chlorophenyl)-2-methyl-4-nitro-5-carbamoyl-imidazole (1, Scheme 1).

Fig. 1 shows the perspective view of 1. The two main planar fragments, imidazole (maximum deviation 0.0069 (9) Å) and phenyl rings (0.0125 (13) Å), are inclined by 58.44 (6)°. This value is relatively small: for instance, in three polymorphs of 1-phenyl-2-methyl-4-nitro-5-bromoimidazole (Kubicki, 2004a) the twist angle ranges from 86 to 90°, and in 1-(4-chlorophenyl)-2-methyl-4-nitro-1H-imidazole-5-carbonitrile (Kubicki, 2004b) - 87.5°. The nitro group is nearly coplanar with the imidazole ring (dihedral angle of 5.8 (2)°, while the carbamoyl fragment is, on contrary, almost perpendicular and is inclined by 70.15 (13)° with respect to the imidazole ring plane.

The principal motifs of the crystal sructure are constructed by means of N—H···N and N—H···O hydrogen bonds. N51···N3(1/2 - x,3/2 - y,1 - z) hydrogen bonds connect molecules into centrosymmetric dimers (Fig. 2), and these dimers - the graph set symbol R22(12) - might be regarded as the building blocks of the structure. The other hydrogen bond, N51···O51(1/2 - x,-1/2 + y,1/2 - z), connect the molecules into C(4) chains along [010] direction. Interplay of these two kinds of hydrogen bonds connect molecules into layers perpendicular to [101], Fig. 3. The neighbouring layers are not connected by any directional intermolecular interactions.

Experimental

The compound, as an intermediate in purine synthesis, was synthesized by alkaline hydrolysis of 5-cyano derivative in the presence of hydrogen peroxide in good yield (Suwiński et al., 1994).

Refinement

Hydrogen atoms from methyl group were placed geometrically and refined as riding model with Uiso set at 1.5 times Ueq of C21 atom. All other hydrogen atoms were found in the difference Fourier maps and freely refined with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

Anisotropic ellipsoid representation of 1 together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.

Fig. 2.

Fig. 2.

The centrosymmetric dimer formed by N—H···N hydrogen bond; primes denote symmetry code (i) 1/2 - x,3/2 - y,1 - z

Fig. 3.

Fig. 3.

Two mutually perpendicular views of the hydrogen bonded layer of the molecules 1. Neighbouring layers are only loosely bound to one another.

Crystal data

C11H9ClN4O3 F(000) = 1152
Mr = 280.67 Dx = 1.505 Mg m3
Monoclinic, Ce2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1970 reflections
a = 21.8417 (14) Å θ = 2.6–27.8°
b = 7.3710 (4) Å µ = 0.32 mm1
c = 16.2467 (10) Å T = 295 K
β = 108.680 (7)° Plate, colourless
V = 2477.9 (3) Å3 0.25 × 0.2 × 0.08 mm
Z = 8

Data collection

Agilent Xcalibur Sapphire2 diffractometer 2702 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2185 reflections with I > 2σ(I)
graphite Rint = 0.019
Detector resolution: 8.1929 pixels mm-1 θmax = 27.9°, θmin = 2.8°
ω–scan h = −28→23
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −9→9
Tmin = 0.833, Tmax = 1.000 l = −19→20
4943 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0514P)2 + 1.4411P] where P = (Fo2 + 2Fc2)/3
2702 reflections (Δ/σ)max < 0.001
197 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.17359 (6) 0.85257 (17) 0.33362 (8) 0.0271 (3)
C11 0.12098 (7) 0.8118 (2) 0.25590 (9) 0.0293 (3)
C12 0.09423 (8) 0.6397 (2) 0.24501 (11) 0.0332 (4)
H12 0.1077 (9) 0.552 (3) 0.2894 (12) 0.037 (5)*
C13 0.04732 (8) 0.6004 (2) 0.16645 (11) 0.0379 (4)
Cl13 0.01602 (3) 0.38209 (7) 0.14854 (4) 0.05910 (19)
C14 0.02578 (10) 0.7283 (3) 0.10197 (12) 0.0504 (5)
H14 −0.0065 (11) 0.699 (3) 0.0509 (15) 0.064 (7)*
C15 0.05307 (10) 0.8993 (3) 0.11556 (13) 0.0560 (6)
H15 0.0382 (12) 0.991 (4) 0.0733 (17) 0.072 (7)*
C16 0.10138 (9) 0.9419 (3) 0.19203 (12) 0.0415 (4)
H16 0.1217 (10) 1.055 (3) 0.2009 (13) 0.046 (5)*
C2 0.17800 (8) 0.9965 (2) 0.38931 (10) 0.0305 (3)
C21 0.12317 (10) 1.1186 (3) 0.38571 (14) 0.0502 (5)
H21A 0.1342 1.1920 0.4372 0.075*
H21B 0.0856 1.0473 0.3821 0.075*
H21C 0.1142 1.1955 0.3355 0.075*
N3 0.23569 (7) 1.00575 (17) 0.44768 (8) 0.0310 (3)
C4 0.26864 (7) 0.8643 (2) 0.42808 (9) 0.0266 (3)
N4 0.33550 (7) 0.83535 (19) 0.47546 (8) 0.0339 (3)
O41 0.36067 (7) 0.9295 (2) 0.53941 (9) 0.0568 (4)
O42 0.36375 (6) 0.7157 (2) 0.44992 (9) 0.0543 (4)
C5 0.23205 (7) 0.76476 (19) 0.35908 (9) 0.0249 (3)
C51 0.24424 (7) 0.5998 (2) 0.31274 (9) 0.0267 (3)
O51 0.24669 (7) 0.61445 (15) 0.23864 (7) 0.0387 (3)
N51 0.24967 (7) 0.44533 (19) 0.35555 (9) 0.0342 (3)
H51A 0.2520 (9) 0.444 (3) 0.4089 (13) 0.039 (5)*
H51B 0.2552 (9) 0.346 (3) 0.3297 (12) 0.037 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0274 (6) 0.0263 (6) 0.0261 (6) 0.0018 (5) 0.0067 (5) −0.0005 (5)
C11 0.0257 (7) 0.0328 (8) 0.0273 (7) 0.0001 (6) 0.0054 (6) −0.0001 (6)
C12 0.0332 (8) 0.0334 (8) 0.0308 (8) −0.0010 (7) 0.0071 (7) 0.0005 (7)
C13 0.0336 (9) 0.0394 (9) 0.0379 (9) −0.0081 (7) 0.0073 (7) −0.0065 (7)
Cl13 0.0610 (3) 0.0487 (3) 0.0575 (3) −0.0197 (2) 0.0048 (3) −0.0114 (2)
C14 0.0399 (10) 0.0630 (13) 0.0362 (10) −0.0071 (9) −0.0046 (8) 0.0027 (9)
C15 0.0496 (12) 0.0587 (13) 0.0426 (10) −0.0043 (10) −0.0093 (9) 0.0181 (10)
C16 0.0367 (9) 0.0388 (10) 0.0409 (9) −0.0040 (8) 0.0012 (7) 0.0092 (8)
C2 0.0370 (8) 0.0255 (7) 0.0299 (7) 0.0026 (6) 0.0118 (6) −0.0003 (6)
C21 0.0482 (11) 0.0447 (11) 0.0579 (12) 0.0155 (9) 0.0174 (9) −0.0052 (9)
N3 0.0387 (7) 0.0269 (7) 0.0272 (6) 0.0012 (6) 0.0103 (6) −0.0035 (5)
C4 0.0303 (8) 0.0266 (7) 0.0215 (6) 0.0000 (6) 0.0066 (6) 0.0000 (6)
N4 0.0332 (7) 0.0368 (7) 0.0279 (6) −0.0020 (6) 0.0045 (6) −0.0023 (6)
O41 0.0461 (8) 0.0674 (9) 0.0430 (7) −0.0046 (7) −0.0050 (6) −0.0219 (7)
O42 0.0351 (7) 0.0607 (9) 0.0597 (8) 0.0109 (6) 0.0049 (6) −0.0182 (7)
C5 0.0278 (7) 0.0243 (7) 0.0219 (6) 0.0008 (6) 0.0071 (6) 0.0016 (5)
C51 0.0283 (7) 0.0257 (7) 0.0245 (7) 0.0003 (6) 0.0062 (6) −0.0027 (6)
O51 0.0627 (8) 0.0305 (6) 0.0268 (6) 0.0056 (6) 0.0196 (5) 0.0008 (5)
N51 0.0530 (9) 0.0239 (7) 0.0266 (7) 0.0029 (6) 0.0142 (6) −0.0014 (6)

Geometric parameters (Å, °)

N1—C5 1.3719 (19) C2—C21 1.484 (2)
N1—C2 1.3774 (19) C21—H21A 0.9600
N1—C11 1.4408 (19) C21—H21B 0.9600
C11—C16 1.377 (2) C21—H21C 0.9600
C11—C12 1.384 (2) N3—C4 1.361 (2)
C12—C13 1.388 (2) C4—C5 1.364 (2)
C12—H12 0.94 (2) C4—N4 1.432 (2)
C13—C14 1.376 (3) N4—O42 1.2228 (19)
C13—Cl13 1.7360 (18) N4—O41 1.2236 (18)
C14—C15 1.381 (3) C5—C51 1.498 (2)
C14—H14 0.93 (2) C51—O51 1.2270 (18)
C15—C16 1.384 (3) C51—N51 1.319 (2)
C15—H15 0.94 (3) N51—H51A 0.85 (2)
C16—H16 0.93 (2) N51—H51B 0.87 (2)
C2—N3 1.314 (2)
C5—N1—C2 107.62 (12) N1—C2—C21 123.73 (15)
C5—N1—C11 124.74 (12) C2—C21—H21A 109.5
C2—N1—C11 127.22 (13) C2—C21—H21B 109.5
C16—C11—C12 121.72 (15) H21A—C21—H21B 109.5
C16—C11—N1 118.89 (15) C2—C21—H21C 109.5
C12—C11—N1 119.27 (14) H21A—C21—H21C 109.5
C11—C12—C13 117.78 (15) H21B—C21—H21C 109.5
C11—C12—H12 121.0 (11) C2—N3—C4 104.35 (13)
C13—C12—H12 121.2 (11) N3—C4—C5 112.95 (14)
C14—C13—C12 121.94 (17) N3—C4—N4 120.85 (13)
C14—C13—Cl13 119.18 (14) C5—C4—N4 126.15 (14)
C12—C13—Cl13 118.87 (14) O42—N4—O41 123.99 (15)
C13—C14—C15 118.62 (17) O42—N4—C4 117.62 (13)
C13—C14—H14 119.8 (15) O41—N4—C4 118.38 (14)
C15—C14—H14 121.6 (15) C4—C5—N1 103.76 (13)
C14—C15—C16 121.11 (18) C4—C5—C51 134.27 (14)
C14—C15—H15 120.4 (15) N1—C5—C51 121.97 (13)
C16—C15—H15 118.5 (15) O51—C51—N51 124.64 (14)
C11—C16—C15 118.79 (18) O51—C51—C5 119.48 (13)
C11—C16—H16 119.2 (13) N51—C51—C5 115.84 (13)
C15—C16—H16 122.0 (12) C51—N51—H51A 121.0 (14)
N3—C2—N1 111.31 (14) C51—N51—H51B 118.4 (12)
N3—C2—C21 124.90 (15) H51A—N51—H51B 120.2 (19)
C5—N1—C11—C16 −115.99 (18) C21—C2—N3—C4 177.36 (16)
C2—N1—C11—C16 55.6 (2) C2—N3—C4—C5 −0.99 (17)
C5—N1—C11—C12 60.0 (2) C2—N3—C4—N4 176.64 (14)
C2—N1—C11—C12 −128.44 (17) N3—C4—N4—O42 −173.81 (15)
C16—C11—C12—C13 1.1 (3) C5—C4—N4—O42 3.5 (2)
N1—C11—C12—C13 −174.80 (15) N3—C4—N4—O41 7.2 (2)
C11—C12—C13—C14 −2.3 (3) C5—C4—N4—O41 −175.54 (15)
C11—C12—C13—Cl13 176.52 (12) N3—C4—C5—N1 1.33 (17)
C12—C13—C14—C15 1.6 (3) N4—C4—C5—N1 −176.15 (14)
Cl13—C13—C14—C15 −177.23 (17) N3—C4—C5—C51 −179.51 (15)
C13—C14—C15—C16 0.4 (3) N4—C4—C5—C51 3.0 (3)
C12—C11—C16—C15 0.8 (3) C2—N1—C5—C4 −1.11 (15)
N1—C11—C16—C15 176.73 (17) C11—N1—C5—C4 171.84 (13)
C14—C15—C16—C11 −1.6 (3) C2—N1—C5—C51 179.59 (13)
C5—N1—C2—N3 0.58 (17) C11—N1—C5—C51 −7.5 (2)
C11—N1—C2—N3 −172.15 (14) C4—C5—C51—O51 −110.4 (2)
C5—N1—C2—C21 −176.59 (16) N1—C5—C51—O51 68.6 (2)
C11—N1—C2—C21 10.7 (2) C4—C5—C51—N51 71.6 (2)
N1—C2—N3—C4 0.23 (17) N1—C5—C51—N51 −109.36 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N51—H51A···N3i 0.85 (2) 2.29 (2) 3.130 (2) 169.2 (18)
N51—H51B···O51ii 0.87 (2) 2.03 (2) 2.8938 (19) 171.3 (18)

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZK2021).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Kubicki, M. (2004a). Acta Cryst. C60, o255–o257. [DOI] [PubMed]
  4. Kubicki, M. (2004b). Acta Cryst. C60, o341–o343. [DOI] [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365–378. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Suwiński, J., Walczak, K. & Wagner, P. (1994). Pol. J. Appl. Chem. 38, 499–506.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036609/zk2021sup1.cif

e-67-o2626-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036609/zk2021Isup2.hkl

e-67-o2626-Isup2.hkl (130.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036609/zk2021Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES