Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2675. doi: 10.1107/S1600536811037366

1-(1-Benzofuran-2-yl)-2-(phenyl­sulfon­yl)ethanone

Hatem A Abdel-Aziz a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3201267  PMID: 22058784

Abstract

The overall mol­ecular conformation of the title compound, C16H12O4S, is elongated, the dihedral angle formed between the benzofuran (r.m.s. deviation = 0.018 Å) and benzene rings being 24.81 (6)°. Both sulfonyl O atoms lie to one side of the S-bound benzene ring, and the carbonyl and furan O atoms are syn to each other. Supra­molecular arrays parallel to (101) sustained by C—H⋯O contacts feature in the crystal packing.

Related literature

For the biological activity of sulfones, see: Garuti et al. (2002), and of benzofuran, see: Abdel-Aziz & Mekawey (2009). For previous work on the chemistry and biological activity of benzofurans, see: Abdel-Wahab et al. (2009); Abdel-Aziz et al. (2009, 2011). For the synthesis, see: Takahashi et al. (1986).graphic file with name e-67-o2675-scheme1.jpg

Experimental

Crystal data

  • C16H12O4S

  • M r = 300.32

  • Monoclinic, Inline graphic

  • a = 10.7560 (2) Å

  • b = 4.7855 (1) Å

  • c = 26.1838 (5) Å

  • β = 91.024 (2)°

  • V = 1347.54 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.15 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.598, T max = 1.000

  • 4617 measured reflections

  • 2650 independent reflections

  • 2495 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.086

  • S = 1.04

  • 2650 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037366/pk2346sup1.cif

e-67-o2675-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037366/pk2346Isup2.hkl

e-67-o2675-Isup2.hkl (130.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037366/pk2346Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.55 3.1808 (19) 124
C7—H7a⋯O2ii 0.99 2.57 3.5383 (17) 165
C7—H7b⋯O1i 0.99 2.47 3.3746 (17) 152
C15—H15⋯O3iii 0.95 2.47 3.2742 (17) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank King Saud University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The investigation of the title compound, (I), a composite of sulphone and benzofuran groups, was motivated by the known biological activity of each component (Garuti et al., 2002; Abdel-Aziz & Mekawey, 2009) and represents a continuation of on-going biological and structural studies in this area (Abdel-Wahab et al., 2009; Abdel-Aziz et al., 2009; Abdel-Aziz et al., 2011).

With respect to the S-bound benzene ring in (I), Fig. 1, the two sulfonyl-O atoms lie to one side and the methylene group to the other. The benzofuran group is planar (r.m.s. deviation = 0.018 Å) and is splayed out with respect to the rest of the molecule. The dihedral angle between the S-bound benzene and benzofuran rings is 24.81 (6) ° so that overall the molecule has a flattened shape. The carbonyl- and benzofuran-O atoms are syn to each other.

The crystal packing is dominated by C—H···O interactions, Table 1, involving all but the benzofuran-O4 atom. These lead to the formation of supramolecular arrays parallel to (101), Fig. 2. There are no specific interactions between the layers, Fig. 3.

Experimental

The title compound was prepared according to the reported method (Takahashi et al., 1986). The yellow crystals were isolated from a mixture of EtOH/DMF (v/v = 3/1) by slow evaporation at room temperature.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular array parallel to (101) in (I) mediated by C—H···O contacts shown as orange dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the unit-cell contents of (I) highlighting the stacking of layers; the C—H···O contacts are shown as orange dashed lines.

Crystal data

C16H12O4S F(000) = 624
Mr = 300.32 Dx = 1.480 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2yn Cell parameters from 3182 reflections
a = 10.7560 (2) Å θ = 3.4–74.0°
b = 4.7855 (1) Å µ = 2.27 mm1
c = 26.1838 (5) Å T = 100 K
β = 91.024 (2)° Prism, yellow
V = 1347.54 (5) Å3 0.35 × 0.15 × 0.15 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2650 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2495 reflections with I > 2σ(I)
mirror Rint = 0.016
Detector resolution: 10.4 pixels mm-1 θmax = 74.2°, θmin = 3.4°
ω scans h = −12→13
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −5→3
Tmin = 0.598, Tmax = 1.000 l = −31→32
4617 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.6486P] where P = (Fo2 + 2Fc2)/3
2650 reflections (Δ/σ)max = 0.002
190 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.53618 (3) 0.14747 (7) 0.735119 (11) 0.01251 (11)
O1 0.63911 (9) −0.0313 (2) 0.74882 (4) 0.0174 (2)
O2 0.42375 (9) 0.0193 (2) 0.71500 (4) 0.0178 (2)
O3 0.64086 (10) 0.0614 (2) 0.62454 (4) 0.0228 (2)
O4 0.46617 (9) 0.2296 (2) 0.55532 (4) 0.0173 (2)
C1 0.49885 (13) 0.3575 (3) 0.78787 (5) 0.0137 (3)
C2 0.59334 (13) 0.4305 (3) 0.82217 (5) 0.0163 (3)
H2 0.6754 0.3613 0.8182 0.020*
C3 0.56524 (14) 0.6072 (3) 0.86253 (6) 0.0201 (3)
H3 0.6284 0.6594 0.8865 0.024*
C4 0.44511 (14) 0.7074 (3) 0.86776 (5) 0.0218 (3)
H4 0.4266 0.8293 0.8952 0.026*
C5 0.35163 (14) 0.6309 (3) 0.83320 (6) 0.0225 (3)
H5 0.2696 0.7000 0.8373 0.027*
C6 0.37766 (13) 0.4545 (3) 0.79284 (5) 0.0183 (3)
H6 0.3142 0.4008 0.7691 0.022*
C7 0.58626 (13) 0.3948 (3) 0.68830 (5) 0.0156 (3)
H7A 0.5339 0.5648 0.6894 0.019*
H7B 0.6737 0.4494 0.6953 0.019*
C8 0.57443 (13) 0.2571 (3) 0.63613 (5) 0.0159 (3)
C9 0.47739 (13) 0.3641 (3) 0.60172 (5) 0.0152 (3)
C10 0.39035 (13) 0.5678 (3) 0.60687 (5) 0.0166 (3)
H10 0.3806 0.6887 0.6353 0.020*
C11 0.31615 (13) 0.5640 (3) 0.56082 (5) 0.0166 (3)
C12 0.21147 (14) 0.7095 (3) 0.54235 (6) 0.0218 (3)
H12 0.1746 0.8536 0.5619 0.026*
C13 0.16361 (15) 0.6368 (3) 0.49482 (6) 0.0242 (3)
H13 0.0919 0.7305 0.4818 0.029*
C14 0.21907 (15) 0.4270 (3) 0.46533 (6) 0.0231 (3)
H14 0.1843 0.3841 0.4327 0.028*
C15 0.32250 (15) 0.2813 (3) 0.48237 (5) 0.0205 (3)
H15 0.3604 0.1402 0.4624 0.025*
C16 0.36750 (13) 0.3544 (3) 0.53055 (5) 0.0163 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01469 (18) 0.01156 (19) 0.01124 (17) −0.00044 (11) −0.00085 (12) −0.00152 (11)
O1 0.0191 (5) 0.0154 (5) 0.0178 (5) 0.0036 (4) −0.0021 (4) −0.0012 (4)
O2 0.0177 (5) 0.0180 (5) 0.0176 (5) −0.0042 (4) −0.0018 (4) −0.0033 (4)
O3 0.0220 (5) 0.0289 (6) 0.0174 (5) 0.0066 (5) −0.0021 (4) −0.0065 (4)
O4 0.0208 (5) 0.0204 (5) 0.0106 (4) 0.0017 (4) −0.0017 (4) −0.0029 (4)
C1 0.0182 (7) 0.0128 (7) 0.0101 (6) −0.0001 (5) 0.0012 (5) 0.0002 (5)
C2 0.0163 (6) 0.0180 (7) 0.0145 (6) −0.0002 (5) −0.0001 (5) −0.0007 (5)
C3 0.0223 (7) 0.0234 (8) 0.0146 (7) −0.0032 (6) −0.0009 (5) −0.0032 (6)
C4 0.0267 (8) 0.0233 (8) 0.0154 (7) 0.0009 (6) 0.0048 (6) −0.0052 (6)
C5 0.0193 (7) 0.0267 (8) 0.0215 (7) 0.0046 (6) 0.0030 (6) −0.0032 (6)
C6 0.0178 (7) 0.0209 (8) 0.0161 (7) 0.0009 (6) −0.0010 (5) 0.0000 (6)
C7 0.0201 (7) 0.0150 (7) 0.0118 (6) −0.0028 (5) −0.0012 (5) −0.0009 (5)
C8 0.0168 (6) 0.0187 (7) 0.0123 (6) −0.0034 (5) 0.0007 (5) −0.0015 (5)
C9 0.0192 (7) 0.0169 (7) 0.0096 (6) −0.0041 (5) 0.0002 (5) −0.0013 (5)
C10 0.0221 (7) 0.0159 (7) 0.0117 (6) −0.0023 (6) 0.0018 (5) 0.0000 (5)
C11 0.0218 (7) 0.0155 (7) 0.0125 (6) −0.0031 (6) 0.0011 (5) 0.0018 (5)
C12 0.0263 (8) 0.0209 (7) 0.0183 (7) 0.0029 (6) 0.0007 (6) 0.0028 (6)
C13 0.0256 (8) 0.0257 (9) 0.0211 (7) 0.0003 (6) −0.0047 (6) 0.0076 (6)
C14 0.0307 (8) 0.0235 (8) 0.0149 (7) −0.0059 (7) −0.0061 (6) 0.0031 (6)
C15 0.0282 (8) 0.0196 (7) 0.0135 (7) −0.0024 (6) −0.0012 (6) −0.0008 (6)
C16 0.0188 (7) 0.0170 (7) 0.0132 (6) −0.0028 (5) −0.0004 (5) 0.0027 (5)

Geometric parameters (Å, °)

S1—O1 1.4394 (10) C7—C8 1.5201 (18)
S1—O2 1.4468 (10) C7—H7A 0.9900
S1—C1 1.7603 (14) C7—H7B 0.9900
S1—C7 1.7936 (15) C8—C9 1.460 (2)
O3—C8 1.2193 (18) C9—C10 1.360 (2)
O4—C16 1.3708 (17) C10—C11 1.4343 (19)
O4—C9 1.3781 (16) C10—H10 0.9500
C1—C2 1.3891 (19) C11—C16 1.398 (2)
C1—C6 1.3919 (19) C11—C12 1.403 (2)
C2—C3 1.391 (2) C12—C13 1.383 (2)
C2—H2 0.9500 C12—H12 0.9500
C3—C4 1.387 (2) C13—C14 1.406 (2)
C3—H3 0.9500 C13—H13 0.9500
C4—C5 1.390 (2) C14—C15 1.380 (2)
C4—H4 0.9500 C14—H14 0.9500
C5—C6 1.385 (2) C15—C16 1.388 (2)
C5—H5 0.9500 C15—H15 0.9500
C6—H6 0.9500
O1—S1—O2 118.23 (6) S1—C7—H7B 110.1
O1—S1—C1 109.21 (6) H7A—C7—H7B 108.4
O2—S1—C1 109.08 (6) O3—C8—C9 122.11 (13)
O1—S1—C7 108.87 (6) O3—C8—C7 121.11 (13)
O2—S1—C7 106.87 (6) C9—C8—C7 116.75 (12)
C1—S1—C7 103.59 (7) C10—C9—O4 111.88 (12)
C16—O4—C9 105.58 (11) C10—C9—C8 132.54 (13)
C2—C1—C6 122.09 (13) O4—C9—C8 115.52 (12)
C2—C1—S1 118.46 (11) C9—C10—C11 106.31 (13)
C6—C1—S1 119.40 (11) C9—C10—H10 126.8
C1—C2—C3 118.55 (13) C11—C10—H10 126.8
C1—C2—H2 120.7 C16—C11—C12 118.92 (13)
C3—C2—H2 120.7 C16—C11—C10 105.45 (13)
C4—C3—C2 120.04 (14) C12—C11—C10 135.62 (14)
C4—C3—H3 120.0 C13—C12—C11 117.97 (15)
C2—C3—H3 120.0 C13—C12—H12 121.0
C5—C4—C3 120.60 (14) C11—C12—H12 121.0
C5—C4—H4 119.7 C12—C13—C14 121.27 (15)
C3—C4—H4 119.7 C12—C13—H13 119.4
C4—C5—C6 120.23 (14) C14—C13—H13 119.4
C4—C5—H5 119.9 C15—C14—C13 122.05 (14)
C6—C5—H5 119.9 C15—C14—H14 119.0
C5—C6—C1 118.49 (13) C13—C14—H14 119.0
C5—C6—H6 120.8 C14—C15—C16 115.62 (14)
C1—C6—H6 120.8 C14—C15—H15 122.2
C8—C7—S1 107.86 (10) C16—C15—H15 122.2
C8—C7—H7A 110.1 O4—C16—C15 125.07 (13)
S1—C7—H7A 110.1 O4—C16—C11 110.78 (12)
C8—C7—H7B 110.1 C15—C16—C11 124.14 (14)
O1—S1—C1—C2 29.99 (13) O3—C8—C9—C10 176.92 (15)
O2—S1—C1—C2 160.57 (11) C7—C8—C9—C10 −1.0 (2)
C7—S1—C1—C2 −85.89 (12) O3—C8—C9—O4 −0.1 (2)
O1—S1—C1—C6 −152.63 (12) C7—C8—C9—O4 −178.03 (11)
O2—S1—C1—C6 −22.06 (14) O4—C9—C10—C11 0.70 (16)
C7—S1—C1—C6 91.48 (13) C8—C9—C10—C11 −176.42 (15)
C6—C1—C2—C3 −0.3 (2) C9—C10—C11—C16 −0.87 (16)
S1—C1—C2—C3 177.00 (11) C9—C10—C11—C12 177.66 (16)
C1—C2—C3—C4 −0.2 (2) C16—C11—C12—C13 0.3 (2)
C2—C3—C4—C5 0.5 (2) C10—C11—C12—C13 −178.10 (16)
C3—C4—C5—C6 −0.3 (3) C11—C12—C13—C14 −1.1 (2)
C4—C5—C6—C1 −0.2 (2) C12—C13—C14—C15 0.8 (2)
C2—C1—C6—C5 0.5 (2) C13—C14—C15—C16 0.4 (2)
S1—C1—C6—C5 −176.78 (12) C9—O4—C16—C15 −179.32 (14)
O1—S1—C7—C8 84.82 (11) C9—O4—C16—C11 −0.36 (15)
O2—S1—C7—C8 −43.93 (11) C14—C15—C16—O4 177.59 (13)
C1—S1—C7—C8 −159.05 (10) C14—C15—C16—C11 −1.2 (2)
S1—C7—C8—O3 −67.61 (16) C12—C11—C16—O4 −178.05 (13)
S1—C7—C8—C9 110.33 (12) C10—C11—C16—O4 0.77 (16)
C16—O4—C9—C10 −0.23 (15) C12—C11—C16—C15 0.9 (2)
C16—O4—C9—C8 177.42 (12) C10—C11—C16—C15 179.74 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O3i 0.95 2.55 3.1808 (19) 124
C7—H7a···O2ii 0.99 2.57 3.5383 (17) 165
C7—H7b···O1i 0.99 2.47 3.3746 (17) 152
C15—H15···O3iii 0.95 2.47 3.2742 (17) 142

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) x, y+1, z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2346).

References

  1. Abdel-Aziz, H. A., Bari, A. & Ng, S. W. (2011). Acta Cryst. E67, o696. [DOI] [PMC free article] [PubMed]
  2. Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–3997. [DOI] [PubMed]
  3. Abdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem. 44, 3637–3644. [DOI] [PubMed]
  4. Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.
  5. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  6. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Garuti, L., Roberti, M. & De Clercq, E. (2002). Bioorg. Med. Chem. Lett. 12, 2707–2710. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Takahashi, M., Mamiya, T. & Wakao, M. (1986). J. Heterocycl. Chem. 23, 77–80.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037366/pk2346sup1.cif

e-67-o2675-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037366/pk2346Isup2.hkl

e-67-o2675-Isup2.hkl (130.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037366/pk2346Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES