Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2569. doi: 10.1107/S1600536811035008

3-Amino-1-methyl-9,10-dihydro­phenanthrene-2,4-dicarbonitrile

Abdulrahman O Al-Youbi a, Abdullah M Asiri a,b, Hassan M Faidallah a, Khalid A Alamry a, Seik Weng Ng c,a,*
PMCID: PMC3201274  PMID: 22065653

Abstract

The asymmetric unit of the title compound, C17H13N3, contains two independent mol­ecules, which are non-planar as they are buckled owing to the ethyl­ene portion. The dihedral angle between the benzene rings is 26.4 (1)° in one mol­ecule and 32.9 (1)° in the other. In the crystal, the mol­ecules are disposed about a false inversion center, and are linked by two N—H⋯N hydrogen bonds, generating a dimer. The dimers are linked by further N—H⋯N hydrogen bonds, resulting in a chain that runs along the longest axis of the ortho­rhom­bic unit cell.

Related literature

For the synthesis of dihydro­phenanthrenes, see: Dellagreca et al. (2000); Ram & Goel (1997).graphic file with name e-67-o2569-scheme1.jpg

Experimental

Crystal data

  • C17H13N3

  • M r = 259.30

  • Orthorhombic, Inline graphic

  • a = 26.8587 (7) Å

  • b = 8.8158 (2) Å

  • c = 11.2035 (3) Å

  • V = 2652.78 (12) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.02 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.836, T max = 0.988

  • 10819 measured reflections

  • 2800 independent reflections

  • 2621 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.091

  • S = 1.09

  • 2800 reflections

  • 379 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035008/xu5310sup1.cif

e-67-o2569-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035008/xu5310Isup2.hkl

e-67-o2569-Isup2.hkl (137.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯N4 0.91 (4) 2.15 (4) 3.007 (3) 156 (3)
N2—H22⋯N6i 0.91 (3) 2.38 (3) 3.265 (3) 164 (2)
N5—H51⋯N1ii 0.91 (4) 2.12 (4) 3.012 (3) 168 (3)
N5—H52⋯N3 0.91 (3) 2.41 (3) 3.283 (3) 161 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

As the dihydrophenanthrene skeleton is a principal component of a number of pharmaceutical products, there is a large collection of reserach on the synthesis of dihydrophenanthrene compounds. This skeleton is known to mimic natural products, which is yet another source of bioactive compounds (Dellagreca et al., 2000). In this study, we have used 1-tetralone, acetaldehyde, and malonitrile to synthesize the skeleton; an early study reported the use of 1-tetralone to condense with 2H-pyran-2-ones to furnish this skeleton (Ram & Goel, 1997). The title molecule, C17H13N3 (Scheme I), is non-planar as the molecule it is buckled owing to the ethylene portion; the dihedral angle between the aromatic rings is 26.4 (1) ° in one independent molecule and 32.9 (1) ° in the other. The molecules are disposed about a false inversion center, and are linked by two NH···N hydrogen bonds to generate a dimer (Fig. 1). The dimers are linked by N–H···N hydrogen bonds to result in a linear chain (Table 1).

Experimental

Acetaldehyde (0.44 g,10 mmol), 1-tetralone (1.46 g, 10 mmol), malononitrile (0.66 g, 10 mmol) and ammonium acetate(6.20 g, 80 mmol) in absolute ethanol (50 ml) were heated for 6 houyrs. The mixture was allowed to cool, and the solid was collected, washed with water, dried and then recrystallized from ethanol to yield light brown crystals, m.p. 457–459 K.

Refinement

Carbon- and nitrogen-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fouier map and were freely refined.

The Flack parameter initially refined to 0.1 (4) on 1933 Friedel pairs. As the uncertainty was too large, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C17H13N3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C17H13N3 F(000) = 1088
Mr = 259.30 Dx = 1.299 Mg m3
Orthorhombic, Pna21 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2n Cell parameters from 4366 reflections
a = 26.8587 (7) Å θ = 3.3–74.4°
b = 8.8158 (2) Å µ = 0.62 mm1
c = 11.2035 (3) Å T = 100 K
V = 2652.78 (12) Å3 Plate, light brown
Z = 8 0.30 × 0.20 × 0.02 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2800 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2621 reflections with I > 2σ(I)
Mirror Rint = 0.033
Detector resolution: 10.4041 pixels mm-1 θmax = 74.6°, θmin = 3.3°
ω scans h = −24→33
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −10→10
Tmin = 0.836, Tmax = 0.988 l = −13→13
10819 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.058P)2 + 0.0761P] where P = (Fo2 + 2Fc2)/3
2800 reflections (Δ/σ)max = 0.001
379 parameters Δρmax = 0.16 e Å3
1 restraint Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.87010 (7) 0.4611 (2) 0.74979 (18) 0.0264 (4)
N2 0.89781 (7) 0.4949 (2) 0.45228 (19) 0.0211 (4)
H21 0.9103 (12) 0.469 (4) 0.379 (3) 0.045 (9)*
H22 0.9152 (11) 0.471 (3) 0.519 (3) 0.031 (8)*
N3 0.87032 (8) 0.5796 (2) 0.15228 (18) 0.0281 (4)
N4 0.94098 (7) 0.3192 (2) 0.24687 (18) 0.0256 (4)
N5 0.94187 (7) 0.4150 (2) −0.04685 (19) 0.0254 (4)
H51 0.9239 (12) 0.424 (4) −0.115 (3) 0.047 (9)*
H52 0.9272 (11) 0.451 (4) 0.020 (3) 0.037 (8)*
N6 0.97783 (8) 0.3851 (2) −0.34610 (18) 0.0289 (4)
C1 0.76004 (11) 0.7688 (4) 0.2539 (2) 0.0391 (7)
H1A 0.7507 0.8757 0.2628 0.059*
H1B 0.7301 0.7078 0.2399 0.059*
H1C 0.7828 0.7579 0.1861 0.059*
C2 0.76447 (8) 0.7425 (3) 0.4785 (2) 0.0229 (5)
C3 0.78542 (8) 0.7153 (3) 0.3660 (2) 0.0248 (5)
C4 0.71332 (8) 0.8142 (3) 0.4946 (2) 0.0289 (5)
H4A 0.6941 0.8069 0.4193 0.035*
H4B 0.7169 0.9228 0.5155 0.035*
C5 0.68597 (8) 0.7302 (3) 0.5944 (2) 0.0290 (5)
H5A 0.6527 0.7758 0.6064 0.035*
H5B 0.6814 0.6226 0.5718 0.035*
C6 0.71544 (8) 0.7399 (2) 0.7083 (2) 0.0228 (5)
C7 0.69360 (8) 0.7612 (3) 0.8196 (2) 0.0269 (5)
H7 0.6584 0.7626 0.8266 0.032*
C8 0.72290 (9) 0.7805 (3) 0.9206 (2) 0.0292 (5)
H8 0.7076 0.7929 0.9964 0.035*
C9 0.77457 (9) 0.7817 (3) 0.9110 (2) 0.0278 (5)
H9 0.7946 0.7990 0.9796 0.033*
C10 0.79671 (8) 0.7576 (3) 0.8011 (2) 0.0229 (5)
H10 0.8320 0.7593 0.7946 0.028*
C11 0.76781 (8) 0.7309 (2) 0.6998 (2) 0.0206 (4)
C12 0.78952 (8) 0.6957 (2) 0.5817 (2) 0.0208 (4)
C13 0.83376 (7) 0.6109 (2) 0.57199 (19) 0.0181 (4)
C14 0.85599 (7) 0.5797 (2) 0.4602 (2) 0.0183 (4)
C15 0.83135 (8) 0.6366 (2) 0.3579 (2) 0.0213 (4)
C16 0.85397 (7) 0.5328 (2) 0.67296 (19) 0.0202 (4)
C17 0.85254 (8) 0.6055 (3) 0.2431 (2) 0.0230 (5)
C18 1.06712 (10) 0.1026 (3) −0.2549 (2) 0.0305 (5)
H18A 1.1034 0.1134 −0.2536 0.046*
H18B 1.0535 0.1591 −0.3228 0.046*
H18C 1.0584 −0.0049 −0.2626 0.046*
C19 1.04565 (8) 0.1645 (2) −0.1407 (2) 0.0223 (4)
C20 1.06385 (8) 0.1173 (2) −0.0295 (2) 0.0215 (4)
C21 1.10732 (8) 0.0077 (3) −0.0178 (2) 0.0259 (5)
H21A 1.1112 −0.0505 −0.0928 0.031*
H21B 1.1384 0.0653 −0.0039 0.031*
C22 1.09836 (9) −0.1007 (3) 0.0855 (2) 0.0285 (5)
H22A 1.0694 −0.1661 0.0672 0.034*
H22B 1.1278 −0.1669 0.0959 0.034*
C23 1.08876 (7) −0.0150 (3) 0.1992 (2) 0.0235 (5)
C24 1.10496 (8) −0.0667 (3) 0.3099 (2) 0.0293 (5)
H24 1.1220 −0.1609 0.3151 0.035*
C25 1.09665 (9) 0.0173 (3) 0.4127 (2) 0.0302 (5)
H25 1.1064 −0.0217 0.4882 0.036*
C26 1.07405 (8) 0.1582 (3) 0.4049 (2) 0.0273 (5)
H26 1.0701 0.2189 0.4744 0.033*
C27 1.05719 (8) 0.2104 (3) 0.2956 (2) 0.0222 (5)
H27 1.0418 0.3071 0.2908 0.027*
C28 1.06245 (8) 0.1233 (2) 0.1924 (2) 0.0208 (4)
C29 1.04170 (8) 0.1703 (2) 0.0757 (2) 0.0189 (4)
C30 0.99925 (8) 0.2638 (2) 0.06895 (19) 0.0188 (4)
C31 0.98132 (8) 0.3191 (2) −0.0416 (2) 0.0199 (4)
C32 1.00643 (8) 0.2697 (2) −0.1454 (2) 0.0213 (4)
C33 0.99065 (8) 0.3313 (3) −0.2578 (2) 0.0234 (5)
C34 0.96871 (8) 0.2955 (2) 0.1702 (2) 0.0200 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0289 (9) 0.0307 (10) 0.0196 (9) 0.0063 (8) −0.0002 (8) 0.0018 (8)
N2 0.0200 (8) 0.0266 (9) 0.0167 (8) 0.0044 (7) 0.0001 (8) −0.0012 (8)
N3 0.0344 (10) 0.0287 (10) 0.0210 (10) 0.0030 (8) 0.0028 (9) 0.0007 (8)
N4 0.0239 (9) 0.0305 (10) 0.0223 (9) 0.0050 (7) 0.0007 (8) 0.0002 (8)
N5 0.0283 (9) 0.0297 (10) 0.0180 (9) 0.0066 (8) −0.0039 (9) −0.0016 (8)
N6 0.0320 (10) 0.0326 (11) 0.0221 (10) −0.0069 (8) −0.0006 (9) 0.0013 (9)
C1 0.0415 (14) 0.0554 (17) 0.0203 (12) 0.0196 (13) −0.0049 (11) 0.0002 (13)
C2 0.0224 (11) 0.0263 (11) 0.0200 (11) 0.0039 (8) −0.0023 (9) −0.0020 (9)
C3 0.0270 (11) 0.0280 (11) 0.0194 (11) 0.0037 (9) −0.0048 (9) −0.0005 (9)
C4 0.0249 (11) 0.0379 (13) 0.0239 (12) 0.0110 (9) −0.0044 (9) −0.0020 (10)
C5 0.0195 (10) 0.0338 (13) 0.0337 (13) 0.0038 (9) −0.0023 (10) −0.0070 (11)
C6 0.0213 (10) 0.0196 (10) 0.0275 (12) 0.0009 (8) 0.0009 (9) −0.0002 (9)
C7 0.0219 (10) 0.0244 (11) 0.0344 (13) 0.0030 (8) 0.0104 (10) 0.0033 (10)
C8 0.0345 (12) 0.0303 (12) 0.0226 (12) 0.0072 (9) 0.0103 (10) 0.0036 (10)
C9 0.0325 (12) 0.0313 (12) 0.0197 (11) 0.0059 (9) 0.0007 (10) −0.0018 (10)
C10 0.0224 (10) 0.0240 (11) 0.0225 (11) 0.0017 (8) 0.0004 (9) −0.0014 (9)
C11 0.0200 (10) 0.0188 (10) 0.0229 (11) 0.0016 (8) 0.0024 (9) −0.0014 (9)
C12 0.0188 (10) 0.0211 (11) 0.0224 (11) −0.0017 (8) −0.0019 (9) −0.0017 (9)
C13 0.0178 (9) 0.0197 (10) 0.0170 (10) −0.0005 (8) −0.0008 (8) −0.0027 (8)
C14 0.0187 (9) 0.0183 (9) 0.0178 (9) −0.0026 (7) −0.0008 (8) −0.0007 (8)
C15 0.0240 (10) 0.0231 (10) 0.0169 (10) 0.0006 (8) −0.0003 (9) −0.0017 (9)
C16 0.0173 (9) 0.0236 (10) 0.0195 (11) −0.0005 (8) 0.0030 (8) −0.0035 (9)
C17 0.0242 (10) 0.0235 (11) 0.0214 (11) 0.0009 (8) −0.0027 (9) 0.0018 (9)
C18 0.0410 (13) 0.0276 (12) 0.0229 (11) −0.0014 (10) 0.0092 (11) −0.0054 (10)
C19 0.0277 (10) 0.0186 (10) 0.0206 (10) −0.0034 (8) 0.0050 (9) −0.0023 (9)
C20 0.0231 (10) 0.0185 (10) 0.0229 (11) −0.0011 (8) 0.0054 (9) −0.0007 (9)
C21 0.0260 (10) 0.0216 (10) 0.0299 (12) 0.0040 (8) 0.0078 (9) −0.0008 (10)
C22 0.0298 (11) 0.0190 (11) 0.0365 (13) 0.0040 (8) 0.0090 (11) 0.0027 (10)
C23 0.0185 (10) 0.0224 (11) 0.0295 (12) 0.0004 (8) 0.0037 (9) 0.0052 (10)
C24 0.0238 (11) 0.0274 (12) 0.0367 (13) 0.0032 (9) 0.0024 (10) 0.0089 (11)
C25 0.0265 (11) 0.0368 (13) 0.0275 (12) 0.0015 (9) −0.0037 (10) 0.0101 (11)
C26 0.0232 (10) 0.0347 (13) 0.0242 (11) 0.0012 (9) −0.0015 (9) 0.0027 (10)
C27 0.0180 (9) 0.0252 (11) 0.0235 (11) 0.0002 (8) 0.0002 (8) 0.0034 (9)
C28 0.0196 (9) 0.0194 (10) 0.0235 (11) −0.0002 (8) 0.0025 (8) 0.0028 (9)
C29 0.0201 (10) 0.0152 (9) 0.0215 (10) −0.0016 (7) 0.0014 (9) −0.0004 (8)
C30 0.0202 (10) 0.0181 (10) 0.0180 (11) −0.0012 (8) 0.0000 (8) −0.0017 (8)
C31 0.0202 (9) 0.0195 (9) 0.0200 (10) −0.0028 (7) −0.0010 (8) −0.0009 (9)
C32 0.0225 (10) 0.0228 (11) 0.0185 (10) −0.0054 (8) 0.0000 (9) 0.0007 (9)
C33 0.0243 (10) 0.0244 (11) 0.0215 (11) −0.0067 (8) 0.0017 (9) −0.0024 (9)
C34 0.0198 (9) 0.0206 (10) 0.0197 (11) 0.0007 (8) −0.0033 (9) 0.0015 (8)

Geometric parameters (Å, °)

N1—C16 1.153 (3) C12—C13 1.408 (3)
N2—C14 1.352 (3) C13—C14 1.414 (3)
N2—H21 0.91 (4) C13—C16 1.431 (3)
N2—H22 0.91 (3) C14—C15 1.415 (3)
N3—C17 1.147 (3) C15—C17 1.433 (3)
N4—C34 1.156 (3) C18—C19 1.506 (3)
N5—C31 1.357 (3) C18—H18A 0.9800
N5—H51 0.91 (4) C18—H18B 0.9800
N5—H52 0.91 (3) C18—H18C 0.9800
N6—C33 1.150 (3) C19—C20 1.401 (3)
C1—C3 1.505 (3) C19—C32 1.405 (3)
C1—H1A 0.9800 C20—C29 1.400 (3)
C1—H1B 0.9800 C20—C21 1.521 (3)
C1—H1C 0.9800 C21—C22 1.520 (3)
C2—C12 1.400 (3) C21—H21A 0.9900
C2—C3 1.400 (3) C21—H21B 0.9900
C2—C4 1.523 (3) C22—C23 1.504 (3)
C3—C15 1.419 (3) C22—H22A 0.9900
C4—C5 1.529 (4) C22—H22B 0.9900
C4—H4A 0.9900 C23—C24 1.391 (3)
C4—H4B 0.9900 C23—C28 1.411 (3)
C5—C6 1.505 (3) C24—C25 1.388 (4)
C5—H5A 0.9900 C24—H24 0.9500
C5—H5B 0.9900 C25—C26 1.386 (3)
C6—C7 1.391 (3) C25—H25 0.9500
C6—C11 1.412 (3) C26—C27 1.385 (3)
C7—C8 1.388 (4) C26—H26 0.9500
C7—H7 0.9500 C27—C28 1.394 (3)
C8—C9 1.392 (3) C27—H27 0.9500
C8—H8 0.9500 C28—C29 1.481 (3)
C9—C10 1.384 (3) C29—C30 1.409 (3)
C9—H9 0.9500 C30—C31 1.416 (3)
C10—C11 1.395 (3) C30—C34 1.427 (3)
C10—H10 0.9500 C31—C32 1.413 (3)
C11—C12 1.479 (3) C32—C33 1.435 (3)
C14—N2—H21 120 (2) C3—C15—C17 119.8 (2)
C14—N2—H22 120.1 (18) N1—C16—C13 175.4 (2)
H21—N2—H22 119 (2) N3—C17—C15 178.7 (2)
C31—N5—H51 120 (2) C19—C18—H18A 109.5
C31—N5—H52 121.3 (19) C19—C18—H18B 109.5
H51—N5—H52 116 (3) H18A—C18—H18B 109.5
C3—C1—H1A 109.5 C19—C18—H18C 109.5
C3—C1—H1B 109.5 H18A—C18—H18C 109.5
H1A—C1—H1B 109.5 H18B—C18—H18C 109.5
C3—C1—H1C 109.5 C20—C19—C32 119.4 (2)
H1A—C1—H1C 109.5 C20—C19—C18 121.0 (2)
H1B—C1—H1C 109.5 C32—C19—C18 119.6 (2)
C12—C2—C3 119.95 (19) C29—C20—C19 120.04 (18)
C12—C2—C4 117.3 (2) C29—C20—C21 117.8 (2)
C3—C2—C4 122.7 (2) C19—C20—C21 122.2 (2)
C2—C3—C15 119.4 (2) C22—C21—C20 110.08 (18)
C2—C3—C1 121.0 (2) C22—C21—H21A 109.6
C15—C3—C1 119.6 (2) C20—C21—H21A 109.6
C2—C4—C5 108.60 (19) C22—C21—H21B 109.6
C2—C4—H4A 110.0 C20—C21—H21B 109.6
C5—C4—H4A 110.0 H21A—C21—H21B 108.2
C2—C4—H4B 110.0 C23—C22—C21 110.84 (19)
C5—C4—H4B 110.0 C23—C22—H22A 109.5
H4A—C4—H4B 108.3 C21—C22—H22A 109.5
C6—C5—C4 109.88 (18) C23—C22—H22B 109.5
C6—C5—H5A 109.7 C21—C22—H22B 109.5
C4—C5—H5A 109.7 H22A—C22—H22B 108.1
C6—C5—H5B 109.7 C24—C23—C28 119.2 (2)
C4—C5—H5B 109.7 C24—C23—C22 122.5 (2)
H5A—C5—H5B 108.2 C28—C23—C22 118.3 (2)
C7—C6—C11 119.2 (2) C25—C24—C23 121.0 (2)
C7—C6—C5 123.12 (19) C25—C24—H24 119.5
C11—C6—C5 117.6 (2) C23—C24—H24 119.5
C8—C7—C6 120.5 (2) C26—C25—C24 119.8 (2)
C8—C7—H7 119.7 C26—C25—H25 120.1
C6—C7—H7 119.7 C24—C25—H25 120.1
C7—C8—C9 120.2 (2) C25—C26—C27 119.8 (2)
C7—C8—H8 119.9 C25—C26—H26 120.1
C9—C8—H8 119.9 C27—C26—H26 120.1
C10—C9—C8 119.7 (2) C26—C27—C28 121.2 (2)
C10—C9—H9 120.1 C26—C27—H27 119.4
C8—C9—H9 120.1 C28—C27—H27 119.4
C9—C10—C11 120.72 (19) C27—C28—C23 118.8 (2)
C9—C10—H10 119.6 C27—C28—C29 122.69 (19)
C11—C10—H10 119.6 C23—C28—C29 118.5 (2)
C10—C11—C6 119.3 (2) C20—C29—C30 119.6 (2)
C10—C11—C12 122.96 (18) C20—C29—C28 119.34 (18)
C6—C11—C12 117.7 (2) C30—C29—C28 121.0 (2)
C2—C12—C13 119.9 (2) C29—C30—C31 121.6 (2)
C2—C12—C11 119.17 (18) C29—C30—C34 122.5 (2)
C13—C12—C11 120.9 (2) C31—C30—C34 115.62 (18)
C12—C13—C14 121.84 (19) N5—C31—C32 122.0 (2)
C12—C13—C16 120.98 (19) N5—C31—C30 121.2 (2)
C14—C13—C16 116.51 (18) C32—C31—C30 116.83 (18)
N2—C14—C13 121.1 (2) C19—C32—C31 122.0 (2)
N2—C14—C15 122.1 (2) C19—C32—C33 120.3 (2)
C13—C14—C15 116.78 (17) C31—C32—C33 117.64 (19)
C14—C15—C3 121.9 (2) N6—C33—C32 177.8 (2)
C14—C15—C17 118.24 (18) N4—C34—C30 175.0 (2)
C12—C2—C3—C15 1.7 (3) C32—C19—C20—C29 2.5 (3)
C4—C2—C3—C15 −174.7 (2) C18—C19—C20—C29 −176.8 (2)
C12—C2—C3—C1 −178.1 (2) C32—C19—C20—C21 −177.9 (2)
C4—C2—C3—C1 5.5 (4) C18—C19—C20—C21 2.8 (3)
C12—C2—C4—C5 −38.2 (3) C29—C20—C21—C22 37.7 (3)
C3—C2—C4—C5 138.3 (2) C19—C20—C21—C22 −141.9 (2)
C2—C4—C5—C6 59.0 (3) C20—C21—C22—C23 −55.3 (3)
C4—C5—C6—C7 140.4 (2) C21—C22—C23—C24 −144.8 (2)
C4—C5—C6—C11 −37.8 (3) C21—C22—C23—C28 35.0 (3)
C11—C6—C7—C8 3.0 (3) C28—C23—C24—C25 −1.5 (3)
C5—C6—C7—C8 −175.2 (2) C22—C23—C24—C25 178.2 (2)
C6—C7—C8—C9 1.3 (3) C23—C24—C25—C26 −3.2 (4)
C7—C8—C9—C10 −2.5 (4) C24—C25—C26—C27 3.9 (3)
C8—C9—C10—C11 −0.5 (3) C25—C26—C27—C28 0.1 (3)
C9—C10—C11—C6 4.7 (3) C26—C27—C28—C23 −4.7 (3)
C9—C10—C11—C12 −176.3 (2) C26—C27—C28—C29 175.5 (2)
C7—C6—C11—C10 −5.9 (3) C24—C23—C28—C27 5.4 (3)
C5—C6—C11—C10 172.4 (2) C22—C23—C28—C27 −174.4 (2)
C7—C6—C11—C12 175.08 (19) C24—C23—C28—C29 −174.83 (19)
C5—C6—C11—C12 −6.6 (3) C22—C23—C28—C29 5.4 (3)
C3—C2—C12—C13 −5.0 (3) C19—C20—C29—C30 3.8 (3)
C4—C2—C12—C13 171.6 (2) C21—C20—C29—C30 −175.78 (19)
C3—C2—C12—C11 177.5 (2) C19—C20—C29—C28 −178.0 (2)
C4—C2—C12—C11 −5.9 (3) C21—C20—C29—C28 2.4 (3)
C10—C11—C12—C2 −148.5 (2) C27—C28—C29—C20 154.0 (2)
C6—C11—C12—C2 30.5 (3) C23—C28—C29—C20 −25.7 (3)
C10—C11—C12—C13 34.1 (3) C27—C28—C29—C30 −27.8 (3)
C6—C11—C12—C13 −147.0 (2) C23—C28—C29—C30 152.4 (2)
C2—C12—C13—C14 4.5 (3) C20—C29—C30—C31 −6.8 (3)
C11—C12—C13—C14 −178.06 (19) C28—C29—C30—C31 175.05 (19)
C2—C12—C13—C16 −165.8 (2) C20—C29—C30—C34 166.3 (2)
C11—C12—C13—C16 11.7 (3) C28—C29—C30—C34 −11.8 (3)
C12—C13—C14—N2 −178.4 (2) C29—C30—C31—N5 −176.8 (2)
C16—C13—C14—N2 −7.7 (3) C34—C30—C31—N5 9.6 (3)
C12—C13—C14—C15 −0.6 (3) C29—C30—C31—C32 3.2 (3)
C16—C13—C14—C15 170.03 (19) C34—C30—C31—C32 −170.37 (19)
N2—C14—C15—C3 175.0 (2) C20—C19—C32—C31 −6.2 (3)
C13—C14—C15—C3 −2.7 (3) C18—C19—C32—C31 173.1 (2)
N2—C14—C15—C17 −1.5 (3) C20—C19—C32—C33 173.6 (2)
C13—C14—C15—C17 −179.2 (2) C18—C19—C32—C33 −7.2 (3)
C2—C3—C15—C14 2.2 (3) N5—C31—C32—C19 −176.7 (2)
C1—C3—C15—C14 −178.0 (2) C30—C31—C32—C19 3.3 (3)
C2—C3—C15—C17 178.7 (2) N5—C31—C32—C33 3.5 (3)
C1—C3—C15—C17 −1.5 (4) C30—C31—C32—C33 −176.46 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H21···N4 0.91 (4) 2.15 (4) 3.007 (3) 156 (3)
N2—H22···N6i 0.91 (3) 2.38 (3) 3.265 (3) 164 (2)
N5—H51···N1ii 0.91 (4) 2.12 (4) 3.012 (3) 168 (3)
N5—H52···N3 0.91 (3) 2.41 (3) 3.283 (3) 161 (3)

Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5310).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Dellagreca, M., Fiorentino, A., Monaco, P., Previtera, L. & Zarrelli, A. (2000). J. Chem. Ecol. 26, 587–600. [DOI] [PubMed]
  4. Ram, V. J. & Goel, A. (1997). J. Chem. Res. pp. 460–461.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035008/xu5310sup1.cif

e-67-o2569-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035008/xu5310Isup2.hkl

e-67-o2569-Isup2.hkl (137.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES