Abstract
In the crystal structure of the title compound, C11H9ClN4O3, pairs of N—H⋯N(imidazole) hydrogen bonds connect the molecules into centrosymmetric dimers, which are further connected by N—H⋯O(carbamoyl) hydrogen bonds into C(4) chains along [010]. Interplay of these two kinds of hydrogen bonds connect the molecules into layers perpendicular to [101]. The imidazole [maximum deviation 0.0069 (9) Å] and phenyl rings are inclined at a dihedral angle of 58.44 (6)°; the nitro group is almost coplanar [dihedral angle 5.8 (2)°] with the imidazole ring while the carbamoyl group is almost perpendicular [70.15 (13)°] to it.
Related literature
For the synthesis, see: Suwiński et al. (1994 ▶). For similar nitroimidazole derivatives, see: Kubicki (2004a
▶,b
▶). For a recent experimental charge density study of a nitroimidazole derivative, see: Paul et al. (2011 ▶).
Experimental
Crystal data
C11H9ClN4O3
M r = 280.67
Monoclinic,
a = 21.8417 (14) Å
b = 7.3710 (4) Å
c = 16.2467 (10) Å
β = 108.680 (7)°
V = 2477.9 (3) Å3
Z = 8
Mo Kα radiation
μ = 0.32 mm−1
T = 295 K
0.25 × 0.2 × 0.08 mm
Data collection
Agilent Xcalibur Sapphire2 diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010 ▶) T min = 0.833, T max = 1.000
4943 measured reflections
2702 independent reflections
2185 reflections with I > 2σ(I)
R int = 0.019
Refinement
R[F 2 > 2σ(F 2)] = 0.038
wR(F 2) = 0.104
S = 1.04
2702 reflections
197 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.30 e Å−3
Δρmin = −0.32 e Å−3
Data collection: CrysAlis PRO (Agilent, 2010 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶) and Mercury (Macrae et al., 2008 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036609/zk2021sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036609/zk2021Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811036609/zk2021Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N51—H51A⋯N3i | 0.85 (2) | 2.29 (2) | 3.130 (2) | 169.2 (18) |
| N51—H51B⋯O51ii | 0.87 (2) | 2.03 (2) | 2.8938 (19) | 171.3 (18) |
Symmetry codes: (i)
; (ii)
.
supplementary crystallographic information
Comment
In the course of our studies on nitroimidazole derivatives (e.g. Kubicki, 2004a, 2004b; Paul et al., 2011) we have determined the crystal structure of another member of the family of 1-aryl-4-nitro substituted imidazole, 1(3-chlorophenyl)-2-methyl-4-nitro-5-carbamoyl-imidazole (1, Scheme 1).
Fig. 1 shows the perspective view of 1. The two main planar fragments, imidazole (maximum deviation 0.0069 (9) Å) and phenyl rings (0.0125 (13) Å), are inclined by 58.44 (6)°. This value is relatively small: for instance, in three polymorphs of 1-phenyl-2-methyl-4-nitro-5-bromoimidazole (Kubicki, 2004a) the twist angle ranges from 86 to 90°, and in 1-(4-chlorophenyl)-2-methyl-4-nitro-1H-imidazole-5-carbonitrile (Kubicki, 2004b) - 87.5°. The nitro group is nearly coplanar with the imidazole ring (dihedral angle of 5.8 (2)°, while the carbamoyl fragment is, on contrary, almost perpendicular and is inclined by 70.15 (13)° with respect to the imidazole ring plane.
The principal motifs of the crystal sructure are constructed by means of N—H···N and N—H···O hydrogen bonds. N51···N3(1/2 - x,3/2 - y,1 - z) hydrogen bonds connect molecules into centrosymmetric dimers (Fig. 2), and these dimers - the graph set symbol R22(12) - might be regarded as the building blocks of the structure. The other hydrogen bond, N51···O51(1/2 - x,-1/2 + y,1/2 - z), connect the molecules into C(4) chains along [010] direction. Interplay of these two kinds of hydrogen bonds connect molecules into layers perpendicular to [101], Fig. 3. The neighbouring layers are not connected by any directional intermolecular interactions.
Experimental
The compound, as an intermediate in purine synthesis, was synthesized by alkaline hydrolysis of 5-cyano derivative in the presence of hydrogen peroxide in good yield (Suwiński et al., 1994).
Refinement
Hydrogen atoms from methyl group were placed geometrically and refined as riding model with Uiso set at 1.5 times Ueq of C21 atom. All other hydrogen atoms were found in the difference Fourier maps and freely refined with isotropic displacement parameters.
Figures
Fig. 1.
Anisotropic ellipsoid representation of 1 together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
Fig. 2.
The centrosymmetric dimer formed by N—H···N hydrogen bond; primes denote symmetry code (i) 1/2 - x,3/2 - y,1 - z
Fig. 3.
Two mutually perpendicular views of the hydrogen bonded layer of the molecules 1. Neighbouring layers are only loosely bound to one another.
Crystal data
| C11H9ClN4O3 | F(000) = 1152 |
| Mr = 280.67 | Dx = 1.505 Mg m−3 |
| Monoclinic, Ce2/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2yc | Cell parameters from 1970 reflections |
| a = 21.8417 (14) Å | θ = 2.6–27.8° |
| b = 7.3710 (4) Å | µ = 0.32 mm−1 |
| c = 16.2467 (10) Å | T = 295 K |
| β = 108.680 (7)° | Plate, colourless |
| V = 2477.9 (3) Å3 | 0.25 × 0.2 × 0.08 mm |
| Z = 8 |
Data collection
| Agilent Xcalibur Sapphire2 diffractometer | 2702 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 2185 reflections with I > 2σ(I) |
| graphite | Rint = 0.019 |
| Detector resolution: 8.1929 pixels mm-1 | θmax = 27.9°, θmin = 2.8° |
| ω–scan | h = −28→23 |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −9→9 |
| Tmin = 0.833, Tmax = 1.000 | l = −19→20 |
| 4943 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0514P)2 + 1.4411P] where P = (Fo2 + 2Fc2)/3 |
| 2702 reflections | (Δ/σ)max < 0.001 |
| 197 parameters | Δρmax = 0.30 e Å−3 |
| 0 restraints | Δρmin = −0.32 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.17359 (6) | 0.85257 (17) | 0.33362 (8) | 0.0271 (3) | |
| C11 | 0.12098 (7) | 0.8118 (2) | 0.25590 (9) | 0.0293 (3) | |
| C12 | 0.09423 (8) | 0.6397 (2) | 0.24501 (11) | 0.0332 (4) | |
| H12 | 0.1077 (9) | 0.552 (3) | 0.2894 (12) | 0.037 (5)* | |
| C13 | 0.04732 (8) | 0.6004 (2) | 0.16645 (11) | 0.0379 (4) | |
| Cl13 | 0.01602 (3) | 0.38209 (7) | 0.14854 (4) | 0.05910 (19) | |
| C14 | 0.02578 (10) | 0.7283 (3) | 0.10197 (12) | 0.0504 (5) | |
| H14 | −0.0065 (11) | 0.699 (3) | 0.0509 (15) | 0.064 (7)* | |
| C15 | 0.05307 (10) | 0.8993 (3) | 0.11556 (13) | 0.0560 (6) | |
| H15 | 0.0382 (12) | 0.991 (4) | 0.0733 (17) | 0.072 (7)* | |
| C16 | 0.10138 (9) | 0.9419 (3) | 0.19203 (12) | 0.0415 (4) | |
| H16 | 0.1217 (10) | 1.055 (3) | 0.2009 (13) | 0.046 (5)* | |
| C2 | 0.17800 (8) | 0.9965 (2) | 0.38931 (10) | 0.0305 (3) | |
| C21 | 0.12317 (10) | 1.1186 (3) | 0.38571 (14) | 0.0502 (5) | |
| H21A | 0.1342 | 1.1920 | 0.4372 | 0.075* | |
| H21B | 0.0856 | 1.0473 | 0.3821 | 0.075* | |
| H21C | 0.1142 | 1.1955 | 0.3355 | 0.075* | |
| N3 | 0.23569 (7) | 1.00575 (17) | 0.44768 (8) | 0.0310 (3) | |
| C4 | 0.26864 (7) | 0.8643 (2) | 0.42808 (9) | 0.0266 (3) | |
| N4 | 0.33550 (7) | 0.83535 (19) | 0.47546 (8) | 0.0339 (3) | |
| O41 | 0.36067 (7) | 0.9295 (2) | 0.53941 (9) | 0.0568 (4) | |
| O42 | 0.36375 (6) | 0.7157 (2) | 0.44992 (9) | 0.0543 (4) | |
| C5 | 0.23205 (7) | 0.76476 (19) | 0.35908 (9) | 0.0249 (3) | |
| C51 | 0.24424 (7) | 0.5998 (2) | 0.31274 (9) | 0.0267 (3) | |
| O51 | 0.24669 (7) | 0.61445 (15) | 0.23864 (7) | 0.0387 (3) | |
| N51 | 0.24967 (7) | 0.44533 (19) | 0.35555 (9) | 0.0342 (3) | |
| H51A | 0.2520 (9) | 0.444 (3) | 0.4089 (13) | 0.039 (5)* | |
| H51B | 0.2552 (9) | 0.346 (3) | 0.3297 (12) | 0.037 (5)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0274 (6) | 0.0263 (6) | 0.0261 (6) | 0.0018 (5) | 0.0067 (5) | −0.0005 (5) |
| C11 | 0.0257 (7) | 0.0328 (8) | 0.0273 (7) | 0.0001 (6) | 0.0054 (6) | −0.0001 (6) |
| C12 | 0.0332 (8) | 0.0334 (8) | 0.0308 (8) | −0.0010 (7) | 0.0071 (7) | 0.0005 (7) |
| C13 | 0.0336 (9) | 0.0394 (9) | 0.0379 (9) | −0.0081 (7) | 0.0073 (7) | −0.0065 (7) |
| Cl13 | 0.0610 (3) | 0.0487 (3) | 0.0575 (3) | −0.0197 (2) | 0.0048 (3) | −0.0114 (2) |
| C14 | 0.0399 (10) | 0.0630 (13) | 0.0362 (10) | −0.0071 (9) | −0.0046 (8) | 0.0027 (9) |
| C15 | 0.0496 (12) | 0.0587 (13) | 0.0426 (10) | −0.0043 (10) | −0.0093 (9) | 0.0181 (10) |
| C16 | 0.0367 (9) | 0.0388 (10) | 0.0409 (9) | −0.0040 (8) | 0.0012 (7) | 0.0092 (8) |
| C2 | 0.0370 (8) | 0.0255 (7) | 0.0299 (7) | 0.0026 (6) | 0.0118 (6) | −0.0003 (6) |
| C21 | 0.0482 (11) | 0.0447 (11) | 0.0579 (12) | 0.0155 (9) | 0.0174 (9) | −0.0052 (9) |
| N3 | 0.0387 (7) | 0.0269 (7) | 0.0272 (6) | 0.0012 (6) | 0.0103 (6) | −0.0035 (5) |
| C4 | 0.0303 (8) | 0.0266 (7) | 0.0215 (6) | 0.0000 (6) | 0.0066 (6) | 0.0000 (6) |
| N4 | 0.0332 (7) | 0.0368 (7) | 0.0279 (6) | −0.0020 (6) | 0.0045 (6) | −0.0023 (6) |
| O41 | 0.0461 (8) | 0.0674 (9) | 0.0430 (7) | −0.0046 (7) | −0.0050 (6) | −0.0219 (7) |
| O42 | 0.0351 (7) | 0.0607 (9) | 0.0597 (8) | 0.0109 (6) | 0.0049 (6) | −0.0182 (7) |
| C5 | 0.0278 (7) | 0.0243 (7) | 0.0219 (6) | 0.0008 (6) | 0.0071 (6) | 0.0016 (5) |
| C51 | 0.0283 (7) | 0.0257 (7) | 0.0245 (7) | 0.0003 (6) | 0.0062 (6) | −0.0027 (6) |
| O51 | 0.0627 (8) | 0.0305 (6) | 0.0268 (6) | 0.0056 (6) | 0.0196 (5) | 0.0008 (5) |
| N51 | 0.0530 (9) | 0.0239 (7) | 0.0266 (7) | 0.0029 (6) | 0.0142 (6) | −0.0014 (6) |
Geometric parameters (Å, °)
| N1—C5 | 1.3719 (19) | C2—C21 | 1.484 (2) |
| N1—C2 | 1.3774 (19) | C21—H21A | 0.9600 |
| N1—C11 | 1.4408 (19) | C21—H21B | 0.9600 |
| C11—C16 | 1.377 (2) | C21—H21C | 0.9600 |
| C11—C12 | 1.384 (2) | N3—C4 | 1.361 (2) |
| C12—C13 | 1.388 (2) | C4—C5 | 1.364 (2) |
| C12—H12 | 0.94 (2) | C4—N4 | 1.432 (2) |
| C13—C14 | 1.376 (3) | N4—O42 | 1.2228 (19) |
| C13—Cl13 | 1.7360 (18) | N4—O41 | 1.2236 (18) |
| C14—C15 | 1.381 (3) | C5—C51 | 1.498 (2) |
| C14—H14 | 0.93 (2) | C51—O51 | 1.2270 (18) |
| C15—C16 | 1.384 (3) | C51—N51 | 1.319 (2) |
| C15—H15 | 0.94 (3) | N51—H51A | 0.85 (2) |
| C16—H16 | 0.93 (2) | N51—H51B | 0.87 (2) |
| C2—N3 | 1.314 (2) | ||
| C5—N1—C2 | 107.62 (12) | N1—C2—C21 | 123.73 (15) |
| C5—N1—C11 | 124.74 (12) | C2—C21—H21A | 109.5 |
| C2—N1—C11 | 127.22 (13) | C2—C21—H21B | 109.5 |
| C16—C11—C12 | 121.72 (15) | H21A—C21—H21B | 109.5 |
| C16—C11—N1 | 118.89 (15) | C2—C21—H21C | 109.5 |
| C12—C11—N1 | 119.27 (14) | H21A—C21—H21C | 109.5 |
| C11—C12—C13 | 117.78 (15) | H21B—C21—H21C | 109.5 |
| C11—C12—H12 | 121.0 (11) | C2—N3—C4 | 104.35 (13) |
| C13—C12—H12 | 121.2 (11) | N3—C4—C5 | 112.95 (14) |
| C14—C13—C12 | 121.94 (17) | N3—C4—N4 | 120.85 (13) |
| C14—C13—Cl13 | 119.18 (14) | C5—C4—N4 | 126.15 (14) |
| C12—C13—Cl13 | 118.87 (14) | O42—N4—O41 | 123.99 (15) |
| C13—C14—C15 | 118.62 (17) | O42—N4—C4 | 117.62 (13) |
| C13—C14—H14 | 119.8 (15) | O41—N4—C4 | 118.38 (14) |
| C15—C14—H14 | 121.6 (15) | C4—C5—N1 | 103.76 (13) |
| C14—C15—C16 | 121.11 (18) | C4—C5—C51 | 134.27 (14) |
| C14—C15—H15 | 120.4 (15) | N1—C5—C51 | 121.97 (13) |
| C16—C15—H15 | 118.5 (15) | O51—C51—N51 | 124.64 (14) |
| C11—C16—C15 | 118.79 (18) | O51—C51—C5 | 119.48 (13) |
| C11—C16—H16 | 119.2 (13) | N51—C51—C5 | 115.84 (13) |
| C15—C16—H16 | 122.0 (12) | C51—N51—H51A | 121.0 (14) |
| N3—C2—N1 | 111.31 (14) | C51—N51—H51B | 118.4 (12) |
| N3—C2—C21 | 124.90 (15) | H51A—N51—H51B | 120.2 (19) |
| C5—N1—C11—C16 | −115.99 (18) | C21—C2—N3—C4 | 177.36 (16) |
| C2—N1—C11—C16 | 55.6 (2) | C2—N3—C4—C5 | −0.99 (17) |
| C5—N1—C11—C12 | 60.0 (2) | C2—N3—C4—N4 | 176.64 (14) |
| C2—N1—C11—C12 | −128.44 (17) | N3—C4—N4—O42 | −173.81 (15) |
| C16—C11—C12—C13 | 1.1 (3) | C5—C4—N4—O42 | 3.5 (2) |
| N1—C11—C12—C13 | −174.80 (15) | N3—C4—N4—O41 | 7.2 (2) |
| C11—C12—C13—C14 | −2.3 (3) | C5—C4—N4—O41 | −175.54 (15) |
| C11—C12—C13—Cl13 | 176.52 (12) | N3—C4—C5—N1 | 1.33 (17) |
| C12—C13—C14—C15 | 1.6 (3) | N4—C4—C5—N1 | −176.15 (14) |
| Cl13—C13—C14—C15 | −177.23 (17) | N3—C4—C5—C51 | −179.51 (15) |
| C13—C14—C15—C16 | 0.4 (3) | N4—C4—C5—C51 | 3.0 (3) |
| C12—C11—C16—C15 | 0.8 (3) | C2—N1—C5—C4 | −1.11 (15) |
| N1—C11—C16—C15 | 176.73 (17) | C11—N1—C5—C4 | 171.84 (13) |
| C14—C15—C16—C11 | −1.6 (3) | C2—N1—C5—C51 | 179.59 (13) |
| C5—N1—C2—N3 | 0.58 (17) | C11—N1—C5—C51 | −7.5 (2) |
| C11—N1—C2—N3 | −172.15 (14) | C4—C5—C51—O51 | −110.4 (2) |
| C5—N1—C2—C21 | −176.59 (16) | N1—C5—C51—O51 | 68.6 (2) |
| C11—N1—C2—C21 | 10.7 (2) | C4—C5—C51—N51 | 71.6 (2) |
| N1—C2—N3—C4 | 0.23 (17) | N1—C5—C51—N51 | −109.36 (17) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N51—H51A···N3i | 0.85 (2) | 2.29 (2) | 3.130 (2) | 169.2 (18) |
| N51—H51B···O51ii | 0.87 (2) | 2.03 (2) | 2.8938 (19) | 171.3 (18) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y−1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZK2021).
References
- Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Kubicki, M. (2004a). Acta Cryst. C60, o255–o257. [DOI] [PubMed]
- Kubicki, M. (2004b). Acta Cryst. C60, o341–o343. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Paul, A., Kubicki, M., Jelsch, C., Durand, P. & Lecomte, C. (2011). Acta Cryst. B67, 365–378. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Suwiński, J., Walczak, K. & Wagner, P. (1994). Pol. J. Appl. Chem. 38, 499–506.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036609/zk2021sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036609/zk2021Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811036609/zk2021Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



