Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2573. doi: 10.1107/S1600536811035653

Quinoline-2-carbaldehyde

William M Motswainyana a, Martin O Onani a,*
PMCID: PMC3201271  PMID: 22058739

Abstract

The title compound, C10H7NO, crystallizes with two almost planar mol­ecules (A and B) in the asymmetric unit (r.m.s. deviations = 0.018 and 0.020 Å). In the crystal, the A mol­ecules are linked by weak C—H⋯O inter­actions, thereby generating C(9) [001] chains. The B mol­ecules do not exhibit any directional bonding inter­actions.

Related literature

For the synthesis of the title compound, see: Cooper & Cohen (1932). For its use in the synthesis of Schiff base ligands and imino-quinolyl-based transition metal complexes, see: Amandola & Mangano (2003); Prema & Wiznycia (2007); Ramos Silva et al. (2007); Ardizzoia et al. (2009). For its catalytic properties, see: Zhou et al. (2008). graphic file with name e-67-o2573-scheme1.jpg

Experimental

Crystal data

  • C10H7NO

  • M r = 157.17

  • Monoclinic, Inline graphic

  • a = 7.0639 (7) Å

  • b = 21.564 (2) Å

  • c = 10.698 (1) Å

  • β = 107.884 (2)°

  • V = 1550.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.16 × 0.09 × 0.06 mm

Data collection

  • Bruker Kappa DUO APEXII diffractometer

  • 17618 measured reflections

  • 3887 independent reflections

  • 2379 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.117

  • S = 1.00

  • 3887 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); Atwood & Barbour, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035653/hb6393sup1.cif

e-67-o2573-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035653/hb6393Isup2.hkl

e-67-o2573-Isup2.hkl (190.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035653/hb6393Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4A—H4A⋯O1Ai 0.95 2.53 3.424 (2) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the NRF–Thuthuka division and the University of the Western Cape Senate Research.

supplementary crystallographic information

Comment

As part of our investigation of bimetallic complexes as catalysts for C—C coupling reactions, we attempted to synthesize palladium (II) complexes of a bis(imino-quinolyl) ligand. The binucleating ligand brings two metal centers into closer proximity and the resultant bimetallic complex possesses unique reactivity patterns and unusual catalytic properties (Zhou et al. 2008). In an attempt to prepare a bis(imino-quinolyl) palladium (II) complex, the title compound, (I), waas indavertantly obtained (Fig. 1). Dimensions are available in the archived CIF.

Experimental

Single crystals of 2-quinolinecarboxaldehyde were obtained as a result of the decomposition of bis(imino-quinolyl) chloromethyl palladium (II) complex. The bis-palladium (II) complex was prepared from the reaction of a bis(imino-quinolyl) ligand with 2 equimolar PdClMe(cod) in CH2Cl2. Orange needles of the title compound were grown by slow diffusion of hexane into the CH2Cl2 solution of the complex.

Refinement

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed at geometrically calculated positions with d(C—H) = 0.95 Å and refined as riding on their parent atoms with Uiso (H) = 1.2 Ueq (C). The structure was successfully refined to R factor of 0.0451.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing displacement ellipsoids with probability level of 50%.

Fig. 2.

Fig. 2.

Crystal packing of the title compound.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C10H7NO F(000) = 656
Mr = 157.17 Dx = 1.346 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 17618 reflections
a = 7.0639 (7) Å θ = 2.2–28.4°
b = 21.564 (2) Å µ = 0.09 mm1
c = 10.698 (1) Å T = 173 K
β = 107.884 (2)° Needle, orange
V = 1550.9 (3) Å3 0.16 × 0.09 × 0.06 mm
Z = 8

Data collection

Bruker Kappa DUO APEXII diffractometer 2379 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.055
graphite θmax = 28.4°, θmin = 2.2°
0.5° φ scans and ω h = −9→9
17618 measured reflections k = −28→28
3887 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.3641P] where P = (Fo2 + 2Fc2)/3
3887 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. Half sphere of data collected using the Bruker SAINT software package. Crystal to detector distance = 45 mm; combination of φ and ω scans of 0.5°, 40 s per °, 2 iterations.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.2759 (2) 0.51665 (7) 0.83374 (13) 0.0500 (4)
N1A 0.25666 (19) 0.46418 (6) 0.52163 (13) 0.0301 (3)
C1A 0.2419 (2) 0.48240 (7) 0.39656 (16) 0.0283 (4)
C2A 0.2385 (2) 0.43602 (8) 0.30235 (18) 0.0377 (4)
H2A 0.2458 0.3935 0.3265 0.045*
C3A 0.2247 (3) 0.45245 (10) 0.17677 (19) 0.0452 (5)
H3A 0.2207 0.4211 0.1137 0.054*
C4A 0.2162 (3) 0.51490 (10) 0.13944 (18) 0.0438 (5)
H4A 0.2089 0.5254 0.0518 0.053*
C5A 0.2184 (2) 0.56090 (9) 0.22770 (17) 0.0371 (4)
H5A 0.2126 0.6031 0.2013 0.045*
C6A 0.2292 (2) 0.54573 (7) 0.35861 (16) 0.0283 (4)
C7A 0.2265 (2) 0.59065 (8) 0.45389 (16) 0.0313 (4)
H7A 0.2169 0.6335 0.4319 0.038*
C8A 0.2379 (2) 0.57216 (7) 0.57762 (17) 0.0319 (4)
H8A 0.2340 0.6017 0.6427 0.038*
C9A 0.2557 (2) 0.50841 (8) 0.60734 (16) 0.0294 (4)
C10A 0.2734 (3) 0.48493 (9) 0.74045 (18) 0.0388 (4)
H10A 0.2836 0.4413 0.7534 0.047*
O1B −0.60926 (19) 0.21792 (6) 0.27526 (14) 0.0513 (4)
N1B −0.1295 (2) 0.27109 (6) 0.43627 (14) 0.0332 (3)
C1B 0.0608 (2) 0.25250 (7) 0.50026 (16) 0.0308 (4)
C2B 0.2086 (3) 0.29846 (8) 0.54640 (18) 0.0388 (4)
H2B 0.1752 0.3411 0.5320 0.047*
C3B 0.4002 (3) 0.28133 (9) 0.61193 (18) 0.0431 (5)
H3B 0.4990 0.3123 0.6430 0.052*
C4B 0.4520 (3) 0.21879 (9) 0.63369 (18) 0.0417 (4)
H4B 0.5860 0.2078 0.6786 0.050*
C5B 0.3129 (2) 0.17325 (9) 0.59128 (17) 0.0381 (4)
H5B 0.3501 0.1310 0.6076 0.046*
C6B 0.1131 (2) 0.18895 (8) 0.52288 (16) 0.0307 (4)
C7B −0.0391 (2) 0.14417 (8) 0.47742 (17) 0.0341 (4)
H7B −0.0098 0.1013 0.4913 0.041*
C8B −0.2280 (2) 0.16321 (8) 0.41355 (17) 0.0343 (4)
H8B −0.3323 0.1339 0.3821 0.041*
C9B −0.2653 (2) 0.22733 (8) 0.39511 (16) 0.0311 (4)
C10B −0.4680 (3) 0.25053 (9) 0.32446 (18) 0.0408 (4)
H10B −0.4873 0.2941 0.3177 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0461 (8) 0.0728 (10) 0.0322 (7) −0.0039 (7) 0.0137 (6) −0.0042 (7)
N1A 0.0271 (7) 0.0288 (7) 0.0334 (8) −0.0013 (5) 0.0079 (6) −0.0005 (6)
C1A 0.0212 (7) 0.0318 (9) 0.0314 (9) −0.0018 (6) 0.0075 (6) −0.0042 (7)
C2A 0.0332 (9) 0.0373 (10) 0.0425 (11) −0.0025 (7) 0.0114 (8) −0.0097 (8)
C3A 0.0361 (10) 0.0611 (13) 0.0397 (11) −0.0047 (9) 0.0134 (8) −0.0192 (9)
C4A 0.0320 (9) 0.0678 (14) 0.0311 (10) −0.0047 (9) 0.0092 (7) −0.0011 (9)
C5A 0.0290 (9) 0.0481 (11) 0.0340 (10) −0.0020 (7) 0.0092 (7) 0.0042 (8)
C6A 0.0208 (7) 0.0331 (9) 0.0305 (9) −0.0011 (6) 0.0073 (6) 0.0014 (7)
C7A 0.0295 (8) 0.0270 (8) 0.0373 (10) −0.0005 (6) 0.0104 (7) 0.0017 (7)
C8A 0.0300 (8) 0.0306 (9) 0.0354 (10) −0.0021 (7) 0.0105 (7) −0.0063 (7)
C9A 0.0238 (8) 0.0341 (9) 0.0301 (9) −0.0023 (6) 0.0079 (6) −0.0011 (7)
C10A 0.0330 (9) 0.0471 (11) 0.0349 (10) −0.0033 (8) 0.0085 (8) 0.0042 (8)
O1B 0.0357 (7) 0.0547 (9) 0.0539 (9) 0.0027 (6) −0.0004 (6) −0.0062 (7)
N1B 0.0370 (8) 0.0289 (7) 0.0336 (8) 0.0015 (6) 0.0107 (6) −0.0016 (6)
C1B 0.0350 (9) 0.0304 (8) 0.0290 (9) −0.0007 (7) 0.0129 (7) −0.0026 (7)
C2B 0.0439 (10) 0.0333 (9) 0.0406 (10) −0.0082 (8) 0.0148 (8) −0.0047 (8)
C3B 0.0397 (10) 0.0475 (11) 0.0424 (11) −0.0155 (8) 0.0131 (8) −0.0071 (9)
C4B 0.0307 (9) 0.0530 (12) 0.0396 (10) −0.0016 (8) 0.0081 (8) −0.0013 (9)
C5B 0.0341 (9) 0.0399 (10) 0.0394 (10) 0.0017 (8) 0.0101 (8) 0.0023 (8)
C6B 0.0312 (8) 0.0321 (9) 0.0299 (9) −0.0014 (7) 0.0110 (7) −0.0001 (7)
C7B 0.0360 (9) 0.0257 (8) 0.0398 (10) 0.0009 (7) 0.0107 (8) 0.0010 (7)
C8B 0.0324 (9) 0.0306 (9) 0.0386 (10) −0.0026 (7) 0.0091 (7) −0.0036 (7)
C9B 0.0325 (8) 0.0310 (9) 0.0296 (9) 0.0025 (7) 0.0090 (7) −0.0013 (7)
C10B 0.0404 (10) 0.0376 (10) 0.0413 (11) 0.0068 (8) 0.0080 (8) 0.0000 (8)

Geometric parameters (Å, °)

O1A—C10A 1.206 (2) O1B—C10B 1.202 (2)
N1A—C9A 1.325 (2) N1B—C9B 1.321 (2)
N1A—C1A 1.367 (2) N1B—C1B 1.368 (2)
C1A—C2A 1.415 (2) C1B—C2B 1.414 (2)
C1A—C6A 1.420 (2) C1B—C6B 1.420 (2)
C2A—C3A 1.364 (3) C2B—C3B 1.370 (3)
C2A—H2A 0.9500 C2B—H2B 0.9500
C3A—C4A 1.401 (3) C3B—C4B 1.398 (3)
C3A—H3A 0.9500 C3B—H3B 0.9500
C4A—C5A 1.366 (3) C4B—C5B 1.364 (2)
C4A—H4A 0.9500 C4B—H4B 0.9500
C5A—C6A 1.417 (2) C5B—C6B 1.417 (2)
C5A—H5A 0.9500 C5B—H5B 0.9500
C6A—C7A 1.410 (2) C6B—C7B 1.416 (2)
C7A—C8A 1.361 (2) C7B—C8B 1.362 (2)
C7A—H7A 0.9500 C7B—H7B 0.9500
C8A—C9A 1.408 (2) C8B—C9B 1.410 (2)
C8A—H8A 0.9500 C8B—H8B 0.9500
C9A—C10A 1.480 (2) C9B—C10B 1.485 (2)
C10A—H10A 0.9500 C10B—H10B 0.9500
C9A—N1A—C1A 117.09 (14) C9B—N1B—C1B 117.33 (14)
N1A—C1A—C2A 118.25 (15) N1B—C1B—C2B 118.42 (15)
N1A—C1A—C6A 122.37 (14) N1B—C1B—C6B 122.15 (14)
C2A—C1A—C6A 119.38 (15) C2B—C1B—C6B 119.42 (15)
C3A—C2A—C1A 119.90 (17) C3B—C2B—C1B 119.80 (17)
C3A—C2A—H2A 120.1 C3B—C2B—H2B 120.1
C1A—C2A—H2A 120.1 C1B—C2B—H2B 120.1
C2A—C3A—C4A 120.97 (18) C2B—C3B—C4B 120.84 (17)
C2A—C3A—H3A 119.5 C2B—C3B—H3B 119.6
C4A—C3A—H3A 119.5 C4B—C3B—H3B 119.6
C5A—C4A—C3A 120.70 (18) C5B—C4B—C3B 120.90 (17)
C5A—C4A—H4A 119.7 C5B—C4B—H4B 119.5
C3A—C4A—H4A 119.7 C3B—C4B—H4B 119.5
C4A—C5A—C6A 120.07 (17) C4B—C5B—C6B 120.08 (17)
C4A—C5A—H5A 120.0 C4B—C5B—H5B 120.0
C6A—C5A—H5A 120.0 C6B—C5B—H5B 120.0
C7A—C6A—C5A 123.16 (16) C7B—C6B—C5B 123.05 (15)
C7A—C6A—C1A 117.88 (15) C7B—C6B—C1B 117.98 (15)
C5A—C6A—C1A 118.96 (15) C5B—C6B—C1B 118.96 (15)
C8A—C7A—C6A 119.46 (15) C8B—C7B—C6B 119.36 (15)
C8A—C7A—H7A 120.3 C8B—C7B—H7B 120.3
C6A—C7A—H7A 120.3 C6B—C7B—H7B 120.3
C7A—C8A—C9A 118.70 (15) C7B—C8B—C9B 118.56 (15)
C7A—C8A—H8A 120.6 C7B—C8B—H8B 120.7
C9A—C8A—H8A 120.6 C9B—C8B—H8B 120.7
N1A—C9A—C8A 124.46 (15) N1B—C9B—C8B 124.62 (15)
N1A—C9A—C10A 113.76 (15) N1B—C9B—C10B 114.65 (15)
C8A—C9A—C10A 121.78 (15) C8B—C9B—C10B 120.73 (15)
O1A—C10A—C9A 125.30 (18) O1B—C10B—C9B 124.52 (17)
O1A—C10A—H10A 117.4 O1B—C10B—H10B 117.7
C9A—C10A—H10A 117.4 C9B—C10B—H10B 117.7
C9A—N1A—C1A—C2A −178.72 (14) C9B—N1B—C1B—C2B −179.40 (16)
C9A—N1A—C1A—C6A 1.0 (2) C9B—N1B—C1B—C6B −0.2 (2)
N1A—C1A—C2A—C3A −179.74 (15) N1B—C1B—C2B—C3B 179.39 (16)
C6A—C1A—C2A—C3A 0.5 (2) C6B—C1B—C2B—C3B 0.2 (3)
C1A—C2A—C3A—C4A 0.8 (3) C1B—C2B—C3B—C4B 0.2 (3)
C2A—C3A—C4A—C5A −1.1 (3) C2B—C3B—C4B—C5B −0.6 (3)
C3A—C4A—C5A—C6A 0.0 (3) C3B—C4B—C5B—C6B 0.7 (3)
C4A—C5A—C6A—C7A −178.22 (16) C4B—C5B—C6B—C7B −179.28 (17)
C4A—C5A—C6A—C1A 1.3 (2) C4B—C5B—C6B—C1B −0.4 (3)
N1A—C1A—C6A—C7A −1.7 (2) N1B—C1B—C6B—C7B −0.3 (2)
C2A—C1A—C6A—C7A 178.00 (15) C2B—C1B—C6B—C7B 178.91 (16)
N1A—C1A—C6A—C5A 178.70 (14) N1B—C1B—C6B—C5B −179.26 (15)
C2A—C1A—C6A—C5A −1.6 (2) C2B—C1B—C6B—C5B −0.1 (2)
C5A—C6A—C7A—C8A −179.86 (15) C5B—C6B—C7B—C8B 179.36 (17)
C1A—C6A—C7A—C8A 0.6 (2) C1B—C6B—C7B—C8B 0.4 (2)
C6A—C7A—C8A—C9A 1.1 (2) C6B—C7B—C8B—C9B −0.1 (3)
C1A—N1A—C9A—C8A 0.9 (2) C1B—N1B—C9B—C8B 0.6 (3)
C1A—N1A—C9A—C10A −179.66 (13) C1B—N1B—C9B—C10B −179.01 (15)
C7A—C8A—C9A—N1A −2.0 (2) C7B—C8B—C9B—N1B −0.4 (3)
C7A—C8A—C9A—C10A 178.60 (15) C7B—C8B—C9B—C10B 179.14 (16)
N1A—C9A—C10A—O1A 179.95 (16) N1B—C9B—C10B—O1B 176.94 (18)
C8A—C9A—C10A—O1A −0.6 (3) C8B—C9B—C10B—O1B −2.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4A—H4A···O1Ai 0.95 2.53 3.424 (2) 158

Symmetry codes: (i) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6393).

References

  1. Amandola, V. & Mangano, C. (2003). Inorg. Chem. 42, 6056–6062. [DOI] [PubMed]
  2. Ardizzoia, G. A., Brenna, S., Castelli, F. & Galli, S. (2009). Inorg. Chim. Acta, 362, 3507–3512.
  3. Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.
  4. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  5. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cooper, K. E. & Cohen, J. B. (1932). J. Chem. Soc. pp. 723–724.
  7. Prema, D. & Wiznycia, A. V. (2007). Dalton Trans. pp. 4788–4796. [DOI] [PubMed]
  8. Ramos Silva, M., Silva, J. A., Cardoso, C., Matos Beja, A., Sobral, A. J. F. N. & Martins, N. M. D. (2007). Acta Cryst. A63, s178.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Zhou, Y., Xi, Z., Chen, W. & Wang, D. (2008). Organometallics, 27, 5911–5920.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035653/hb6393sup1.cif

e-67-o2573-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035653/hb6393Isup2.hkl

e-67-o2573-Isup2.hkl (190.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035653/hb6393Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES